Penggunaan tembaga sebagai material penghantar listrik terkendala oleh biaya yang cukup mahal jika hanya menggunakan logam tembaga murni. Untuk mengatasi masalah tersebut, dikembangkan beberapa material komposit yang dapat menjadi substitusi penggunaan logam tembaga murni dengan nilai konduktivitas listrik hampir sama dengan tembaga murni yang salah satunya adalah material komposit berstruktur sandwich dengan tembaga sebagai material face dan aluminium sebagai material core yang menggunakan proses roll compacting-sintering dengan metode fabrikasi powder in sealed tube. Penelitian ini akan menggunakan variasi temperatur sintering 300, 400, 500°C pada saat proses sintering dalam pembuatan komposit Cu/Al/Cu dengan menggunakan metode fabrikasi powder in sealed tube. Penelitian ini dilakukan untuk menjelaskan pengaruh temperatur sintering terhadap nilai konduktivitas listrik dan struktur mikro pada material komposit Cu/Al/Cu. Setelah sampel difabrikasi, selanjutnya sampel akan dilakukan karakterisasi struktur mikro dengan menggunakan SEM dan dilakukan pengujian pada nilai konduktivitas listrik menggunakan agilent ohmmeter. Data hasil pengujian menunjukkan adanya peningkatan nilai konduktivitas listrik akibat peningkatan temperatur sintering dengan temperatur 500°C menghasilkan nilai konduktivitas listrik terbesar dengan nilai 93,19% IACS, lalu diikuti oleh temperatur sintering 400°C dengan nilai konduktivitas listrik 91,71% IACS, dan temperatur sintering 300°C menghasilkan nilai konduktivitas listrik terendah yaitu 88,42% IACS. Terjadinya peningkatan nilai konduktivitas listrik dikarenakan densitas yang terbentuk mengalami peningkatan pada temperatur sintering yang lebih tinggi. Peningkatan densitas tersebut akan berefek pada panjang jalur yang lebih pendek yang akan dilalui aliran listrik pada spesimen dikarenakan tidak ada porositas yang menghalangi aliran listrik untuk bergerak sehingga nilai konduktivitas listrik sampel meningkat.
.....The use of copper as an electrical conductor is constrained by the high cost if only pure copper is used. To overcome this problem, several composite materials have been developed that can substitute for the use of pure copper metal with electrical conductivity values almost the same as pure copper, one of which is a sandwich structure composite material with copper as the face material and aluminum as the core material using the roll compacting process-sintering with powder in sealed tube method. This study will use variations in sintering temperatures of 300, 400, and 500°C during the sintering process in the fabrication of Cu/Al/Cu composites using powder in sealed tube method. This research was conducted to explain the effect of sintering temperature on electrical conductivity and microstructure of Cu/Al/Cu composite materials. After the sample is fabricated, the sample will be characterized using SEM and the electrical conductivity value of the sample will be measured using an Agilent ohmmeter. The test data show an increase in the electrical conductivity value due to an increase in the sintering temperature with a temperature of 500°C resulting in the most significant electrical conductivity value with a value of 93.19% IACS, then followed by a sintering temperature of 400°C with an electrical conductivity value of 91.71% IACS, and sintering temperature of 300°C resulted in the lowest electrical conductivity value, with a value of 88.42% IACS. Increasing the value of electrical conductivity occur because the density formed has increased at a higher sintering temperature. The increase in density will impact on a shorter path length that the electric current will traverse in the specimen because no porosity that prevents the flow of electricity from moving so that the electrical conductivity of the sample increases.
"Penelitian sifat mekanik dalam struktur perovskite manganite (Nd0,67Pb0,33MnO3 (NPbMO) dan Nd0,67Sr0,33MnO3 (NSMO)) menggunakan Density Functional Theory (DFT) dengan kode Cambridge Majelis Serial Total Energy Package (CASTEP). Pemodelan struktur menggunakan kelompok ruang kubik ððÌ 3ð (221) dan parameter kisi setiap struktur 3,78 à , parameterisasi PBE-GGA dan pendekatan BFGS. Ketentuan pemodelan ini diterapkan pada semua struktur yaitu NdMnO3 (NMO), PbMnO3 (PMO), dan SrMnO3 (SMO). Pada NPbMO, masing-masing NMO dan PMO memiliki energi cutoff 500 eV dan k-point 7×7×7. Sedangkan pada NSMO, NMO memiliki energi cutoff 400 eV dan SMO memiliki energi cutoff 10 eV dengan nilai k-point yang sama yaitu 1 × 1 × 1. Ketentuan diatas menghasilkan kenaikan parameter kisi dan volume sel yang berakibat pada kenaikan jari-jari atom, melemahnya gaya ikatan antar inti atom dan elektron sehingga mengurangi tingkat keelektronegatifan ion dan penurunan keelektronegatifan. Sifat mekanik menunjukkan karakteriktik material NPbMO dan NSMO berupa kekakuan, ketahanan terhadap kemunduran, dan keuletan. Subsitusi Sr menggantikan Pb pada Nd menunjukkan bahwa NSMO lebih memiliki karakteristik berupa tikat elastisitas yang lebih tinggi, ketahanan terhadap kelahiran yang lebih rendah, dan tingkat keuletan yang lebih rendah dari NPbMO.
Investigasi sifat mekanik pada struktur manganit perovskit (Nd0.67Pb0.33MnO3 (NPbMO) dan Nd0.67Sr0.33MnO3 (NSMO)) menggunakan teori fungsional densitas (DFT) dengan kode Cambridge Majelis Serial Total Energy Package (CASTEP). Pemodelan struktur menggunakan kelompok ruang kubik Pm Ì 3m (221) dan parameter kisi masing-masing struktur sebesar 3,78 Ã , parameterisasi PBE-GGA, dan pendekatan BFGS. Aturan pemodelan ini diterapkan pada semua struktur yaitu NdMnO3 (NMO), PbMnO3 (PMO), dan SrMnO3 (SMO). Pada NPbMO, masing-masing NMO dan PMO memiliki energi cutoff sebesar 500 eV dan titik k sebesar 7×7×7. Sedangkan pada NSMO, NMO memiliki cutoff energi sebesar 400 eV dan SMO memiliki cutoff energi sebesar 10 eV dengan nilai kpoint yang sama yaitu 1×1×1. Ketentuan di atas menyebabkan peningkatan parameter kisi dan volume sel, yang meningkatkan jari-jari atom, melemahkan gaya ikatan antara inti atom dan elektron, sehingga mengurangi tingkat keelektronegatifan ion, dan mengurangi kesenjangan keelektronegatifan. Sifat mekanik menunjukkan karakteristik material NPbMO dan NSMO dalam hal kekakuan, ketahanan terhadap deformasi, dan keuletan. Substitusi Sr dengan Pb pada Nd menunjukkan bahwa NSMO memiliki sifat elastisitas yang lebih tinggi, ketahanan deformasi yang lebih rendah, dan keuletan yang lebih rendah dibandingkan NPbMO.
"