Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 187010 dokumen yang sesuai dengan query
cover
Jaihan Syifa Salsabilla
"Paduan aluminium banyak digunakan dalam berbagai aplikasi, terutama di bidang otomotif dan penerbangan karena keunggulannya. Aluminium bersifat ringan, kekuatan tinggi, serta densitas rendah. Namun, sifat mekanik dan ketahanan korosinya perlu ditingkatkan. Plasma Electrolytic Oxidation (PEO) adalah metode terbaru untuk melindungi aluminium dengan menumbuhkan lapisan keramik oksida pada permukaannya. Dalam penelitian ini, proses PEO dilakukan pada paduan aluminium seri 1100 dan 7075-T735 dengan elektrolit campuran 30 g/Na2SiO3, 30 g/l KOH, dan 20 g/l TEA dengan rapat arus 200 A/m2 selama 6 menit. Kedua jenis seri paduan tersebut digunakan sebagai pembanding dalam proses PEO dimana seri 1100 tergolong Al murni sedangkan seri 7075 memiliki banyak presipitat. Hasil uji korosi dengan menggunakan uji elektrokimia menunjukkan bahwa sampel AA7075-T735 berlapis PEO memiliki ketahanan korosi yang paling baik. Hal ini dibuktikan dengan nilai rapat arus korosi (icorr) terendah, yaitu mencapai 5,91x10-7 A.cm-2 dan loop kapasitif yang paling besar serta ketidakhadiran loop induktif pada kurva Nyquist. Dari uji hilang berat juga diperoleh hasil rata-rata hilang berat yang lebih rendah pada sampel AA7075-T735 dibandingkan dengan AA1100. Ketahanan korosi sampel berlapis PEO mengikuti perilaku substratnya. Sampel AA1100 mengalami degradasi coating yang lebih dominan daripada AA7075-T735. Hal ini berkaitan dengan porositas dan kepadatan lapisan PEO pada kedua sampel.

Aluminum alloys are widely used in various applications, especially in the automotive and aviation industries, due to their advantages. Aluminum is lightweight, has high strength, and low density. However, its mechanical properties and corrosion resistance need improvement. Plasma Electrolytic Oxidation (PEO) is the latest method used to protect aluminum by growing a ceramic oxide layer on its surface. In this study, the PEO process was applied to aluminum alloys of series 1100 and 7075-T735 using an electrolyte mixture of 30 g/L Na2SiO3, 30 g/L KOH, and 20 g/L TEA with a current density of 200 A/m2 for 6 minutes. Both alloy series were used as comparators in the PEO process, with series 1100 being classified as pure Al, while series 7075 has numerous precipitates. Corrosion tests using electrochemical analysis showed that the PEO-coated AA7075-T735 sample exhibited the best corrosion resistance. This was evident from its lowest corrosion current density (icorr) value, which reached 5.91x10-7 A.cm-2 , as well as the largest capacitive loop and the absence of an inductive loop in the Nyquist curve. Weight loss tests also indicated that the average weight loss was lower in the AA7075-T735 sample compared to AA1100. The corrosion resistance of the PEO-coated samples followed the behavior of their substrates. The AA1100 sample experienced more dominant coating degradation compared to AA7075-T735, which was related to the porosity and density of the PEO layer in both samples."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gavin Setiawan
"Aluminium (Al) dan paduannya telah secara luas digunakan dalam berbagai industri seperti konstruksi, otomotif, manufaktur, dan kedirgantaraan karena memiliki kekuatan tinggi, kerapatan rendah, serta kemampuan pembentukan yang baik. Meskipun Al memiliki lapisan oksida alami di permukaannya, lapisan ini dapat terkelupas atau larut dalam lingkungan korosif, yang menyebabkan turunnya ketahanan korosi. Oleh karena itu, diperlukan pelapisan permukaan. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida tebal yang meningkatkan resistansi korosi. Diperlukan aditif sebagai penguat untuk mengoptimalkan ketahanan korosi dan mekanik lapisan. Pada penelitian ini, graphene oxide (GO) digunakan sebagai aditif selain untuk meningkatkan ketahanan korosi lapisan, juga untuk meningkatkan konduktivitas listrik lapisan. Proses PEO dilakukan pada paduan AA7075-T735 menggunakan elektrolit 30 g/l Na2SiO3, 30 g/l KOH, 20 g/l trietanolamin (TEA) dengan aditif 2 g/l dan 20 g/l GO pada rapat arus konstan sebesar 200 A/m2 dan suhu 10 °C ± 1 °C. Karakterisasi morfologi dan komposisi dilakukan SEM-EDS dan XRD. Uji korosi dilakukan dengan metode elektrokimia. Sifat mekanik lapisan diuji dengan uji aus dan keras. Penambahan GO sebesar 2 g/l berhasil meningkatkan sifat mekanik dan ketahanan korosi coating yang didukung oleh morfologi permukaan yang lebih halus dan sedikit pori. Perfoma coating menurun pada konsentrasi GO sebesar 20 g/l, hal ini disebabkan penurunan laju pertumbuhan dari coating yang disebabkan GO melebihi batas dispersif sehingga GO yang terinkorporasi di dalam coating lebih sedikit karena aglomerasi GO.

Aluminium (Al) and its alloys are widely used in various industries such as construction, automotive, manufacturing, and aerospace due to their high strength, low density, and good formability. Despite the natural oxide layer on its surface, which can peel or dissolve in corrosive environments, leading to a decrease in corrosion resistance, surface coating is necessary. Plasma Electrolytic Oxidation (PEO) produces thick ceramic oxide layers that enhance corrosion resistance. Additives are required to strengthen and optimize the corrosion resistance and mechanical properties of the coating. In this study, graphene oxide (GO) is used as an additive not only to improve corrosion resistance but also to enhance the electrical conductivity of the coating. The PEO process is conducted on AA7075-T735 alloy using an electrolyte of 30 g/l Na2SiO3, 30 g/l KOH, 20 g/l triethanolamine (TEA) with 2 g/l additive and 20 g/l GO at a constant current density of 200 A/m2 and a temperature of 10 °C ± 1 °C. Morphological and compositional characterization is performed using SEM-EDS and XRD. Corrosion testing is conducted using electrochemical methods, while the mechanical properties of the coating are assessed through wear and hardness tests. The addition of 2 g/l of GO successfully improves the mechanical properties and corrosion resistance of the coating, supported by a smoother surface morphology with fewer pores. However, coating performance decreases at a GO concentration of 20 g/l, attributed to a reduction in coating growth rate caused by GO exceeding the dispersal limit, resulting in less incorporated GO due to agglomeration."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deva Rifa Nurgantini
"Aluminium (Al) adalah logam ringan dengan massa jenis 2,7 g/cm3. Untuk melindungi permukaan paduan Al dari lingkungan korosif dan abrasif, dibutuhkan rekayasa permukaan seperti PEO. Karakteristik lapisan oksida hasil PEO dipengaruhi oleh arus dan durasi proses. Penelitian ini bertujuan untuk menganalisis evolusi morfologi dan pengaruhnya terhadap karakteristik mekanik dan ketahanan korosi lapisan PEO. PEO diaplikasikan pada paduan Al 7075-T651 menggunakan elektrolit 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 dengan rapat arus konstan 200 A/m2. Waktu proses PEO divariasikan 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Potentiodynamic Polarization (PDP) dan Electrochemical Impedence Spectroscopy (EIS). Hasil analisis XRD mengindikasikan bahwa lapisan PEO bersifat amorf. Konsentrasi oksigen dalam lapisan yang dideteksi dengan EDS meningkat seiring bertambahnya durasi proses PEO sesuai dengan peningkatan ketebalan lapisan. Hasil uji elektrokimia PDP dan EIS menunjukkan sampel PEO 15 menit memiliki ketahanan korosi terbaik dengan nilai rapat arus korosi terendah sebesar 2,28 dan nilai hambatan tertinggi sebesar 1,038 dan 1,123. Hasil uji mekanik menunjukkan PEO 10 menit memiliki nilai keausan tertinggi sebesar dan nilai kekerasan sebesar 129,8 HV; PEO 15 menit memiliki nilai keausan sebesar dan nilai kekerasan sebesar 131,8 HV; dan PEO 20 menit memiliki nilai keausan terendah yaitu dan nilai kekerasan tertinggi yaitu 142 HV yang menunjukkan bahwa sampel dengan durasi lebih lama dapat menghasilkan sifat mekanik yang lebih unggul

Aluminium (Al) is a lightweight metal with a density of 2,7 g/cm3. To protect the surface of Al alloys from corrosive and abrasive environments, surface engineering techniques such as Plasma Electrolytic Oxidation (PEO) are required. The characteristics of the PEO-derived oxide layers are influenced by the current and process duration. This study aims to analyze the morphological evolution and its impact on the mechanical properties and corrosion resistance of PEO layers. PEO was applied to Al 7075-T651 alloy using an electrolyte of 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 with a constant current density of 200 A/m2. The PEO process duration was varied at 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the composition of crystalline phases, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior was evaluated through electrochemical tests, namely Potentiodynamic Polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS). XRD analysis indicated that the PEO layers were amorphous. The oxygen concentration in the detected layers using EDS increases with the duration of the PEO process, in line with the increase in layer thickness. Electrochemical tests PDP and EIS showed that the PEO 15 minute sample exhibited the best corrosion resistance with the lowest corrosion current density of 2,28 and the highest resistance values of 1,038 and 1,123. Mechanical test results indicated that the PEO 10 minute sample had the highest wear resistance of and a hardness value of 129,8 HV; PEO 15 minute sample had a wear resistance of and a hardness value of 131,8 HV; and PEO 20 minute sample had the lowest wear resistance of and the highest hardness value of 142 HV, suggesting that longer process durations produce superior mechanical properties."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asweda Luluk Saptaningrum
"Magnesium dan paduannya telah digunakan di berbagai industri karena memiliki rasio kekuatan terhadap berat yang tinggi, modulus elastisitas dan densitas yang rendah, serta sifat mampu bentuk dan manufaktur yang baik. Namun, magnesium memiliki ketahanan korosi dan aus yang rendah. Untuk mengatasi hal tersebut, diperlukan rekayasa permukaan pada paduan magnesium. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida yang dapat meningkatkan ketahanan korosi dan aus paduan magnesium. Jenis elektrolit yang digunakan karakteristik dan waktu hidup plasma. Dalam penelitian ini, proses PEO dilakukan pada paduan AZ91 dalam elektrolit berbasis campuran silikat, fosfat, dan hidroksida yaitu Na3PO4, Na2SiO3, dan KOH. Proses PEO dilakukan dengan menggunakan rapat arus konstan sebesar 533 A/m2 selama 10 menit. Parameter proses tersebut dipilih untuk memperlama waktu hidup plasma. Pada penelitian sebelumnya, plasma hanya dapat hidup selama 2 menit. Hasil analisis SEM-EDS menunjukkan bahwa lapisan PEO yang dihasilkan memiliki dua tipe warna, yaitu abu-abu dan putih dengan morfologi dan komposisi berbeda. Bagian putih memiliki morfologi yang tidak seragam dan banyak retakan, dibandingkan dengan bagian abu-abu yang memiliki sedikit pori dan retakan. Ketebalan lapisan yang terbentuk sebesar 53 ± 3 μm. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristal dan amorf Mg2SiO4, Mg3(PO4)2, dan MgO pada lapisan PEO. Hasil tersebut dikonfirmasi oleh hasil analisis EDS dengan terdeteksinya unsur-unsur terkait. Bagian putih memiliki konsentrasi Si yang lebih tinggi dibandingkan bagian abu-abu. Bagian abu-abu memiliki daya tahan abrasi yang lebih tinggi dibandingkan lapisan putih yang ditunjukkan dari nilai spesifikasi abrasinya, yaitu 0,684 × 10-5 mm3/mm dibanding 1,48 × 10-5 mm3/mm. Hasil karakterisasi dan uji mekanik menunjukkan lapisan PEO yang terbentuk tebal dan memiliki ketahanan aus yang baik karena plasma dapat hidup sampai 10 menit.

Magnesium and its alloys have been used in various industries due to their high strength-to-weight ratio, low modulus of elasticity and density, as well as good formability and manufacturability. However, magnesium has low corrosion resistance and wear resistance. To overcome these challenges, surface engineering is required for magnesium alloys. Plasma Electrolytic Oxidation (PEO) produces a ceramic oxide layer that can enhance the corrosion resistance and wear resistance of magnesium alloys. The type of electrolyte used determines the characteristics and lifetime of the plasma. In this study, the PEO process was performed on the AZ91 alloy using an electrolyte based on a mixture of silicate, phosphate, and hydroxide, namely Na3PO4, Na2SiO3, and KOH. The PEO process was carried out using a constant current density of 533 A/m2 for 10 minutes. These process parameters were chosen to prolong the plasma lifetime. In previous studies, the plasma could only last for 2 minutes. The results of SEM-EDS analysis showed that the produced PEO layer had two different colors, namely gray and white, with different morphologies and compositions. The white part exhibited non-uniform morphology and numerous cracks compared to the gray part, which had fewer pores and cracks. The thickness of the formed layer was measured to be 53 ± 3 μm. Based on XRD phase analysis, crystal and amorphous phases of amorf Mg2SiO4, Mg3(PO4)2, and MgO were detected in the PEO layer. These findings were confirmed by EDS analysis, which detected related elements. The white part had a higher concentration of Si compared to the gray part. The gray part exhibited higher abrasion resistance compared to the white layer, as indicated by the abrasion specification values, which were 0,684 × 10-5 mm3/mm and 1,48 × 10-5 mm3/mm, respectively. The characterization and mechanical testing results indicated that the formed PEO layer was thick and had good wear resistance due to the plasma lifetime reaching 10 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reynaldo Putrayadi
"Magnesium (Mg) merupakan logam ringan yang memiliki beragam aplikasi, termasuk dalam industri otomotif dan sebagai bahan implan biodegradable. Meskipun penting, kelemahan utama magnesium adalah ketahanan korosinya yang rendah terutama dalam lingkungan yang mengandung klorida. Oleh karena itu, perbaikan sifat korosi magnesium diperlukan melalui rekayasa permukaan. Salah satu metode yang efektif dalam rekayasa permukaan magnesium adalah metode plasma electrolytic oxidation (PEO). Penelitian ini bertujuan untuk memahami pengaruh perbedaan kation yang digunakan sebagai elektrolit untuk PEO terhadap sifat mekanik dan ketahanan korosi lapisan PEO pada paduan magnesium AZ31. Elektrolit yang dimaksud adalah KOH dan NaOH. Dalam penelitian ini, dilakukan proses PEO pada paduan magnesium AZ31 menggunakan larutan basa seperti KOH, NaOH, dan campuran KNa. Proses ini menggunakan rapat arus 1000 A/m2 pada suhu 30ºC dalam waktu 10 menit. Sampel yang dihasilkan kemudian dianalisis menggunakan beberapa metode, termasuk pengamatan morfologi dan komposisi dengan SEM-EDS, uji mekanik untuk mengukur ketahanan aus dan kekerasan, serta eksperimen elektrokimia dengan EIS dan PDP. Larutan KOH, NaOH, dan KNa dapat meningkatkan ketahan korosi dan sifat mekanik lapisan PEO pada paduan magnesium AZ31. Data uji korosi menunjukkan bahwa larutan KOH memiliki tingkat korosi paling tinggi dibandingkan dengan NaOH dan KNa dengan nilai rapat arus dan resistansi polarisasi sebesar 7,31 × 10-5 A/cm2 dan 280 Ω.cm2 . Uji mekanik mengindikasikan peningkatan kekerasan dan ketahanan aus pada sampel yang diuji dengan larutan campuran KNa dengan nilai kekerasan sebesar 71 Hv dan nilai spesifik abrasi sebesar 9,07 × 10-6 mm3 /mm. Hal ini disebabkan oleh nilai at% dari unsur O pada elektrolit KNa lebih tinggi dibandingkan elektrolit NaOH dan KOH.

Magnesium (Mg) is a lightweight metal with diverse applications, including the automotive industry and as a material for biodegradable implants. Despite its significance, magnesium's primary weakness lies in its low corrosion resistance, particularly in chloride-containing environments. Therefore, improving magnesium's corrosion resistance is essential through surface engineering. One effective method for surface engineering of magnesium is the Plasma Electrolytic Oxidation (PEO) technique. This research aims to understand the influence of different cations used as electrolytes for PEO on the mechanical properties and corrosion resistance of PEO coatings on the AZ31 magnesium alloy. The electrolytes in focus are KOH and NaOH. In this study, the PEO process was conducted on the AZ31 magnesium alloy using basic solutions such as KOH, NaOH, and a mixture of KNa. The process employed a current density of 1000 A/m2 at a temperature of 30ºC for 10 minutes. The produced samples were then analyzed using various methods, including morphology and composition observation with SEM-EDS, mechanical testing for wear resistance and hardness measurement, as well as electrochemical experiments using EIS and PDP. KOH, NaOH, and KNa solutions successfully enhanced the corrosion resistance and mechanical properties of PEO coatings on the AZ31 magnesium alloy. Corrosion test data indicated that the KOH solution exhibited the highest corrosion rate compared to NaOH and KNa, with corrosion current density and polarization resistance values of 7,31 × 10-5 A/cm2 and 280 Ω.cm2 , respectively. Meanwhile, mechanical tests indicated improved hardness and wear resistance in samples treated with the KNa mixed solution, showing a hardness value of 71 Hv and specific abrasion value of 9,07 × 10-6 mm3 /mm. This can be attributed to the higher atomic percentage of oxygen in the KNa electrolyte compared to NaOH and KOH."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nuraini Rifdha Hanawarman
"Paduan aluminium (Al) seri 7075-T735 telah menjadi pilihan utama dalam aplikasi industri otomotif karena kekuatan mekaniknya yang tinggi. Namun, tantangan utama yang dihadapi dalam penggunaannya adalah ketahanan korosi. Dalam upaya untuk meningkatkan ketahanan korosi paduan ini, diperlukan metode pelapisan. Salah satu metode yang menjanjikan adalah Plasma Electrolytic Oxidation (PEO), yang telah terbukti efektif dalam meningkatkan ketahanan korosi pada logam Al. Dalam penelitian ini diusulkan penyegelan pori pada lapisan PEO dengan melakukan post-treatment menggunakan oksida grafena (GO) menggunakan metode dip coating. GO dipilih karena sifatnya yang tidak reaktif secara kimia dan ramah lingkungan. PEO dilakukan di dalam elektrolit garam alkali dan aditif triethanolamine (TEA). Karakterisasi lapisan yang dihasilkan dilakukan melalui analisis morfologi dan komposisi menggunakan SEM-EDS serta XRD, pengujian ketahanan korosi dengan metode PDP dan EIS, Uji kekerasan Vickers, Uji Abrasi, dan hidrofobisitas dengan Uji Sudut-Kontak. Lapisan GO yang dihasilkan di permukaan coating PEO memiliki ketebalan 3,1 µm. Hasil karakterisasi XRD dan SEM-EDS mengkonfirmasi adanya lapisan GO di atas coating PEO. Selain itu, post-treatment meingkatkan nilai kekerasan dan ketahanan aus. Akan tetapi, post-treatment tidak memberikan pengaruh yang signifikan terhadap ketahanan korosi. Hal ini kemungkinan disebabkan oleh penutupan pori yang tidak merata akibat aglomerasi GO.

The aluminum alloy (Al) series 7075-T735 has become a top choice in the automotive industry due to its high mechanical strength. However, the primary challenge faced in its use is corrosion resistance. To enhance the corrosion resistance of this alloy, coating methods are required. One promising method is Plasma Electrolytic Oxidation (PEO), which has proven effective in enhancing the corrosion resistance of Al metals. This study proposes pore sealing on the PEO coating by performing post-treatment using graphene oxide (GO) through the dip coating method. GO was chosen for its chemically inert and environmentally friendly properties. PEO was carried out in an alkaline salt electrolyte with triethanolamine (TEA) as an additive. The resulting coating was characterized through morphology and composition analysis using SEM-EDS and XRD, corrosion resistance testing using the PDP and EIS methods, Vickers hardness testing, abrasion testing, and hydrophobicity testing with the contact angle test. The GO layer formed on the PEO coating surface has a thickness of 3.1 µm. The XRD and SEM-EDS characterization results confirmed the presence of the GO layer on top of the PEO coating. Additionally, the post-treatment increased the hardness and wear resistance values. However, the post-treatment did not significantly affect corrosion resistance. This is likely due to uneven pore sealing caused by GO agglomeration."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novendra Darwis
"Aluminium adalah bahan yang paling banyak digunakan kedua di dunia, aplikasi Aluminium harus dimodifikasi dengan menambahkan elemen tertentu atau proses lainnya untuk meningkatkan sifat mekanik dan ketahanan korosi pada material. Paduan AC4C ini adalah paduan aluminium-silikon yang memiliki komposisi Al sebesar 92,69 wt%, Si sebesar 6,76 wt%, Mn sebesar 0,25 wt%, Fe sebesar 0,21 wt%, dan Ag sebesar 0,09 wt%. Dalam penelitian ini aluminium AC4C diberikan kompresi dengan  beban vertikal dalam 5 variasi yaitu 0 Ton, 3 Ton, 5 Ton, 7 Ton dan 9 Ton. Tujuan dari penelitian ini adalah untuk mengamati sifat korosi, perubahan struktur, yang disebabkan oleh kompresi. Karakterisasi menggunakan XRD (X-ray Difraction) untuk mengamati fase dan struktur. Hasil menunjukkan pola difraksi yang berbeda dari satu sampel tanpa kompresi dengan sampel ditekan. Hasil penelitian menunjukan bahwa sampel dengan variasi beban 3 Ton, 5 Ton, 7 Ton dan 9 Ton tidak merubah struktur kristal dari sampel yaitu face center cubic dan fasa yang didapat didominasi oleh aluminium dan silicon, ukuran kristal yang didapat tidak menunjukan adanya trend atau kecendrungan, pada beban 0 Ton, 3 Ton, 5 Ton, 7 Ton, 9 Ton menghasilkan ukuran kristal 57,44 nm, 53,81 nm, 90,47 nm, 90,47 nm, 439,42 nm. Pengujian korosi dalam larutan 3,5% NaCl pada suhu 10ºC dan 25ºC dilakukan dengan cara polarisasi potensiodinamik. Hasilnya menunjukkan Potensial dan arus  korosi yang berbeda untuk setiap sampel. Hasil Laju korosi pada suhu 10ºC adalah 2,9 x 10-1 mm/tahun dan 25ºC adalah 2,1 x 10-1 mm/tahun untuk yang sampel tidak diberikan variasi beban. Hasil laju korosi pada suhu 10ºC dengan beban 3 Ton adalah 8,6 x 10-1 mm/tahun, 5 Ton adalah 2,7 x 10-1 mm/tahun, 7 Ton adalah 1,9 x 10-1, 9 Ton adalah 2,8 x 10-1 mm/tahun dan hasil laju korosi pada suhu 25ºC dengan beban 3 ton adalah 1,6 x 10-1 mm/tahun, 5 Ton adalah 2,8 x 10-1mm/tahun, 7 Ton adalah 9,9 x 10-1mm/tahun, 9 Ton adalah  2,02 x 10-1 mm/tahun. Menggunakan data laju Korosi, masa pakai material bisa diprediksi.

Aluminum is the most widely used material in the world, Aluminum applications must support certain elements or other processes to improve mechanical properties and corrosion resistance in materials. This AC4C alloy is an aluminum-silicon alloy which has an composition of Al 92.69 wt%, Si 6.76 wt%, Mn 0.25 wt%, Fe 0.21 wt%, and Ag 0.09 wt %. In this study, aluminum AC4C was given compression with vertical loads in 5 variations, namely 0 Ton, 3 Ton, 5 Ton, 7 Ton and 9 Ton. The purpose of this study is to discuss the nature of corrosion, changes in structure, caused by compression. Characterization uses XRD (X-ray Diffraction) for phase regulation and structure. The results choose a diffraction pattern that is different from one sample without compression with the sample compressed. The results showed a sample with a variation of load 3 Ton, 5 Ton,  Ton and 9 Ton did not change the crystal structure of the sample ie face center cubic and the phase obtained by aluminum and silicon, the size of the crystal obtained did not show trends or trends, at a load of 0 Ton, 3 Ton, 5 Ton, 7 Ton, 9 Ton produce crystal sizes of 57.44 nm, 53.81 nm, 90.47 nm, 90.47 nm, 439.42 nm. Corrosion testing in testing 3.5% NaCl at temperatures of 10ºC and 25ºC was done by polarizing potentiodynamics. Show the different potential and correction currents for each sample. Results Corrosion rate at 10ºC is 2.9 x 10-1 mm/year and 25ºC is 2.1 x 10-1 mm/year for samples that do not provide load variations. Results Corrosion speed at 10ºC with a load of 3 Ton is 8.6 x 10-1 mm /year, 5 Ton is 2.7 x 10-1 mm/year, 7 Ton is 1.9 x 10-1 mm/year, 9 Ton is 2.8 x 10-1 mm/year and the results of corrosion rate at 25ºC with a load of 3 Ton is 1.6 x 10-1 mm/year, 5 Ton is 2.8 x 10-1 mm/year, 7 Ton is 9.9 x 10-1 mm/year, 9 Ton is 2.02 x 10-1 mm/year. Using Corrosion rate data, material lifetime can be predicted.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Al Fauzan Jannatunnaim Yasfi
"Penerapan Zirkonium Silikat (ZrSiO2) sebagai bahan utama refractory coating dapat meningkatkan kehalusan permukaan pengecoran dan mengatasi die soldering. Harganya yang mahal menyebabkan dibutuhkannya alternatif bahan untuk mengurangi biaya produksi. Alumina (Al2O3) dapat dianggap sebagai alternatif bahan karena temperatur leleh tinggi dan bebas kandungan besi. Penelitian ini bertujuan mengetahui variasi konsentrasi, distribusi partikel alumina sebagai substitusi parsial filler utama pada lapisan pengecoran, dan perlakuan pengeringan sampel coating yang tepat. Variasi konsentrasi yang digunakan pada alumina adalah 16%, 18 %, dan 20%. Distribusi partikel yang digunakan adalah bahan filler yang tidak dilakuan milling dan yang telah dilakuan milling .Untuk optimalisasi sampel coating juga dikeringkan pada temperatur kamar dan 100oC.
Karakterisasi yang digunakan adalah Particle Size Analyzer (PSA), nilai viskositas, Differential Thermal Analysis (DTA) untuk menguji ketahan panas coating, dan pemindai permukaan dengan Scanning Electron Microscope (SEM). Konsentrasi alumina 16% menghasilkan nilai viskositas yang lebih tinggi yang memudahkan pendepositan coating, distribusi partikel alumina yang lebih lebar menghasilkan keberagaman ukuran partikel yang menunjang kualitas pelapis pengecoran karena saling kuncian antar butir dan lewatnya gas keluar coran logam, dan pengeringan sampel coating pada temperatur 100oC menghasilkan kerapatan morfologi. Hasil penambahan alumina dinilai sebanding dengan pelapis cetakan pengecoran berbahan utama zirkon silikat.

The application of Zirconium Silicate (ZrSiO2) as refractory coating material can improve smoothness of casting surface and overcome die soldering. The cost is quite expensive causing the need for alternative materials to reduce production costs. Alumina (Al2O3) can be considered as an alternative material because of its high melting temperature and free of iron content. This study aims to determine proper concentration variation, distribution of alumina particles as a partial substitution of the main fillers in the casting layer, and drying treatment of coating samples. The variation in concentration used in alumina is 16%, 18%, and 20%. Particle distribution used is filler material that is not treated with milling and which has been treated with milling. To optimize this research, coating samples are also dried at room temperature and 100oC.
The characterization used was Particle Size Analyzer (PSA), viscosity value, and Differential Thermal Analysis (DTA) to test the heat resistance of the coating. The surface is scanned by Scanning Electron Microscope (SEM). The 16% alumina concentration results in a higher viscosity value which facilitates better coating depositition, a wider distribution of alumina particles resulting in a variety of particle sizes that support the quality of the casting coating due to grain interlocking and passing gases out of metal castings, and drying coating samples at temperatures 100oC produces morphological densities. The result of adding alumina is considered comparable to the refractory coating made from zircon silicate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agung Pascal Sampeliling
"Pengembangan tank sebagai kendaraan tempur saat ini terus dilakukan untuk meningkatkan kekuatan militer suatu negara. Salah satu komponen utama pada tank adalah material armor. Penggunaan aluminium dan serat kevlar yang kemudian disusun menjadi material komposit laminat memiliki massa jenis yang jauh lebih rendah dari baja, namun memiliki kekuatan impak yang tinggi, sehingga diharapkan dapat menggantikan peran baja pada tank sebagai material armor. Pada penelitian ini, untuk membuat material komposit laminat hybrid digunakan AA 5052 sebagai matriks dan kevlar yang diimpregnasi dengan nano aluminium oksida sebagai penguatnya. Terdapat 3 variasi jumlah lapisan kevlar yang dilakukan dalam penelitian ini, yaitu 20, 30, dan 40 lapisan yang disusun tiga tingkat dalam satu sampel komposit laminat hybrid. Semakin tebal lapisan kevlar, semakin besar nilai kekuatan impak komposit laminat hybrid. Pada sampel terimpregnasi, hasil pengujian balistik dengan NIJ standard 0108.01 yang dilakukan menunjukkan sampel dengan 20 lapisan kevlar dapat tahan uji balistik level 3, sedangkan sampel dengan 30 lapisan kevlar dapat tahan uji balistik level 4.

The development of tank as a combat vehicle is currently being carried out to increase the military strength of a country. One of the main components of the tank is the armor material. Aluminum and kevlar fiber which is then arranged into a laminated composite material has a lower density than a steel, but has a high impact strength, so it is expected to replace the role of steel in tanks as armor material. In this study, to make a hybrid laminate composite material, aluminum alloy 5052 was used as a matrix, and kevlar impregnated with nano aluminum oxide as reinforcement. There are 3 variations in the number of kevlar layers carried out in this study (20, 30, and 40 layers). Each of the type will be arranged in three tiers in one sample of hybrid laminate composite. The thicker the kevlar layer, the greater the value of the impact strength of the hybrid laminate composite. For the impregnated sample, the results of the ballistic test with NIJ standard 0108.01 that were carried out showed that the sample with 20 layers of kevlar could withstand the level 3 ballistic test, while the sample with 30 layers of kevlar could withstand the level 4."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Amadeo Christoffer
"Casting Aluminium telah menjadi salah satu material terpenting dalam industri. AC4C adalah salah satu dari banyak paduan Silikon-Aluminium yang digunakan ketika ketahanan terhadap korosi, kemampuan castability yang baik dan rasio kekuatan-terhadap-berat yang tinggi diperlukan. Paduan aluminium AC4C yang digunakan sebagai string set dibuat dengan komposisi Al 92,69% berat, Si 6,76% berat, Mn 0,25% berat, Fe 0,21% berat, Ag 0,09% berat. Terdapat penelitian tentang peningkatan ketahanan korosi dari casting aluminium yang sangat bervariasi dari metode casting yang digunakan, perawatan, penambahan impuritas, dan perlakuan pada permukaan. Dalam penelitian ini, sampel AC4C dianodisasi dalam larutan H2SO4 7,5 °C 5 M dalam 30, 60, dan 90 menit dengan sumber listrik DC 5V yang mengalirkan rapat arus 22,6mA/cm2 . Setelah itu, sampel disegel (sealing) dalam air mendidih selama 15 menit sebelum diuji perilaku korosinya. Pengujian dilakukan dengan melakukan polarisasi potensiodinamik dalam larutan NaCl 3,5% untuk setiap sampel. Difraksi sinar-X digunakan untuk menentukan fase dan struktur kristal sampel. Hasil penelitian menunjukkan bahwa dengan meningkatkan waktu anodisasi, didapatkan perubahan pada perilaku korosi material AC4C. Hasil menunjukkan bahwa dengan peningkatan waktu anodisasi, laju korosi menurun dari nilai awal yaitu 2,01 x 10-1 mm/tahun menjadi 2,72 x 10-2 mm/year.

Al-Si is one of many Silicon-Aluminium alloy used when corrosion resistance, good castability and high strength-to-weight ratio are required. This Al-Si alloy were used as string set were made with composition of Al 92.69 wt%, Si 6.76 wt%, Mn 0.25 wt%, Fe 0.21 wt%, Ag 0.09 wt%. There have been many studies on improving corrosion resistance of casting aluminium vary widely from the casting methods used, treatments, adding impurities, and surface finishing. In this research, AC4C samples were anodized in 7.5 °C H2SO4 solution in 30, 60, and 90 minutes with DC of 5V potential. Afterwards, samples were sealed in boiling water for 15 minutes before being tested for its corrosion behavior. Tests were carried out by performing potentiodynamic polarization in 3.5% NaCl solution for each sample. X-ray diffraction were used to determine the phases and crystal structure of the samples. The results show that by increasing the anodization time, the corrosion rate decreases from the initial of 2,01 x 10-1 mm/year to 2,72 x 10-2 mm/year.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>