Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 198716 dokumen yang sesuai dengan query
cover
Nabila Dita Putri
"Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun.

Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kaysa Syifa Wijdan Amin
"Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun.

Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilang Catur Yudishtira
"Saat ini, dataset yang tersedia untuk melakukan analisis emosi di Indonesia masih terbatas, baik dari segi jumlah data, cakupan emosi, serta sumbernya. Pada penelitian ini, peneliti membangun dataset besar untuk tugas analisis emosi pada data teks berbahasa Indonesia, di mana dataset ini dikumpulkan dari berbagai domain dan sumber. Dataset ini mengandung 33 ribu teks, yang terdiri dari tweet yang dikumpulkan dari Twitter, serta komentar unggahan yang dikumpulkan dari Instagram dan Youtube. Domain yang dicakup pada dataset ini adalah domain olahraga, hiburan, dan life chapter. Dataset ini dianotasi oleh 36 annotator dengan label emosi fine-grained secara multi-label, di mana label emosi yang digunakan ini merupakan hasil dari taksonomi emosi baru yang diusulkan oleh peneliti. Pada penelitian ini, peneliti mengusulkan taksonomi emosi baru yang terdiri dari 44 fine-grained emotion, yang dikelompokkan ke dalam 6 basic emotion. Selain itu, peneliti juga membangun baseline model untuk melakukan analisis emosi. Didapatkan dua baseline model, yaitu hasil fine-tuning IndoBERT dengan f1-score micro tertinggi sebesar 0.3786, dan model hierarchical logistic regression dengan exact match ratio tertinggi sebesar 0.2904. Kedua baseline model tersebut juga dievaluasi di lintas domain untuk dilihat seberapa general dan robust model yang telah dibangun.

Currently, no research in Indonesia utilises fine-grained emotion for emotion analysis. In addition, the available datasets for analysing emotions still need to be improved in terms of the amount of data, the range of emotions, and their sources. In this study, researchers built a large dataset for analysing emotion. This dataset contains 33k texts, consisting of tweets collected from Twitter and comments collected from Instagram and Youtube posts. The domains covered in this dataset are sports, entertainment, and life chapter. Thirty-six annotators annotated this dataset with fine-grained emotion labels and a multi-label scheme, where the emotion labels resulted from a new emotion taxonomy proposed by the researcher. In this study, the researchers propose a new emotion taxonomy consisting of 44 fine-grained emotions which are grouped into six basic emotions. Two baseline models were obtained, the first one is the fine-tuned IndoBERT model, which achieved the highest f1-score micro of 0.3786, and the second one is hierarchical logistic regression model, which achieved the highest exact match ratio of 0.2904. Both baseline models were also evaluated to determine their cross-domain applicability. The dataset and baseline models that are produced in this study are expected to be valuable resources for future research purposes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendrico Kristiawan
"Pertanyaan konsultasi pada sebuah forum daring perlu dijawab oleh dokter spesialis yang tepat agar jawaban yang diberikan akurat dan bermanfaat bagi pengguna yang bertanya. Terkait hal tersebut, penelitian ini membahas tentang pengembangan model yang dapat secara otomatis mengarahkan sebuah pertanyaan konsultasi kesehatan ke dokter dengan spesialisasi yang sesuai. Lebih jauh lagi, model yang dibangun merupakan model klasifikasi multi-label karena sebuah pertanyaan dapat terasosiasi dengan lebih dari satu spesialisasi. Penelitian ini dimulai dengan mengevaluasi keefektifan metode pemetaan berbasis aturan dalam memprediksi data yang dianotasi oleh pakar, dan diperoleh hasil yang menunjukkan tingkat keberhasilan yang cukup. Selanjutnya, dikembangkan sebuah model machine learning yang melakukan klasifikasi domain spesialis dokter. Pelatihan model dilakukan dengan berbagai metode, termasuk supervised, unsupervised, serta semi-supervised learning. Model terbaik ditemukan melalui metode domain adaptive pre-training dengan IndoBERT-large sebagai model acuan dan melibatkan unsupervised learning. Selain itu, model supervised learning juga digunakan dengan menggunakan model konvensional, dan hasilnya digunakan untuk analisis kontribusi dari fitur-fitur yang digunakan dalam klasifikasi. Terakhir, penelitian ini mengevaluasi kembali anotasi yang dilakukan oleh manusia dengan menggunakan kata kunci sebagai pendekatan untuk mengurangi kesalahan dalam dataset. Dengan pendekatan ini, berhasil ditemukan beberapa kesalahan anotasi pada dataset yang dianotasi oleh manusia.

The consultation questions on an online forum need to be answered by the appropriate specialist doctors to provide accurate and beneficial answers to the users asking the questions. In relation to this, this study discusses the development of a model that can automatically direct a health consultation question to a doctor with the corresponding specialization. Furthermore, the constructed model is a multi-label classification model because a question can be associated with more than one specialization. There are several issues addressed in this work. This research begins by evaluating the effectiveness of rule-based mapping methods in predicting data annotated by experts, and the results show a satisfactory level of success. Furthermore, a multi-label classification model is developed to classify the specialist domains of doctors. The model training is performed using various methods, including supervised learning, unsupervised learning, and semi-supervised learning. The best model is found through domain adaptive pre-training using IndoBERT-large as the reference model and involving unsupervised learning. Additionally, the supervised learning model is also used with a conventional model, and the results are used to analyze the contribution of the features used in the classification. Lastly, this research re-evaluates the annotations made by humans using keyword-based approaches to reduce errors in the dataset. With this approach, several annotation errors were successfully identified in the dataset annotated by humans.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagaskara Ghanyvian Istiqlal
"Kualitas tidur yang baik sangatlah penting untuk berbagai aspek kehidupan seperti kesehatan fisik, kesehatan mental, keselamatan, konsentrasi, performa, penyembuhan, dan lain-lain. Kualitas tidur tidak hanya mencakup aspek fisiologis, tetapi juga memperhatikan aspek mental seperti: kondisi setelah tidur, kepuasan dengan tidur, dan pengaruh pada kehidupan sehari-hari. Penelitian ini mengusulkan penggabungan data objektif yang berasal dari Fitbit dan kuesioner subjektif untuk mengklasifikasi kualitas tidur menggunakan K-Nearest Neighbor. Klasifikasi ini bertujuan untuk mempelajari fitur-fitur yang paling pengaruh dalam kualitas tidur. Data objektif yang berisikan data fisiologis dan aspek tidur terukur oleh Fitbit, serta data subjektif mengenai aspek mental, keduanya dijadikan fitur deskriptif dalam model. Analisa fitur yang paling berpengaruh dilakukan dari dua sudut pandang model, yaitu fitur target kualitas tidur subjektif dan fitur target kualitas objektif. Kedua model dilatih dengan serangkaian data preprocessing yang termasuk didalamnya terdapat seleksi fitur dan ekstraksi fitur. Seleksi fitur berbasis ANOVA F Test akan dibandingkan dengan ekstraksi fitur Principal Component Analysis (PCA) dan Neighborhood Component Analysis(NCA). Seleksi fitur ANOVA F-Test lebih baik dari PCA dan NCA dengan peningkatan skor sebesar 0,06-0,08 pada model objektif, dan 0,01-0,06 pada model subjektif. Skor terbaik terbaik dari model subjektif yaitu 0,52 dengan parameter jumlah fitur = 3 dan k-neighbors = 27. Skor terbaik terbaik dari model objektif yaitu 0,72 dengan parameter jumlah fitur = 7 dan k-neighbors = 4. Pada akhirnya, ditemukan 3 Fitur yang paling berpengaruh dalam klasifikasi subjektf, dan 7 fitur yang paling berpengaruh dalam klasifikasi objektif.

Good quality sleep is very important for various aspects of life such as physical health, mental health, safety, concentration, performance, healing, and others. Sleep quality does not only include physiological aspects, but also pay attention to mental aspects such as condition after sleep, satisfaction with sleep, and influence on daily life. This study proposes combining objective data from Fitbit and subjective questionnaires to classify sleep quality using K-Nearest Neighbor. This classification aims to study the features that have the most influence in sleep quality. Objective data containing physiological data and sleep aspects measured by Fitbit, as well as subjective data on mental aspects, are both used as descriptive features in the model. The analysis of the most influential features is carried out from two viewpoints of the model, namely the subjective sleep quality target feature and the objective quality target feature. Both models are trained with a series of preprocessing data which includes feature selection and feature extraction. ANOVA F Test based on feature selection will be compared with feature extraction of Principal Component Analysis (PCA) and Neighborhood Component Analysis (NCA). ANOVA F-Test feature selection is better than PCA and NCA with an increase in scores of 0.06-0.08 in the objective model, and 0.01-0.06 in the subjective model. The best score of the subjective model is 0.52 with the parameter number of features = 3 and k-neighbors = 27. The best score of the objective model is 0.72 with the parameter number of features = 7 and k-neighbors = 4. In the end, it was found 3 the most influential features in the subjective classification, and 7 the most influential features in the objective classification."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tang, Lei, 1982-
[San Rafael, Calif.] : Morgan and Claypool, 2010
006.754 TAN c
Buku Teks  Universitas Indonesia Library
cover
Aldi Naufal Fitrah
"Dengan bertambahnya jumlah pengguna internet seiring waktu, bertambah pula jumlah data yang dihasilkan dari aktivitas yang berasal dari media sosial. Data tersebut dapat digunakan untuk berbagai keperluan, salah satunya untuk keperluan moderasi supaya aktivitas pengguna internet tetap tunduk pada hukum yang berlaku. Namun, diperlukan cara yang optimal untuk melakukan proses tersebut mengingat data yang jumlahnya sangat besar. Penelitian ini mengajukan sebuah platform yang dapat menjadi salah satu pilihan untuk memproses data media sosial yang berjumlah besar tersebut. Rancangan platform pada penelitian ini ditujukan untuk dapat memiliki throughput yang besar. Selain itu, platform dirancang untuk dapat dimodifikasi demi memenuhi berbagai kebutuhan. Karenanya, aspek extensibility juga menjadi perhatian utama dalam proses pengembangan platform. Kedua tujuan utama dalam pengembangan platform ini dapat diwujudkan dengan bantuan sebuah klaster Apache Kafka yang membuat platform memiliki sifat loosely-coupled dan juga extensible. Dengan berpusat pada klaster Apache Kafka, proses pengolahan data yang ada dapat dilakukan secara paralel, dan terbukti dapat meningkatkan throughput dari platform secara keseluruhan. Sebagai pembanding, penelitian ini diuji coba dengan suatu skenario bersama dengan platform Tweetream yang dikembangkan oleh Susanto (2022). Hasil dari uji coba tersebut membuktikan bahwa platform pada penelitian ini dapat mengungguli Tweetream.

As the number of internet users increases over time, so does the amount of data generated from activities originating from social media. This data can be used for various purposes, one of which is for moderation purposes so that the activities of internet users remain subject to applicable laws. However, an optimal way to do the process is needed considering the huge amount of data. This research proposes a platform that can be one of the options for processing large amounts of social media data. The design of the platform in this research is intended to have a large throughput. In addition, the platform is designed to be modifiable to meet various needs. Therefore, extensibility is also a major concern in the platform development process. These two main objectives in the development of the platform can be realized with the help of an Apache Kafka cluster that makes the platform loosely-coupled and extensible. By centering on the Apache Kafka cluster, the data processing can be done in parallel, which has been proven to increase the throughput of the platform as a whole. For comparison, this study was tested in a scenario with the Tweetream platform developed by Susanto (2022). The results of the test proved that the platform in this study can outperform Tweetream."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zuhri Bayhaqi
"Analisis sentimen terhadap opini publik di Twitter dapat memberikan wawasan yang berharga dalam memahami dukungan dan pemikiran masyarakat terkait calon presiden dan isu-isu terkait Pilpres 2024. Penelitian ini bertujuan untuk mengembangkan sistem analisis sentimen terhadap opini publik tentang Pilpres Indonesia 2024 yang tersebar di media sosial Twitter dalam bahasa Indonesia. Algoritma yang digunakan dalam pengembangan sistem tersebut adalah Naïve Bayes, sebuah algoritma klasifikasi yang telah terbukti efektif dalam analisis sentimen. Data yang digunakan dalam penelitian ini adalah kumpulan tweet atau cuitan yang diperoleh dari Twitter dengan menggunakan teknik web scraping. Persentasi Akurasi pada uji coba setiap skenario yang dilakukan mendapatkan hasil terbaik dengan nilai 81,18% untuk Skenario 1, 72,58% untuk Skenario 2, 65,05% untuk Skenario 3, dan 80,11% untuk Skenario 4. Hasil evaluasi model sistem yang dikembangkan terhadap klasifikasi sebenarnya menunjukkan bahwa analisis sentimen menggunakan algoritma Naïve Bayes dapat memberikan hasil yang baik tentang sentimen opini publik terkait Pilpres Indonesia 2024 di media sosial Twitter. Pengembangan sistem yang dikerjakan memberikan hasil model yang dapat melakukan analisis sentimen secara mandiri dengan akurasi yang tinggi terhadap opini publik terkait Pilpres Indonesia 2024 dengan nilai rata-rata 81,18%. Hasil analisis sentimen ini dapat membantu pihak-pihak terkait, termasuk calon presiden dan tim kampanye mereka, untuk memahami sejauh mana opini publik mendukung atau menentang mereka.

Sentiment analysis of public opinion on Twitter can provide valuable insight in understanding public support and thoughts regarding presidential candidates and issues related to the 2024 presidential election. This research aims to develop a sentiment analysis system for public opinion about the 2024 Indonesian Presidential Election shared on Twitter social media. in Indonesian. The algorithm used in developing the system is Naïve Bayes, a classification algorithm that has been proven effective in sentiment analysis. The data used in this research is a collection of tweets obtained from Twitter using web scraping techniques. The percentage of accuracy in testing each scenario carried out obtained the best results with a value of 81.18% for Scenario 1, 72.58% for Scenario 2, 65.05% for Scenario 3, and 80.11% for Scenario 4. Model evaluation results system developed for classification actually shows that sentiment analysis using the Naïve Bayes algorithm can provide good results regarding public opinion sentiment regarding the 2024 Indonesian Presidential Election on Twitter social media. The system development carried out provides model results that can carry out sentiment analysis independently with high accuracy regarding public opinion regarding the 2024 Indonesian Presidential Election. The results of this sentiment analysis can help related parties, including presidential candidates and their campaign teams, to understand the extent of opinion. they. society supports or opposes them."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurriasih Fatimah
"Di Indonesia, gangguan mental merupakan kontributor beban penyakit terendah, tetapi menjadi penyebab kecacatan utama jika dibandingkan dengan penyakit kardiovaskuler, neoplasma, maternal dan neonatal, juga infeksi pernafasan dan TB. Di media sosial, banyak pengguna melakukan diskusi dan membagikan konten edukatif mengenai kesehatan mental. Pengguna yang merupakan penderita gangguan mental juga banyak yang melakukan self reported diagnoses. Penelitian ini menggunakan data yang berasal dari Twitter yang akan digunakan untuk membangun model klasifikasi, analisis faktor apa yang menyebabkan sebuah tweet dapat diklasifikasikan sebagai tweet yang merefleksikan gangguan mental, dan menganalisis tweet yang merefleksikan gangguan mental. Model klasifikasi yang dibangun adalah model relevansi untuk menentukan relevansi dari suatu tweet dan model kategori untuk mengkategorikan tweet yang relevan ke dalam empat kategori, yaitu selfdiagnosed, terindikasi, penderita, dan penyintas. Model relevansi terbaik adalah model yang dibangun menggunakan Random Forest dan CountVectorizer unigram dengan hasil evaluasi yang didapatkan, yaitu akurasi 89,93%, precission 90,56%, recall 89,92%, dan f1-score 90%, sedangkan model kategori terbaik adalah model yang dibangun menggunakan Logistic Regression, TfidfVectorizer bigram, dan SMOTE dengan hasil evaluasi yang didapatkan adalah akurasi 83,62%, precission 83,22%, recall 83,61%, dan f1-score 81,98%. Faktor yang membuat sebuah tweet dapat diklasifikasikan sebagai tweet yang merefleksikan gangguan mental adalah fitur yang dimiliki oleh tweet karena setiap tweet memiliki karakteristik fiturnya masing-masing. Implikasi teoritis dari penelitian ini adalah penelitian ini dapat digunakan sebagai referensi untuk melakukan penelitian yang terkait analitika media sosial, terutama penelitian yang memiliki tema tentang kesehatan mental, sedangkan implikasi praktikal adalah hasil penelitian ini dapat dimanfaatkan sebagai data sekunder pada sistem informasi mengenai kesehatan mental yang dikembangkan oleh organisasi terkait dan dapat dimanfaatkan sebagai referensi tambahan dalam menangani masalah kesehatan mental di Indonesia.

In Indonesia, mental disorders are the lowest contributor to the burden of disease but are the main cause of disability when compared to cardiovascular, neoplasm, maternal and neonatal, also respiratory infections, and TB. On social media, many users have a lot of discussions and share educational content about mental health. Users with mental disorders also doing self-reported diagnoses. This study uses data from Twitter which will be used to build a classification model, analyze factors cause a tweet classified as a tweet that reflects mental disorders, and analyze tweets that reflect mental disorders. The classification models are relevance models to determine the relevance of a tweet and category models to categorize relevant tweets into four categories, there are self-diagnosed, indicated, sufferers, and survivors. The best relevance model is the model built using Random Forest and CountVectorizer unigram with the evaluation results are 89.93% accuracy, 90.56% precision, 89.92% recall, and 90% f1-score. While the best category model is the model built using Logistic Regression, TfidfVectorizer bigram, and SMOTE with the evaluation results are 83.62% accuracy, 83.22% precision, 83.61% recall, and 81.98% f1-score. The factor that makes a tweet can be classified as a tweet that reflects mental disorders is the feature of the tweet because each tweet has its characteristics feature. The theoretical implication is this research can be used as a reference for conducting research related to social media analytics, especially research with theme on mental health, while the practical implication is the results of this study can be used as a secondary data for developed mental health information system and can be used as an additional reference in dealing with mental health problems in Indonesia by related organizations."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rahmad Nur Iman
"Penelitian ini bertujuan untuk mengetahui tingkat kesadaran pengguna terkait informasi data pribadi, dan berbagai informasi data pribadi yang terdaftar di media sosial pengguna. Penelitian ini menggunakan pendekatan kualitatif dengan wawancara metode dan studi literatur. Subjek penelitian ini adalah mahasiswa S1 di Universitas Muhammadiyah Malang Universitas Indonesia dengan total 8 orang, yang ditentukan oleh a model convenience sampling. Hasilnya menunjukkan tahap kesadaran muncul ketika pengguna berpikir kritis dalam keputusan dimasukkannya pribadi informasi data. Hasil penelitian juga menunjukkan bahwa pengguna tahu beragam informasi data pribadi, yang sesuai untuk latar belakang setiap pengguna. Di Selain itu, perlu diperhatikan bahwa pengguna media sosial memperhatikan informasi data pribadi karena kekhawatiran tentang potensi penyalahgunaan informasi data pribadi, yang berasal dari pengguna lain dan penyedia media sosial tersebut. Penelitian ini mengidentifikasi bahwa pengguna media sosial harus memberikan diri mereka sendiri pengetahuan penggunaan media sosial. Pengetahuan seperti itu juga harus disertai dengan pengetahuan tentang pentingnya data pribadi bagi pengguna.

This study aims to determine the users level of awareness related to personal data information, and various personal data information that is registered on the users social media. This study uses a qualitative approach with interview methods and literature studies. The subjects of this study were S1 students at the University of Muhammadiyah Malang University of Indonesia with a total of 8 people, which was determined by a convenience sampling model. The results indicate the stage of awareness arises when users think critically in the decision of the inclusion of personal data information. The results also show that users know a variety of personal data information, which is appropriate for each users background. In addition, it should be noted that social media users pay attention to personal data information because of concerns about the potential misuse of personal data information, which comes from other users and social media providers. This research identifies that social media users must give themselves knowledge use of social media. Such knowledge must also be accompanied by knowledge of the importance of personal data for users."
Depok: Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>