Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 142352 dokumen yang sesuai dengan query
cover
Kezia Angelina Sutjianta
"Permasalahan umum dalam industri asuransi adalah menetapkan besaran premi yang wajar terhadap risiko yang dihadapi oleh pemegang polis. Untuk menetapkan besaran premi yang wajar, maka perlu diprediksi besaran klaim masa depan dengan menggunakan data klaim agregat masa lampau. Data yang dikumpulkan perusahaan asuransi mengandung banyak variabel yang merupakan faktor-faktor untuk menghitung severitas klaim. Permasalahan tersebut merupakan permasalahan regresi. Salah satu metode yang digunakan untuk menganalisis model regresi adalah metode Gradient Tree Boosting. Dengan asumsi bahwa frekuensi klaim berdistribusi Poisson dan severitas klaim berdistribusi Gamma, maka klaim agregat dapat diasumsikan berdistribusi Tweedie. Maka dari itu, dapat digunakan metode Gradient Tree Boosting Tweedie Model untuk memodelkan besar klaim agregat. Salah satu metode deep learning untuk merekonstruksi variabel dari data perusahaan asuransi yang relevansinya terhadap besaran klaim belum diketahui adalah metode Deep Autoencoder. Deep Autoencoder merupakan algoritma unsupervised learning yang mereduksi dimensi data secara lapisan per lapisan, sehingga mendapatkan variabel data dalam pemodelan klaim agregat. Selain itu, Deep Autoencoder mempunyai kelebihan yaitu meringankan beban komputasi tanpa mengurangi performa dari model yang dihasilkan. Penelitian ini akan memodelkan besaran klaim agregat dan mengetahui efek penggunaan metode Deep Autoencoder untuk merekonstruksi data dan metode Gradient Tree Boosted Tweedie Model pada asuransi kendaraan bermotor.

It is a common problem in the insurance industry to set a reasonable premium for the risks faced by policyholders. It is important to predict the amount of future claims in order to determine a reasonable premium by using past aggregate claim data. The aggregate claim data collected by insurance companies contains many variables which are key factors to calculate claim severity, which is a regression problem. One of the methods used to analyze the regression model is the Gradient Tree Boosting. Assuming that the claim frequency has a Poisson distribution and the claim severity has a Gamma distribution, the aggregate claims can be assumed to have a Tweedie distribution. Therefore, the Gradient Tree Boosting Tweedie Model can be used to model the aggregate claims. One of the deep learning methods to reconstruct variables from insurance company data is Deep Autoencoder. Deep Autoencoder is an unsupervised learning algorithm that reduces the dimensions of the data layer by layer, thereby obtaining data variables in the aggregate claims modeling. In addition, Deep Autoencoder has the advantage of lightening the computational load without compromising the performance of the resulting model. This study will use the Gradient Tree Boosted Tweedie Model to model aggregate claims and determine the effect of using the Deep Autoencoder method to reconstruct data on motor vehicle insurance.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
A Life Alva Permana
"Salah satu hal penting dalam bisnis asuransi adalah bagaimana perusahaan asuransi dapat menetapkan premi yang sesuai dengan ekspektasi kerugian dari pelanggan dan dapat bersaing di pasar. Untuk menetapkan premi tersebut, salah satu hal penting untuk dilakukan adalah memperkirakan besar klaim agregat. Masalah perkiraan besarnya klaim agregat merupakan masalah regresi. Salah satu metode yang sudah cukup berkembang untuk permasalahan regresi adalah Gradient Tree Boosting. Salah satu kekurangan dari metode Gradient Tree Boosting adalah metode ini tidak mengimplementasikan asumsi bahwa data memiliki distribusi. Sementara untuk data klaim agregat, dapat digunakan asumsi bahwa frekuensi klaim berdistribusi Poisson, severitas klaim berdistribusi Gamma, dan keduanya saling independen sehingga klaim agregat diasumsikan berdistribusi Tweedie. Gradient Tree Boosted Tweedie Model merupakan salah satu metode untuk menyelesaikan masalah regresi untuk klaim dengan asumsi-asumsi tersebut. Metode ini menggunakan algoritma Gradient Tree Boosting dengan menjadikan negatif fungsi log-likelihood dari distribusi Tweedie sebagai fungsi loss-nya. Didapatkan hasil bahwa asumsi klaim agregat berdistribusi Tweedie meningkatkan akurasi dari metode Gradient Tree Boosting.

One of the important things in insurance business is how will insurance company set a premium that could correspond insured’s expected loss while also being competitive in market. To set a proper premium for insurance customer, one of the important tasks is to estimate total loss or aggregate claim of the insured. Estimating the aggregate claim is a regression problem. One of many methods for regression problem is Gradient Tree Boosting. One of the weaknesses of Gradient Tree Boosting is, this method does not implement the assumption that the data might be distributed. While for aggregate claim, one can assume that the claim frequency is Poisson distributed, claim severity is Gamma distributed, and both are independent so that the aggregate claim could be assumed to be Tweedie distributed. Gradient Tree Boosted Tweedie Model is one of many methods for solving a regression problem for a claim with the assumption mentioned. This method uses Gradient Tree Boosting algorithm with the log-likelihood function of Tweedie distribution as it’s loss function. It was found that the assumption that the aggregate claim is Tweedie distributed improves the accuracy of Gradient Tree Boosting method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zaky Nurzamzami
"Permasalahan utama yang sering dihadapi oleh perusahaan asuransi adalah mengestimasi cadangan klaim. Perhitungan estimasi cadangan klaim yang dilakukan secara kurang tepat akan memengaruhi kelangsungan usaha dari perusahaan asuransi. Metode estimasi cadangan klaim yang paling sering digunakan di dunia asuransi adalah metode Chain-Ladder dan variasinya. Selain metode tersebut, Peters, Targino dan Wuthrich (2017) mengembangkan metode yaitu gamma-gamma Bayesian Chain-Ladder. Metode ini merupakan metode Bayesian Chain-Ladder yang menggunakan distribusi gamma yang memiliki rentang prediksi cadangan klaim yang relatif kecil.

Pada penelitian ini penghitungan terhadap rentang prediksi cadangan klaim dilakukan menggunakan model gamma-gamma Bayesian Chain-Ladder. Tujuan utama pada penelitian ini yaitu menerapkan proses penghitungan rentang prediksi dengan model gamma-gamma Bayesian Chain-Ladder pada konteks perusahaan asuransi XYZ di Indonesia, serta membandingkannya dengan metode Chain-Ladder. Data yang digunakan dalam penelitian ini adalah data klaim produk asuransi kendaraan bermotor perusahaan asuransi XYZ tahun 2014 sampai dengan 2016. Hasil rentang prediksi berdasarkan nilai MSEP model gamma-gamma Bayesian chain-ladder tahun 2014 sampai dengan 2016 relatif lebih kecil dibandingkan dengan MSEP chain-ladder model Mack.


The Main problem often faced by insurance companies is estimating claim reserve. The calculation of claim reserve that is undertaken inaccurately will affect the business operations of the insurance company. The claim reserve estimation method that is commonly undertaken called Chain-Ladder method and its variations. Besides, Peters, Targino and Wuthrich (2017) develop a method namely gamma-gamma Bayesian Chain-Ladder. This is a Bayesian Chain-Ladder method that uses a gamma distribution and has the prediction range of claim reserve that relatively small.

This research performs the calculation of the prediction range claim reserve that uses the gamma-gamma Bayesian Chain-Ladder model. The main purpose of this research is implementing the process of calculation prediction range with the gamma-gamma Bayesian Chain-Ladder model in the context of XYZ insurance companies in Indonesia, and compare it with the Chain-Ladder classic method. The data used in this study is the claim data for motor vehicle insurance products for XYZ insurance companies from 2014 to 2016. The results of the prediction range based on the MSEP value of the gamma-gamma Bayesian Chain-Ladder model from 2014 to 2016 relatively smaller compared to the Macks MSEP chain-ladder model."

Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rayhan Fadilla
"Premi murni merupakan salah satu elemen penting untuk perusahaan asuransi. Penetapan premi murni yang sesuai dengan risiko kerugian dari calon pemegang polis menjadi salah satu faktor utama agar perusahaan tetap berjalan dan mampu berkompetisi dalam industri. Premi murni dapat ditentukan dengan menghitung ekspetasi dari besar klaim agregat yang dibagi dengan durasi kontrak asuransi. Namun, perlu diketahui bahwa premi murni juga dapat dipengaruhi oleh berbagai faktor risiko seperti umur, jenis kelamin, dan jenis pekerjaan dari nasabah. Salah satu metode untuk mengatasi masalah ini yaitu dengan membuat model regresi menggunakan generalized linear model Distribusi yang cocok untuk memodelkan premi murni adalah distribusi Compound Poisson-Gamma yang merupakan bagian dari distribusi Tweedie. Distribusi Tweedie merupakan distribusi yang mengeneralisasi distribusi lain yang termasuk ke dalam exponential dispersion family. Tujuan dari penelitian ini adalah untuk memodelkan premi murni menggunakan generalized linear model dengan asumsi respons berdistribusi Tweedie atau disebut regresi Tweedie. Dengan mengaplikasikan model ini pada data asuransi kecelakaan kendaraan didapat bahwa regresi Tweedie mampu menjelaskan premi murni dengan baik.

Pure premium is one of the essential elements for insurance companies. Calculate the appropriate pure premium based on the potential policyholder's risk of loss is crucial to ensure the company's operations and competitiveness in the industry. Pure premiums can be determined by calculating the expectations of large aggregate claims divided by the duration of the insurance contract. However, it should be noted that pure premiums can also be influenced by various risk factors such as age, gender, and the type of employment of the client. One method to address this issue is by creating a regression model using a generalized linear model. The suitable distribution to model of pure premium is the Compound Poisson-Gamma distribution, which is a part of the Tweedie distribution. Tweedie distribution generalizes other distributions that fall under the exponential dispersion models. The objective of this research is to model pure premium using a generalized linear model with assumption that the response follows a Tweedie distribution, known as Tweedie regression. The application of Tweedie regression model to automobile accident insurance data yielded promising results in explaining the pure premium."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asmaaul Khusna Ayil Jamiil
"Tujuan mendasar produk asuransi adalah memberikan proteksi atas kerugian yang tidak pasti kapan terjadi dengan membayar premi sebagai pembayaran transfer risiko tersebut. Mengingat semua risiko tidaksama, perusahaan asuransi tidak dapat memberikan premi murni yang sama untuk setiap risiko pemegang polis dalam portofolio asuransi.  Metode umum untuk menghitung premi murni adalah dengan hasil perkalian antara ekspektasi dari frekuensi klaim dengan severitas klaim. Metode Generalized Linear Models dapat digunakan dalam melakukan estimasi dua komponen tersebut dengan mempertimbangkan karakteristik dari pemegang polis. Metode lain yang dapat digunakan dalam penaksiran premi murni adalah Tweedie Generalized Linear Models. Dimana model Tweedie dapat mengakomodasi kekurangan pada Generalized Linear Models, yakni dapat digunakan pada data klaim yang banyak terdapat nilai klaim sebesar nol rupiah. Dengan menggunakan Tweedie generalized linear models, penaksiran premi murni menjadi lebih efisien karena dapat dilakukan langsung tanpa melakukan estimasi terpisah pada frekuensi dan severitas. Dalam penelitian ini akan ditampilkan komparasi pemodelan dengan menggunakan dua metode tersebut.

The fundamental objective product insurance is to provide financial protection from uncertain risk with premium as transferring the risk.  Considering that not all risks are equal, the insurance company should not apply the same premium for all insured risks in portfolio. A commonly method to calculate the pure premium is to multiply the expectation of the claim frequency with the expected cost of claims. Separated- Generalized Linear Models are employed to estimate the two component of pure premium given the characteristic of the policyholders. Another method to estimate the pure premium is Tweedie Generalized Linear Models. Tweedie models can used in the data claims if there are many claims of zero value. Using Tweedie to estimate pure premium more efficient, Tweedie models can estimate pure premium directly without calculate the expectation frequency and severity separated. In this paper, will be practice implementation using these two models."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2016
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Arief Fauzan
"Tren kenaikan frekuensi dan severitas klaim untuk klaim asuransi kendaraan bermotor menyebabkan dibutuhkannya metode otomatisasi baru untuk memprediksi probabilitas seorang pemegang asuransi kendaraan akan mengajukan klaim jika diberikan data historis mengenai pemegang asuransi tersebut, agar perusahaan asuransi dapat memilah dan memproses lebih lanjut para pemegang polis yang kemungkinan mengajukan klaimnya tinggi. Masalah ini dapat diselesaikan dengan berbagai metode, salah satunya dengan machine learning, yang mengkategorisasikan masalah tersebut sebagai masalah supervised learning. Volume data yang besar dan banyaknya kemungkinan adanya missing values pada data pemegang asuransi menjadi dua aspek yang mempengaruhi pemilihan model machine learning yang tepat. XGBoost merupakan model gradient boosting machine learning baru yang dapat mengatasi missing value dan volume data besar sehingga XGBoost diklaim merupakan metode yang tepat untuk digunakan pada masalah tersebut. Dalam skripsi ini akan diaplikasikan metode XGBoost kepada masalah ini, dan akan dibandingkan hasilnya dengan berbagai metode machine learning lainnya, seperti AdaBoost, Stochastic Gradient Boosting, Random Forest, Neural Network, dan Logistic Regression.

The increasing trend of claim frequency and claim severity for auto-insurance result in a need of new methods to predict whether a policyholder will file an auto-insurance claim or not, given historical data about said policyholder, so that insurance industries can further process policyholders with high claim probability. This problem can be solved with many methods, one of which is machine learning, which categorizes this problem as a supervised learning problem. The high data volume and the existence of missing values on a policyholders historical data are aspects that the chosen machine learning model must be able to handle. XGBoost is a novel gradient boosting machine learning problem that is able to inherently handle missing values and high volume of data, which should make the model suitable for this problem. In this thesis, XGBoost will be applied to this problem, and its performance will be compared by other machine learning models, such as AdaBoost, Stochastic Gradient Boosting, Random Forest, Neural Network, and Logistic Regression."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Zafira Hafidzah
"Kecelakaan adalah salah satu risiko yang dapat berakibat fatal pada kendaraan bermotor. Berdasarkan data Kementerian Perhubungan, di Indonesia telah terjadi 103.645 kasus kecelakaan kendaraan bermotor pada 2021. Tingkat kecelakaan kendaraan bermotor berpotensi meningkat setiap tahunnya seiring kenaikan signifikan dari pemilik kendaraan. Selain kecelakaan, ancaman risiko lain, seperti kehilangan, pencurian, dan kebakaran/ledakan mendorong masyarakat membeli asuransi kendaraan bermotor. Asosiasi Asuransi Umum Indonesia (AAUI) menyampaikan kenaikan 345% pembelian asuransi kendaraan bermotor di Indonesia pada tahun 2022. Tren ini menstimulasi penetapan tarif premi asuransi kendaraan bermotor yang kompetitif antar perusahaan asuransi. Perhitungan tarif premi didasarkan atas data historis frekuensi klaim dan severitas klaim. Kedua komponen tersebut bergantung pada faktor-faktor risiko nasabah. Frekuensi klaim dan severitas klaim dimodelkan sebagai variabel respons dalam pemodelan Generalized Linear Model (GLM), dimana faktor-faktor risiko nasabah menjadi variabel prediktor model. Pemodelan frekuensi klaim dan severitas klaim lazim dilakukan secara independen, tetapi tidak jarang ditemukan ketergantungan antar keduanya. Data historis frekuensi klaim dan severitas klaim dalam penelitian ini menunjukkan nilai ketergantungan yang rendah, tetapi signifikan. Oleh karena itu, penelitian ini menganalisis performa dua model GLM dalam perhitungan data frekuensi klaim dan severitas klaim tersebut, yaitu GLM Tweedie dan GLM copula. GLM Tweedie digunakan untuk memodelkan frekuensi klaim dan severitas klaim secara independen, sedangkan GLM copula digunakan untuk memodelkan frekuensi klaim dan severitas klaim secara dependen. Pada pemodelan GLM Tweedie, distribusi frekuensi klaim dan severitas klaim yang digunakan adalah distribusi Tweedie untuk keduanya, sedangkan pada pemodelan GLM copula, distribusi frekuensi klaim yang digunakan adalah distribusi Zero-Truncated Poisson (ZTP) dan distribusi severitas klaim yang digunakan adalah distribusi Gamma. Root Mean Square Error (RMSE) digunakan dalam menganalisis performa model. Semakin kecil nilai RMSE, semakin baik performa model tersebut. Hasil pemodelan data menunjukkan nilai RMSE yang lebih kecil pada model GLM Tweedie untuk frekuensi klaim dan severitas klaim.

Traffic accident is one of the risks that can be fatal to automobile vehicles. Based on data from the Ministry of Transportation, there have been 103,645 cases of automobile vehicle accidents in Indonesia in 2021. The rate of motor vehicle accidents has the potential to increase every year in line with the significant increase in automobile vehicle owners. Apart from traffic accidents, other risk threats, such as loss, theft, and fire/explosion encourage people to buy automobile vehicle insurance. In 2022, Asosiasi Asuransi Umum Indonesia (AAUI) reported a 345% increase in purchases of automobile vehicle insurance in Indonesia. This trend stimulates the setting of competitive automobile vehicle insurance premium rates among insurance companies. Premium rate calculation is based on historical data on claim frequency and claim severity. Both components depend on the customer's risk factors. Claim frequency and claim severity are modeled as response variables in the Generalized Linear Model (GLM) modeling, while customer risk factors are the predictor variables of the model. Modeling of claim frequency and claim severity is usually done independently, but it is not uncommon to find dependencies between both. Historical claim frequency and claim severity data in this study shows a low but significant dependency value. Therefore, this study analyzes the performance of two GLM models in calculating claim frequency and claim severity data, namely GLM Tweedie and GLM copula. The GLM Tweedie is used to model the claim frequency and the claim severity independently, while the GLM copula is used to model the claim frequency and the claim severity dependently. In the GLM Tweedie modeling, the claim frequency and the claim severity is considered Tweedie distributed for both, whereas in the GLM copula modeling, the claim frequency distribution is the Zero-Truncated Poisson (ZTP) distribution and the claim severity distribution is the Gamma distribution. Root Mean Square Error (RMSE) is used in analyzing model performance. A smaller RMSE value indicates better model performance. The results of data modeling show a smaller RMSE value in the GLM Tweedie model for claim frequency and claim severity."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeremiah Marcel Eliasaputra
"Frekuensi klaim umumnya dimodelkan dengan Generalized Linear Model dan model-model lainnya yang serupa seperti regresi Poisson dan regresi Logistik. Akan tetapi, model-model tersebut tidak memperhitungkan adanya autokorelasi spasial, atau terjadinya hubungan yang erat antara daerah-daerah yang berdekatan, sedangkan frekuensi klaim dibuktikan bahwa ia dipengaruhi oleh lokasi yang diamati. Model spasial Besag-York-Mollié (BYM) dapat diimplementasikan ke dalam data klaim pada beberapa daerah yang berdekatan dan memiliki potensi untuk menghasilkan prediksi yang lebih akurat dibanding dengan model-model non-spasial. Akan dilakukan penelitian terhadap model BYM untuk menjelaskan kegunaan model tersebut dan memberikan alternatif bagi model-model yang biasa digunakan untuk pemodelan frekuensi klaim. Untuk mengevaluasi performa dari model BYM, maka model tersebut akan diimplementasikan kepada data simulasi, kemudian efektivitas dari model juga akan dibandingkan terhadap model-model lainnya menggunakan ukuran Deviance Information Criterion atau DIC. Hasil analisis menunjukkan bahwa model BYM memiliki potensi untuk menjadi model yang paling akurat dalam memprediksikan frekuensi klaim pada daerah-daerah dengan autokorelasi spasial yang kuat.

Claims frequency modelling is usually done using Generalized Linear Models or other similar models such as Poisson regression and Logistik Regression. However these models do not take in account spatial autocorrelation, or the event in which neighboring areas would have a close relationship, even though claims frequency has been proven to be influenced by the observed locations. The spatial Besag-York-Mollié model can be implemented in claims data for several neighboring areas and has potential to be more accurate than non-spatial models in predicting claims frequency. Research towards the BYM model will be done to explain the usage of the model and provide an alternative to other models usually used for claims frequency. To evaluate the effectiveness of the model, the BYM model is then implemented into simulation data, and its effectiveness is compared to other models using the Deviance Information Criterion or DIC. The result of the analysis shows that the BYM model has potential to be the best model for cases that have a strong spatial relationship."
Depok: Fakultas Ilmu Matematika dan Ilmu Pengetahuan Alam Budaya Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Wijaya
"Dalam upaya untuk mengendalikan besarnya kerugian, memodelkan severitas klaim merupakan salah satu cara yang sering dilakukan oleh perusahaan asuransi. Terdapat beberapa cara untuk memodelkan severitas klaim, salah satunya dengan generalized linear model. Akan tetapi fakta sederhana bahwa setiap pemegang polis itu tidak sama sering diabaikan karena hasil yang diperoleh hanya disajikan untuk “rata-rata” pemegang polis. Potensi variabilitas ini yang tercermin pada data asuransi dapat diidentifikasi dengan mengelompokkan pemegang polis ke dalam kelompok yang berbeda. Sehingga dari perilaku yang berbeda pada masing-masing kelompok memungkinkan perusahaan asuransi mengembangkan strategi untuk mengendalikan besarnya kerugian. Pada praktiknya, model yang sering digunakan untuk pengelompokan adalah model finite mixture, dengan setiap kelompok dimodelkan dengan fungsi kepadatan probabilitasnya (pdf) sendiri. Salah satu keluarga model finite mixture yang fleksibel untuk vektor acak yang terdiri dari variabel respon dan satu set kovariat yang disesuaikan dengan distribusi bersamanya adalah cluster-weighted model (CWM). CWM merupakan kombinasi linear antara distribusi marjinal kovariat dan distribusi bersyarat dari respons yang diberikan kovariat. Distribusi bersyarat pada CWM diasumsikan milik keluarga eksponensial dan kovariatnya diperbolehkan tipe campuran yaitu diskrit dan kontinu (diasumsikan gaussian). Selanjutnya, model dicocokkan ke dalam data (fitting the model) menggunakan Maximum likelihood estimation (MLE) untuk menaksir parameter model dengan algoritma ekspektasi-maksimalisasi (EM). Pemilihan model terbaik dievaluasi dari skor akaike information criterion (AIC) dan bayesian information criterion (BIC). Permasalahan penentuan jumlah cluster diselesaikan secara bersamaan dengan memilih model terbaik. Pada akhirnya, CWM dapat digunakan untuk meningkatkan pemahaman tentang perilaku pemegang polis dan karakteristik risikonya yang dihasilkan di setiap cluster. Penerapan metode ini diilustrasikan pada data asuransi mobil di Prancis.

In an effort to control the amount of loss, modeling the severity of claims is one way that is often done by insurance companies. There are several ways to model claim severity, one of which is a generalized linear model. However, the simple fact that every policyholder is not the same is often overlooked because the results obtained are only presented for the "average" policyholder. This potential for variability reflected in insurance data can be identified by classifying policyholders into different groups. So that the different behavior of each group allows insurance companies to develop strategies to control the amount of losses. In practice, the model often used for grouping is the finite mixture model, with each group being modeled with its own probability density function (pdf). One of the flexible finite mixture model families for random vectors consisting of a response variable and a set of covariates adjusted for their common distribution is the cluster-weighted model (CWM). CWM is a linear combination between the marginal distribution of the covariates and the conditional distribution of the responses given by the covariates. The conditional distribution on CWM is assumed to belong to the exponential family and the covariates are allowed mixed types, namely discrete and continuous (assumed to be gaussian). Next, the model is fitted to the data (fitting the model) using Maximum likelihood estimation (MLE) to estimate the model parameters with the expectation-maximization (EM) algorithm. Selection of the best model was evaluated from the Akaike information criterion (AIC) and Bayesian information criterion (BIC) scores. The problem of determining the number of clusters is solved simultaneously by selecting the best model. In the end, CWM can be used to increase understanding of policyholder behavior and the resulting risk characteristics in each cluster. The application of this method is illustrated in data on auto insurance in France."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariandy Dena Putra
"Permasalahan mengenai pencadangan klaim pada perusahaan asuransi merupakan salah satu isu yang harus dihadapi oleh para pelaku bisnis asuransi. Ketersediaan dana klaim oleh perusahaan merupakan hal yang mendasar pada perusahaan asuransi untuk dapat mempertahankan bisnis mereka dan menjaga kelangsungan dari usahanya. Pencadangan klaim ini juga diperlukan perhitungan secara detil mengenai pengalokasian dana yang dimiliki perusahaan berdasarkan penerimaan penjualan produk yang dikeluarkan, untuk menghasilkan profit di dalam bisnis mereka. Berangkat dari keterbatasan model-model terdahulu, tulisan ini ingin memperkenalkan model penghitungan alternatif, yakni model quantile regression. Menurut Chan 2015 model quantile regression ini dianggap memiliki kemampuan untuk melakukan penghitungan pencadangan klaim terhadap data yang memiliki variansi heterogen dan tidak memiliki distribusi yang jelas sebagaimana kebanyakan data asuransi. Penelitian ini akan melakukan penghitungan estimasi cadangan klaim dengan mengadopsi model Quantile Regression. Tujuan utama dari penelitian ini adalah ingin mencoba bagaimana proses penghitungan estimasi dengan model Quantile Regression serta melihat apakah model ini bisa diterapkan pada konteks perusahaan asuransi XYZ di Indonesia. Data yang digunakan dalam penelitian ini adalah data klaim produk asuransi kendaraan bermotor perusahaan XYZ tahun 2013 sampai dengan 2015.

The issue of claim reserves on insurance companies is one of the issues that insurance businesses have to cope with. The availability of claims within the company is fundamental to insurance companies to maintain their business and keep the business going. This claim reserves is also required in precise calculations regarding the allocation of funds owned by the company based on the sale of products issued, to generate profit in their business. Based on the limitations of the traditional models, this paper wants to introduce an alternative model of estimating claim reserve, it is called quantile regression model. According to Chan 2015 this quantile regression model is considered to have the ability to calculate the reserve of claims against data with heterogeneous variance and have no clear distribution, which is mostly insurance data known for. This research will try to calculate estimation for claim reserve by adopting Quantile Regression model. The main purpose of this research is to try how to calculate the estimation with Quantile Regression model and see if this model can be applied to the context of XYZ insurance company in Indonesia. The data used in this research are the claims data of XYZ company s for motor vehicle insurance products from 2013 to 2015.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2017
T49985
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>