Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 29861 dokumen yang sesuai dengan query
cover
Bambang Heru Susanto
"Hydrodeoxygenation of palm oil and Jatropha curcas oil over NiMo/ZAL (nickel molybdenum/zeolit alam Lampung) catalyst was investigated under temperatures of 375°C and 400°C and H2 pressure of 15 bar in a semibatch stirred autoclave reactor. NiMo/ZAL catalyst was prepared using a rapid cooling method. NiMo/ZAL characterization revealed a crystal size of 70.07 nm, surface area of 12.25 m2/g, and pore size and pore volume of 9.83 Å and 0.0062 cm3/g, respectively. The hydrodeoxygenation removal pathway of palm oil and Jatropha curcas oil over NiMo/ZAL catalyst was primarily achieved through decarboxylation. Under hydrogen pressure of 15 bar and temperature of 375°C, palm oil and Jatropha curcas oil can be converted into paraffin chains (from n-C15 up to n-C18) by a decarboxylation reaction that produces water, methane, and COx gases as byproducts and contains some undesirable reactions. These byproducts can produce alkene bonds that form chains different from those in conventional diesel fuel. The conversion was 80.87%, selectivity was 52.78%, and yield was 45.66%. The hydrodeoxygenation reaction catalyzed by NiMo/ZAL catalyst was found to be suitable for removing oxygen and producing paraffin chains; this increased the heating value and stability of renewable diesel fuel."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:8 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Ambar Winansi
"Pada kondisi operasi normal fasilitas nuklir berpotensi melepaskan zat radioaktif ke badan air yang disebut dengan pelepasan rutin. Transfer radionuklida pada lingkungan sangat kompleks sehingga dibuat penyederhanaan dengan pendekatan model matematis menggunakan perangkat lunak Surface Water Modelling Systems yang menyelesaikan persamaan differensial hidrodinamika dengan metode elemen hingga. Penyebaran polutan sangat dipengaruhi oleh proses adveksi dan difusi. Tujuan dari penelitian ini adalah untuk memodelkan distribusi radionuklida pada Kali Cisalak yang terletak di sekitar Kawasan Nuklir Serpong. 60Co merupakan radionuklida paling dominan yang terkandung pada lepasan efluen radioaktif. Pada penelitian ini simulasi dibagi ke dalam dua tahap yaitu simulasi model hidrodinamika menggunakan modul Resources Management Associates-2 (RMA-2) untuk memodelkan arus dan RMA-4 untuk memodelkan sebaran 60Co. Sedangkan nilai dosis efektif pada kelompok kritis dihitung menggunakan software PC-Cream 98. Pada analisis sensitivitas, koefisien kekasaran manning dan koefisien viskositas Eddy tidak memberikan pengaruh yang signifikan terhadap pola sebaran konsentrasi 60Co di Kali Cisalak. Sedangkan koefisien diffusi dan settling velocity memiliki pengaruh yang cukup signifikan. Dari hasil pemodelan didapatkan konsentrasi 60Co tertinggi sebesar 5,38 Bq/L pada jarak 10 m dari titik pelepasan, sedangkan konsentrasi terendah sebesar 0,0005 Bq/L terdeteksi pada jarak 540 m. Perhitungan dosis individu orang dewasa akibat jalur paparan akuatik yaitu 14,094 μSv/tahun.

Under normal operating conditions nuclear facilities have potential release of radioactive substances into water bodies called routine releases. Radionuclide transfer in the environment is very complex so that simplification is made with a mathematical model approach using the Surface Water Modeling Systems 10.1 software that resolves hydrodynamic differential equations with the finite element method. The goal of this research is to model the distribution of 60Co radionuclides in Cisalak River located around Serpong Nuclear Area. 60Co is the most dominant radionuclide contained in radioactive effluent discharges. In this research the simulation is divided into two stages, they are the simulation of the hydrodynamic model using the Resources Management Associates-2 (RMA-2) module to model the flow and continued using RMA-4 to model the distribution of 60Co. Whereas the effective dose in the critical group was calculated using PC-Cream 98 software. In the sensitivity analysis, the manning roughness coefficient and Eddy viscosity coefficient did not have a significant effect on the distribution pattern of 60Co concentrations in Cisalak River. But the diffusion coefficient and settling velocity have a significant influence. The result of modeling obtained the highest 60Co concentration of 5,38 Bq/L at a distance of 10 m from the release point, while the lowest concentration of 0,0005 Bq/L was detected at a distance of 540 m. Calculation of adult individual doses due to aquatic exposure pathways is 14,094 µSv/year."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suci Madhania
"Salah satu upaya meningkatkan produksi bioetanol adalah melalui efisiensi fermentasi. Penelitian terkait upaya peningkatan efisiensi fermentasi yang meninjau tentang proses pencampuran bahan baku belum ditemukan dan hal ini sangat terkait dengan kondisi hidrodinamika dalam fermentor sebagai unit pemroses. Kondisi hidrodinamika suatu system dipengaruhi oleh desain dan kondisi operasi unit pemroses serta fluida kerja. Dengan desain dan kondisi operasi fermentor yang optimal maka proses pencampuran menjadi efisien distribusi bahan baku merata dan kondisi ini berpengaruh terhadap kinerja mikroorganisme yang terlibat sehingga diharapkan dapat meningkatkan hasil produksi bioetanol. Untuk mendapatkan desain dan kondisi operasi fermentor yang optimal diperlukan detail informasi tentang aliran di dalamnya kondisi hidrodinamika . Berdasarkan hal tersebut maka tujuan penelitian ini adalah mendapatkan detail informasi dan fenomena hidrodinamika proses pencampuran molase-air dalam fermentor skala industri dengan diameter 7 m dan tinggi 15 m. Pada kasus dengan sistem geometri skala industri, maka metode komputasi lebih efisien. Namun pada pelaksanaannya, untuk menerapkan model dan strategi solusi yang sesuai fenomena nyata, diperlukan kajian terkait karakteristik medan aliran dalam sistem, karakteristik dan perilaku pencampuran fluida kerja serta pengaruh parameter pengadukan terhadap fenomena pencampuran. Untuk melakukan kajian terhadap faktor-faktor tersebut perlu dilakukan scale down dari geometri skala industri menjadi geometri skala kecil diameter 0,28 m dan tinggi 0,52 m . Metode komputasi dinamika fluida pada penelitian ini mengaplikasikan kode komersial Ansys fluent 17.1. Metode eksperimen untuk karakterisasi reologi fluida kerja adalah menggunakan Rheometer Brookfield dan untuk pelacakan partikel serta perilaku pencampuran bahan baku adalah metode visualisasi. Detail informasi dan fenomena hidrodinamika proses pencampuran dalam fermentor bioetanol skala industri telah didapatkan dan didiskusikan. Model Large eddy simulation LES lebih sesuai untuk menggambarkan turbulensi dalam sistem. Model Sliding-mesh SM dan Eulerian menghasilkan prediksi yang lebih mendekati hasil eksperimen. Waktu pencampuran mixing time pada fermentor skala industri adalah 114 detik.

One of the efforts to increase bioethanol production is through the efficiency of fermentation. The related Study as the efforts to improve the efficiency of fermentation by reviewing the mixing process of raw materials have not been found, and this is strongly related to hydrodynamic conditions in the fermentor as a processing unit. The hydrodynamic condition of a system is influenced by the design and operating conditions of the unit process and the working fluid. With an optimum fermentor design and condition, the mixing process becomes efficient uniform distribution of raw material and this condition has an effect on the performance of the microorganism involved so that it can increase bioethanol production. In order to obtain the optimal fermentor design and operating conditions, detailed information on the flow hydrodynamics condition is required. Based on this background, the purpose of this research is to obtain detailed information and hydrodynamic phenomena of molasses-water mixing process in industrial scale fermentor with diameter 7 m and height 15 m. In the case of industrial-scale geometry systems, the computational method is more efficient. However, in the implementation, to apply an appropriate model and solution strategy to represent the real phenomena, it is necessary to study the characteristics of the flow field in the system, the characteristics and the mixing behavior of the working fluid and the effect of the agitation parameters on the mixing phenomenon. To conduct a study of these factors, need to scale down the geometry of the industrial scale into small-scale geometry diameter 0.28 m and height 0.52 m . The commercial code Ansys fluent 17.1 was applied to study of the fluid dynamics computationally. The experimental tools for the rheological characterization of working fluids are to use the Brookfield rheometer and the methods for particle tracking, and the mixing behavior of the raw material is a visualization method. Detailed information and hydrodynamic phenomena of the mixing process in industrial scale bioethanol fermenters have been obtained and discussed. Large eddy simulation model LES is more suitable for describing turbulence in the system. The Sliding-mesh SM and Eulerian models produce predictions that are closer to the experimental results. The mixing time on an industrial scale fermentor is 114 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2474
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mohamad Irfan
"Semakin tingginya kebutuhan BBM, dan semakin menurunnya cadangan minyak bumi untuk memenuhi kebutuhan tersebut, maka para peneliti akan berusaha untuk mencari alternatif bahan bakar lain. Salah satu solusi tersebut yaitu bahan bakar yang diproses dari minyak nabati yang merupakan sumber daya alam yang dapat diperbaharui. Pada penelitian ini, akan dibuat bahan bakar dari minyak nabati yang disebut dengan renewable diesel. Renewable diesel merupakan generasi kedua dari biofuel yang menggunakan minyak nabati. Bahan baku yang dipilih dalam penelitian ini yaitu minyak sawit. Renewable diesel ini diharapkan memiliki komposisi yang menyamai petroleum diesel, dan juga memiliki spesifikasi yang minimal sama dari petroleum diesel, tetapi di sisi lain juga memiliki keunggulan yaitu seperti angka setana yang lebih tinggi dan kandungan impurities yang lebih rendah. Adapun metode yang digunakan untuk mensintesis renewable diesel yaitu metode hidrodeoksigenasi dengan menggunakan katalis Pd/Zeolit dengan bahan baku minyak sawit. Pada reaksi hidrodeoksigenasi ini, kondisi operasi yang diberlakukan yaitu tekanan 9 bar, 12 bar, dan 15 bar dan variasi suhu operasi yang digunakan yaitu 375oC dan 400oC. Harapan yang ingin dicapai dari proses ini yaitu konversi setinggi-tingginya, angka setana yang lebih tinggi dari solar komersial, dan kandungan impurities serendah-rendahnya.

Time by time, the demand for fuel is getting higher, while petroleum reserves is decreasing significantly, then the researchers will try to look for other alternative fuels. One best solution is processed fuel from vegetable oil which is a natural resource that can be renewed. In this study, the solution will be made from vegetable oil fuel called renewable diesel. Renewable diesel is a second generation of biofuels that use vegetable oil. Raw materials that are selected in this study, namely palm oil. Renewable diesel is expected to have an equal composition of petroleum diesel, and also have the same minimum specifications of petroleum diesel, but on the other hand also has the advantage of such a higher cetane number and lower content of impurities. The method used to synthesize the renewable diesel is hydrodeoxygenation method using the Pd/Zeolite catalyst with palm oil feedstock. In this hydrodeoxygenation reaction, the operating conditions are pressure of 9 bar, 12 bar, and 15 bar and operating temperature variations used are 375oC and 400oC. Hopefully the ressult achieved from this process is the conversion as high as possible, higher cetane number than commercial diesel, and the content of impurities as low as possible."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54842
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugiarti
"Salah satu minyak nabati yang potensial untuk dimanfaatkan sebagai bahan bakar alternatif adalah minyak jarak pagar (Jatropha curcas), karena memiliki komponen yang mirip dengan minyak bumi. Minyak jarak tidak dapat dikonsumsi karena beracun, sehingga tidak terjadi kompetisi antara penggunaannya sebagai bahan bakar atau bahan pangan. Namun, minyak jarak memiliki viskositas sepuluh kali lebih tinggi daripada solar, sehingga dibutuhkan metode yang tepat untuk menurunkan viskositasnya.
Penelitian sebelumnya menggunakan metode perengkahan thermal pada tekanan 18 bar dengan sistem batch, menunjukkan bahwa hidrokarbon rantai panjang minyak jarak dapat direngkah menjadi hidrokarbon dengan rantai yang lebih pendek sehingga menghasilkan bio-oil dengan viskositas yang lebih rendah. Namun, viskositas bio-oil tersebut belum setara dengan solar komersial. Di samping itu, tekanan operasi yang tinggi sulit untuk diaplikasikan pada kendaraan bermotor. Agar sesuai dengan sistem yang ada pada kendaraan, maka pada penelitian ini akan dilakukan pirolisis minyak jarak fasa cair secara batch dengan sirkulasi. Pemilihan proses ini dilakukan juga untuk memperoleh kondisi optimum yang diperlukan agar minyak jarak dapat dipirolisis menjadi setara solar.
Pirolisis minyak jarak dilakukan dengan menggunakan reaktor dari bahan stainless steel dengan ukuran diameter = 2,44 cm dan tinggi = 20 cm. Suhu reaksi 320, 340 dan 360 0C dan waktu reaksi 3,47; 4,79; 8,56 dan 13,89 menit. Produk yang diperoleh kemudian dianalisis densitas, viskositas, angka setana, FTIR dan GC ? MS. Hasil analisis menunjukkan viskositas minyak jarak mengalami penurunan dari 63,3052 cSt290C menjadi 56,4448 s/d 60,9578 cSt290C pada suhu 3200C . Hal ini menandakan bahwa hidrokarbon rantai panjang yang terdapat pada minyak jarak mengalami perengkahan. Selain itu viskositasnya juga mengalami peningkatan pada suhu 340 dan 3600C, yang menandakan telah terjadi reaksi propagasi.
Hasil analisis densitas juga menunjukkan tren yang sama. Pada hasil analisis angka setana menunjukkan minyak jarak mengalami peningkatan dari 37 menjadi 41. Pirolisis pada penelitian ini merupakan reaksi orde 2 dengan konstanta laju reaksi 1,74 x 10-5 s/d 0,0053 min-1 dan energi aktivasi 4,40 x 105 s/d 4,49 x 105 J/grmol. Konversi tertinggi yang dihasilkan adalah sebesar 15,28%. Perhitungan simulasi untuk konversi pirolisis 100% diperoleh pada suhu 320, 340 dan 3600C dengan waktu reaksi berturut?turut 38.48, 35.6 dan 30.65 menit. Viskositas bio-oil yang dihasilkan pada kondisi optimum ini berturut ? turut adalah sebesar 34,17;37,16 dan 38,14 cSt(270C). Agar viskositas bio-oil yang dihasilkan pada kondisi optimum ini dapat setara dengan solar, maka sebelum masuk ke ruang pembakaran, bio-oil harus mengalami pemanasan awal pada suhu 230 s/d 2500C. Setelah mengalami pemanasan awal, diperoleh bio-oil dengan viskositas berturut ? turut 4,7; 5,67 dan 4,29 cSt(290C).

One of potential bio oil used for alternative fuel in Indonesia is Jatropha oil (Jatropha curcas), because it has similar components with crude oil. Jatropha oil cannot be consumed because poisonous, therefore no usage competition whether it be used as fuel or food. However, viscosity of jatropha oil is ten times higher than diesel fuel, thence a specific method is required to decrease its viscosity.
Previous research was using gas phase - thermal cracking method at high pressure (18 bar) batch system, showed that long chain hydrocarbon of jatropha oil can be cracked into shorter chain hydrocarbon which produced lower viscosity of biooil. The viscosity of bio-oil produced has equal grade with commercial diesel fuel if heated up to 1000C, but application of high pressure system (18 bar) on vehicle is difficult. In order to achieve the suitable fuel for vehicle application, this research will conduct pyrolysis of liquid phase jatropha oil in batch system with circulation.
This process is selected to provide required optimum condition for pyrolysis process
in reactor. Pyrolysis process is performed in stainless steel reactor with 2,44 cm diameter and 20 cm height. Reaction is carried out at temperature 320, 340 and 360 0C within 3.47, 4.79, 8.56 and 13.89 minutes of reaction time. Reaction product will then be analyzed with density, viscosity, cetane number, FTIR and GC ? MS. Viscosity product is have decrease from 63.3052 cSt290C to 56.4448 s/d 60.9578 cSt290C in 3200C. Its mean the hydrocarbon longchain is cracking. Expect to the viscosity is increase in 340 and 3600C, its mean is the radical reaction is begin. Density is the same tren. Cetane number is increase from 37 to 41. The maximum convertion is 15.28% is the required in 3200C and 3.47 minutes. To obtained the convertion 100%, pyrolysis in 320, 340 and 3600C with time pyrolysis is 38,48; 35,6 and 30,65 minutes.
The obtained viscosity in optimum condition is 34,17; 37,16 and 38,14 cSt(290C). to get the viscosity is diesel like fuel, bio-oil is heated until 2500C. after heating, bio-oil viscosity is 4,7; 5,67 and 4,29 cSt(290C).
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T30805
UI - Tesis Open  Universitas Indonesia Library
cover
Risya Utaviani Putri
"ABSTRAK
Green diesel merupakan bahan bakar nabati generasi kedua yang memiliki potensi untuk menjawab kebutuhan energi baik dalam negeri maupun dunia. Proses yang digunakan untuk memproduksi green diesel adalah hidrolisis sebagai pre-treatment dan hidrodeoksigenasi menggunakan katalis NiMo/Al2O3. Hidrolisis akan mengubah trigliserida pada bahan baku, yaitu minyak jelantah menjadi free fatty acid FFA yang selanjutnya dikonversi menjadi green diesel melalui hidrodeoksigenasi. Hidrolisis minyak jelantah dilakukan pada suhu 200oC dan tekanan 16 bar dengan rasio volume air dan minyak sebesar 1:1. Waktu reaksi divariasikan dari 1 hingga 3 jam. Kondisi operasi optimum hidrolisis, yaitu pada waktu 3 jam mampu menghasilkan FFA sebanyak 73,89 . Untuk proses hidrodeoksigenasi dilakukan variasi kondisi operasi, yaitu pada suhu 375oC dan tekanan 12 bar yang dapat menghasilkan green diesel dengan konversi 80,24 , selektivitas 53,37 , dan yield 19,26 , serta pada suhu 400oC dan 15 bar yang dapat menghasilkan green diesel dengan konversi 82,15 selektivitas 69,58 , dan yield 68,87 .

ABSTRACT
Green diesel is a second generation of biofuel that has a potential to answer the energy needs either in Indonesia or in the world. The process used to produce green diesel are hydrolysis as a pre treatment and hydrodeoxygenation by using NiMo Al2O3 catalyst. Hydrolysis will change the triglycerides in the raw material, which is waste cooking oil into free fatty acid FFA and then converted into green diesel through hydrodeoxygenation. Hydrolysis of waste cooking oil carried out at temperature of 200oC and pressure of 16 with water and oil volume ratio of 1 1. Time is varied from 1 to 3 hours. The optimum condition of hydrolysis, which is at 3 hours can produce FFA as much as 73.89 . For hydrodeoxygenation, variations in operating condition used are 375oC with pressure of 12 bar that can produce green diesel with conversion of 80.24 , selectivity of 53.37 , and yield of 19.26 , also 400oC with pressure of 15 bar that can produce green diesel with conversion of 82.15 , selectivity of 69.58 , and yield of 68.87 . "
2017
S67176
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mutiara Kartini
"Renewable diesel merupakan biofuel generasi kedua setara solar yang memiliki sifat dan struktur kimia yang mirip dengan solar minyak bumi. Penelitian ini menganalisis potensi minyak dedak padi (rice bran oil) sebagai bahan baku dalam produksi renewable diesel melalui reaksi dekarboksilasi menggunakan katalis NiMo/Zeolit. Renewable diesel disintesis pada tekanan 12 bar, 9 bar dan 6 bar pada suhu operasi 375°C.
Hasil analisis produk renewable diesel yang dihasilkan dari penelitian ini menunjukkan bahwa renewable diesel yang dihasilkan memiliki spesifikasi seperti densitas, viskositas dan indeks setana yang lebih baik dari biodiesel dan sesuai dengan standar solar komersial (ASTM D-975). Selektivitas dan yield tertinggi diperoleh pada tekanan 12 bar dengan selektivitas 28,12% dan yield 19,99%.

Renewable diesel is a second generation of biofuel with the same characteristic and chemical structure as petroleum diesel. This research analized potentiality of rice bran oil as raw material for renewable diesel production through decarboxylation reaction using NiMo/Zeolit catalyst. Renewable diesel is synthesized at 12 bar, 9 bar and 6 bar pressure at the same temperature, 375°C.
The result of the test obtained specification of renewable diesel such as density, viscosity and cetane index better than biodiesel and suitable to commercial diesel standard (ASTM D-975). The highest selectivity and yield obtained at pressure 12 bar there are 28.12% and 19.99%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58894
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andreas Kurniawan
"Bahan bakar nabati memiliki potensi yang sangat besar untuk menjawab kebutuhan energi dalam negeri maupun dunia salah satunya renewable diesel. Proses yang digunakan untuk memproduksi renewable diesel yaitu reaksi hidrolisis dan hidrodeoksigenasi dengan menggunakan katalis NiMo/Zeolit. Tujuan dilakukan hidrolisis sebagai pretreatment akan mengubah trigliserida pada minyak jarak pagar menjadi free fatty acid (FFA) untuk kemudian dikonversi menjadi renewable diesel melalui hidrodeoksigenasi. Hidrolisis minyak jarak dilakukan pada kondisi suhu 200C dan tekanan 1 bar selama 7 jam dengan rasio volume air dan minyak sebesar 60:40 mampu menghasilkan %FFA sebanyak 68,197%. Untuk hidrodeoksigenasi, variasi suhu operasi yang digunakan yaitu 350C, 375C, dan 400C. Pretreatment minyak jarak dengan reaksi hidrolisis mampu meningkatkan konversi, selektiftas, yield, dan indeks setana dari produk renewable diesel dimana produk dengan minyak jarak non hidrolisis menghasilkan konversi 74,83%, selektivitas 30,88 %, yield 20,25% dan indeks setana 49,89. Sementara produk dengan minyak jarak dihidrolisis konversi mencapai 86,95%, selektivitas 50,70%, yield 26,43% dan indeks setana 60,43.

Biofuels have great potential to address the energy needs of the country and the world especially renewable diesel. The process used to produce renewable diesel are hydrolysis and hydrodeoxygenation reaction by using NiMo / Zeolite catalyst. The purpose of hydrolysis as pretreatment will change the jatropha oil’s triglycerides into free fatty acid (FFA) and then converted into renewable diesel through hydrodeoxygenation reaction. Hydrolysis of jatropha oil carried out under temperature 200C and pressure of 1 bar for 7 hours with ration of water and oil volume is 60:40 are able to produce as much as 68.197% FFA. For hydrodeoxygenation, variations in operating temperature used is 350C, 375C, and 400C. Pretreatment of jatropha oil with hydrolysis reaction can increase the conversion, selectivity, yield, and the cetane index of renewable diesel product where products with jatropha oil non hydrolysis have 74.83% conversion, 30.88% selectivity, 20.25% yield and cetane index 49,89. While products with hydrolyzed jatropha oil reached 86.95% conversion, 50.70% selectivity, 26.43% yield and 60.43 cetane index."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58896
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andri Wiyo
"Proses hidrodeoksigenasi minyak nabati memiliki potensi yang sangat besar dalam memproduksi bahan bakar bio. Pada penelitian ini disintesis bahan bakar bio jenis renewable diesel dari senyawa model asam oleat melalui proses hidrodeoksigenasi dalam reaktor tangki berpengaduk menggunakan katalis Pd/zeolit. katalis Pd/zeolit-1 dan Pd/zeolit-2 telah berhasil disintesis menggunakan metode microwave polyol dengan perlakuan yang berbeda. Katalis hasil sintesis dikarakterisasi menggunakan PSA, XRD, SEM-EDAX dan BET.
Hasil yang diperoleh menunjukkan bahwa kedua katalis belum berukuran nano tetapi katalis Pd/zeolit 1 merupakan jenis katalis yang memiliki kristalitas, luas permukaan dan pori yang tinggi. Aktivitas katalis diuji dalam reaksi hidrodeoksigenasi pada tekanan 15 bar dengan suhu 375 dan 400 oC.
Dari hasil pengujian diperoleh spesifikasi renewable diesel seperti densitas, viskositas dan indek setana yang lebih bagus dari biodiesel dan sesuai dengan standard diesel komersial (ASTM D-975). Nilai selektivitas dan yield tertinggi diperoleh pada suhu reaksi 375 oC menggunakan katalis Pd/Zeolit 1 yaitu sebesar 42,70 % dan 34,87 %. Selain itu, pada kondisi ini reaksi dekarboksilasi lebih dominan dengan sisa oksigenat sebesar 39,19%.

Hydrodeoxygenation process of vegetable oil has a big potential to produce biofuel. This experiment focuses to synthesis of renewable diesel from oleic acid as a model compound through hydrodeoxygenation in stirrer tank reactor using Pd/zeolite as catalyst. Pd/zeolit 1 and Pd/zeolit 2 has been successfully prepared by using microwave polyol method with differ in treatment. The synthesized catalysts were characterized by means of PSA, XRD, SEM-EDAX and BET.
The results show that both of catalysts not become nano size yet but Pd/zeolite 1 has high crystalline and large surface and high pore area. The activity of catalyst tested in hidrodeoxygenation at 15 bar with temperature 375 and 400 oC.
The result of the test obtained specification of renewable diesel like density, viscosity and cetane index are better than biodiesel and suitable to commercial diesel standard (ASTM D-975). The highest selectivity and yield obtained at temperature 375 oC using Pd/zeolit 1 catalyst there are 42,70 % and 34,87 %. Beside that, decarboxylation reaction is dominant in this condition with number of oxigenated residue is 39,19 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45817
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogiswara Paramatatya
"[ABSTRAK
Green diesel merupakan bahan bakar generasi kedua dari biofuel yang menggunakan minyak nabati. Bahan baku yang dipilih adalah minyak nyamplung yang memiliki kadar minyak 50 hingga 70%. Green diesel ini diharapkan dapat menyamai bahakan melebihi petroleum diesel dengan keunggulan angka setana dan impurities yang lebih rendah, juga memiliki spesifikasi yang minimal sama dengan petroleum diesel yang ada saat ini. Adapun metode yang digunakan untuk mensintesis green diesel yaitu metode hidrodeoksigenasi dengan menggunakan katalis NiMo/Zeolit dengan bahan baku minyak nyamplung. Kondisi operasi yang digunakan yaitu pada tekanan 12 bar dan variasi suhu operasi yang digunakan yaitu 350oC, 375oC dan 385oC. Hasilnya didapat bahwa Kondisi operasi optimal dicapai pada suhu 375oC dan tekanan 12 bar dengan spesifikasi green diesel yang didapatkan memiliki densitas 0,829 g/cm3, viskositas 0,344 Cp, dan indeks setana 63. Selanjutnya penelitian ini dapat lebih disempurnakan lagi untuk mendapatkan konversi yang lebih tinggi.

ABSTRACT
Green diesel is a second generation biofuel that being converge from 100% vegetable oil. The raw material that chosen is an oil that being produced from Calophyllum inophyllum seed that have oil content between 50 and 70%. Green diesel hypothised to be in par with petroleum diesel and have higher cetane number and fewer impurities. Moreover, at least, have a minimum specification as same as petroleum diesel. The method that being used to synthesize green diesel is hydrodeoxygenation method using NiMo/Zeoilt as catalyst. In this research, the operation condition that being applied is the pressure at 12 bar and temperature at 350oC, 375oC dan 385oC. the result shows that the optimum Operaton condition is temperature at 375oC and pressure at 12 bar. the specification of green diesel density at 0,829 g/cm3, viscosity at 0,344 cSt, dan cetane number 63. In the future this research can be perfected in order to get a higher conversion, yield and selectivity of product., Green diesel is a second generation biofuel that being converge from 100% vegetable oil. The raw material that chosen is an oil that being produced from Calophyllum inophyllum seed that have oil content between 50 and 70%. Green diesel hypothised to be in par with petroleum diesel and have higher cetane number and fewer impurities. Moreover, at least, have a minimum specification as same as petroleum diesel. The method that being used to synthesize green diesel is hydrodeoxygenation method using NiMo/Zeoilt as catalyst. In this research, the operation condition that being applied is the pressure at 12 bar and temperature at 350oC, 375oC dan 385oC. the result shows that the optimum Operaton condition is temperature at 375oC and pressure at 12 bar. the specification of green diesel density at 0,829 g/cm3, viscosity at 0,344 cSt, dan cetane number 63. In the future this research can be perfected in order to get a higher conversion, yield and selectivity of product.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58837
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>