Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 193471 dokumen yang sesuai dengan query
cover
Muhammad Ubaidillah Fachri Cantona
"Penelitian ini bertujuan untuk melakukan studi awal untuk pengaruh musik terhadap aktivitas gelombang otak dengan menggunakan metode elektroensefalografi (EEG). Metode penelitian yang digunakan adalah pengambilan data EEG pada 8 partisipan sebelum dan sesudah mendengarkan musik dengan menggunakan perangkat berbasis Raspberry Pi 4 Model B dan ADS1299. Data EEG yang didapatkan kemudian dianalisis dengan metode statistik untuk menentukan apakah terdapat perubahan yang signifikan pada aktivitas gelombang otak, seperti gelombang theta, alpha, dan beta. Kami menemukan bahwa adanya peningkatan pada aktivitas gelombang alfa (8 – 13 Hz) dan theta (4-8 Hz) yang disebabkan oleh pengaruh paparan musik karya Mozart “Sonata” dan Beethoven “Pathetique” selama 15 menit berdasarkan uji statistik yang dilakukan.

This research aims to conduct an initial study for the effect of music on brain wave activity using electroencephalography (EEG) method. The research method used is taking EEG data on 8 participants before and after listening to music using a device based on Raspberry Pi 4 Model B and ADS1299. The EEG data obtained was then analysed using statistical methods to determine whether there were significant changes in brain wave activity, such as theta, alpha, and beta waves. We found that there was an increase in alpha (8-13 Hz) and theta (4 - 8 Hz) wave activity caused by exposure to music by Mozart "Sonata" and Beethoven "Pathetique" for 15 minutes based on the statistical tests conducted."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henry Hendarwin
"Sistem akuisisi data Electroencephalography (EEG) telah dikembangkan. menggunakan Analog Front End (AFE) ADS1299 EEGFE-PDK berbasis Raspberry Pi. Sistem ini merupakan kelanjutan dari sistem yang dikembangkan sebelumnya, dengan menambahkan fitur Relative Power Ratio (RPR), komunikasi Local Area Networking (LAN) dan GUI (Graphical User Interface). Fitur RPR perlu dipahami Karakteristik sinyal EEG. ADS 1299 memiliki beberapa keunggulan diantaranya Akuisisi data secara simultan, resolusi 24 bit, membutuhkan daya <0,2 mW dan noise <1 μV. Sistem akuisisi data ini terdiri dari 4 unit AFE yang dikonfigurasi secara daisy rantai. Komunikasi antara AFE dan Raspberry Pi menggunakan periferal serial antarmuka (SPI) dengan format RDATA. Bahasa pemrograman C digunakan untuk komunikasi antara Raspberry dengan AFE dan Matlab digunakan untuk pemrosesan sinyal. Data dari Raspberry ditransfer melalui LAN ke Personal Computer (PC). Kemudian disaring menggunakan Butterworth order 5. Data EEG dan perhitungan RPR ditampilkan secara real-time. Perhitungan dilakukan dengan Fast Fourier Transforms (FFT) dan Power Spectral Density (PSD). Sistem ini telah dievaluasi dengan menggunakan simulator EEG (NETECH Mini-Sim EEG) yang menghasilkan sinyal listrik sinusoidal dengan frekuensi 2 Hz, 5 Hz, dan amplitudo tegangan 30, 50 μV. Dengan perbandingan rata-rata FWHM (Full Width at Half Maximum) didapatkan untuk frekuensi 2Hz di sistem akuisisi tersebut memperoleh nilai 4 Hz, dan dalam Neurostyle 4 Hz. Di frekuensi 5 Hz, rata-rata nilai FWHM yang diperoleh untuk sistem akuisisi yang dibuat adalah 13 Hz dan Neurostyle pada 14 Hz.

The systems have been developed to obtain Electroencephalography (EEG) data using the Raspberry Pi based Analog Front End (AFE) ADS1299 EEGFE-PDK. This system is a continuation of a previously developed system, supported by Relative Power Ratio (RPR) features, Local Area Networking (LAN) and GUI (Graphical User Interface) features. EPR. ADS 1299 has several advantages that can be taken from simultaneous data, 24 bit resolution, requires power <0.2 mW and noise <1 μV. This data acquisition system consists of 4 AFE units completed by daisy chains. Communication between AFE and Raspberry Pi uses a serial peripheral interface (SPI) with RDATA format. C programming language is used for communication between Raspberries and AFE and MATLAB is used for signal implementation. Data from Raspberry is transferred via LAN to Personal Computer (PC). Then filtered using Butterworth order 5. EEG data and realtime calculations. The calculations are carried out by Fast Fourier Transforms (FFT) and Power Spectral Density (PSD). This system has been evaluated using an EEG simulator (NETECH Mini-Sim EEG) which produces sinusoidal electrical signals with a frequency of 2 Hz, 5 Hz, and a amplitude of 30, 50 μV. With the average change in FWHM (Full Width at Half Maximum) obtained for the 2Hz frequency in the acquisition system a value of 4 Hz is obtained, and in Neurostyle it is 4 Hz. At a frequency of 5 Hz, the average FWHM value obtained for the acquisition system is 13 Hz and Neurostyle is 14 Hz."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Nuraiman Hartono
"Brain-Computer Interface (BCI) merupakan sebuah sistem yang mampu menerjemahkan sinyal-sinyal otak menjadi perintah kepada berbagai devais keluaran. Teknologi ini kini sedang berkembang pesat terutama untuk keperluan rehabilitasi gerak bagi orang-orang yang telah kehilangan kemampuan geraknya. Dalam penelitian ini, dirancang sebuah sistem BCI yang mampu menerjemahkan sinyal otak seseorang ketika sedang melakukan pembayangan gerak (motor imagery) untuk gerakan tangan menggenggam dan membuka. Hasil terjemahan tersebut dapat digunakan untuk menggerakkan sebuah antarmuka yang membantu orang tersebut untuk bergerak menggenggam dan membuka tangan secara real-time. Sistem BCI ini menggunakan perangkat akuisisi data yang terdiri dari Raspberry Pi 4 dan ADS1299 Analog-to-Digital Converter. Sistem ini juga dikembangkan dengan menggunakan berbagai algoritma pemrosesan dan klasifikasi data, mulai dari Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, dan Random Forest. Akurasi hasil testing klasifikasi yang dilakukan oleh sistem ini bernilai 64,6% untuk mengklasifikasi 3 jenis pembayangan gerak (menggenggam, membuka, dan diam) menggunakan algoritma SVM serta 94,7% untuk klasifikasi 2 jenis pembayangan gerak (menggenggam dan membuka) menggunakan algoritma Random Forest.

Brain-Computer Interface (BCI) is a system which can translate brain signals to command various output devices. This technology had been developing rapidly, especially for movement rehabilitation purposes for people with motoric disabilities. In this research, a BCI system has been developed which can translate one’s brain signals when one is imagining doing hand movement (motor imagery). The translation result can be used to drive an interface in real-time. This BCI system utilize an acquisition device, consisting of Raspberry Pi 4 and ADS1299 Analog-to-Digital Converter. Besides, this system has also been developed using several algorithms for processing and classifying data, namely Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, and Random Forest. Testing accuracy for this system yielded a 64.6% for classifying three types of motor imagery (hand grasping, hand opening, and resting) with SVM, and 94.7% for classifying two types of motor imagery (hand grasping and hand opening only) using Random Forest."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nida Amala Syawalia Adriant
"

Elektroensefalografi (EEG), sebagai metode rekaman neurofisiologis yang telah dimanfaatkan secara luas, terutama dalam penelitian dasar tentang fungsi otak dan pemantauan pasien dengan gangguan neurologis. serta sistem Brain Computer Interface (BCI) untuk menerjemahkan sinyal menjadi perintah atau fungsi tertentu. Dalam perekaman sinyal EEG, terdapat tantangan interferensi dan noise akibat amplitudo sinyal yang sangat kecil (mikrovolt [V]) dan frekuensi rendah. Penelitian ini mengeksplorasi pengembangan elektroda aktif sebagai solusi untuk menguatkan sinyal EEG sehingga dapat meminimalisir noise yang mungkin ada. Elektroda aktif dirancang menggunakan filter aktif Sallen & Key orde 2 dengan respon butterworth menggunakan OPA378 sebagai operational amplifier dengan frekuensi cut-off 0 hingga 100 Hz. Untuk meminimalisir jumlah kabel, diterapkan operasi single-supply sehingga hanya 3 kabel yang diperlukan untuk mengoperasikan elektroda aktif. Prototype elektroda aktif diuji menggunakan EEG simulator NETECH MiniSim 330 dan direkam menggunakan ADS1299 PDK sebagai ADC dan Raspberry Pi 4 Model B untuk menyimpan file rekaman. Hasilnya, elektroda aktif mampu melakukan penguatan sinyal sebesar 22 kali dengan cukup stabil pada rentang frekuensi 20 hingga 100 Hz dengan error sebesar 3.53% dari target penguatan yang diinginkan.


Elektroensefalografi (EEG) is a widely used method for recording neurophysiological signals, primarily for research on brain functions and monitoring patients with neurological disorders. The development of active electrodes is being explored as a solution to improve the quality of EEG signals, which are characterized by very low amplitude (microvolts [μV]) and low frequency. The active electrode is designed using Sallen & Key filter or Butterworth filter with OPA378 as the operational amplifier with a cut-off frequency range of 0 Hz to 100 Hz. To minimize the number of wires, single-supply operation is applied, requiring only three wires to operate the active electrode. The prototype of the active electrode was tested using a NETECH MiniSim 330 EEG simulator and recorded using an ADS1299 PDK as an ADC and a Raspberry Pi 4 Model B to save the recorded file. The results show that active electrodes can provide signal attenuation up to 22 times with sufficient stability in the 20 Hz to 100 Hz frequency range, with an error of 3.35% from the expected

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Valda Aqila Afranovka
"Ada sekitar 1,3 juta orang meninggal akibat kecelakaan lalu lintas setiap tahunnya di seluruh dunia. Di Indonesia sendiri, jumlah kecelakaan lalu lintasnya terbilang tinggi dan cenderung terus meningkat setiap tahunnya menurut data dari Badan Pusat Statistik (BPS). Faktor manusia seringkali ditetapkan sebagai faktor utama penyebab terjadinya kecelakaan. Pada manusia, kelelahan dianggap sebagai penyebab utama kecelakaan transportasi dengan salah satu indikatornya adalah rasa kantuk. Langkah yang dapat dilakukan untuk mencegah meningkatnya tingkat kantuk yang dialami oleh pengemudi salah satunya adalah dengan mengatur suhu ruang kemudi. Suhu lingkungan kerja memberikan kontribusi yang besar terhadap tingkat kelelahan. Maka dari itu, penelitian ini dilakukan untuk mengetahui rentang suhu optimal untuk mengurangi tingkat kantuk pengendara guna mengurangi tingkat kecelakaan lalu lintas di Indonesia. Metode yang digunakan dalam penelitian ini adalah Electroencephalography (EEG) untuk pengukuran secara objektif dan Karolinska Sleepiness Scale (KSS) untuk pengukuran secara subjektif. Hasil dari penelitian ini diharapkan dapat dijadikan alternatif untuk mencegah serta mengurangi tingkat terjadinya kecelakaan lalu lintas.

There are about 1.3 million people die from traffic accidents every year worldwide. In Indonesia itself, the number of traffic accidents is fairly high and tends to increase every year according to data from Badan Pusat Statistik (BPS). The human faktor is often determined as the main faktor causing accidents. In humans, fatigue is considered the main cause of transportation accidents with one of the indicators being drowsiness. One of the steps that can be taken to prevent the driver from increasing the level of sleepiness experienced by the driver is to regulate the temperature inside the vehicle. The temperature of the working environment contributes greatly to the level of fatigue. Therefore, this study was conducted to determine the optimal temperature range to reduce the level of sleepiness of drivers in order to reduce the rate of traffic accidents in Indonesia. The method used in this research is Electroencephalography (EEG) for objective measurement and Karolinska Sleepiness Scale (KSS) for subjective measurement. The results of this study are expected to be used as an alternative to prevent and reduce the rate of traffic accidents."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asep Muhamad Awaludin S
"Saat ini perekaman gelombang seismik masih menggunakan geophone konvensional, yaitu terdiri dari koil yang digantung oleh pegas. Pada penelitian ini, telah dikembangkan sebuah sistem perekam gelombang seismik menggunakan akselerometer MEMS. Data keluaran akselerometer diakuisisi dengan menggunakan mikrokomputer Raspberry Pi, kemudian data tersebut disimpan di dalam Raspberry Pi dan dikirim ke sebuah komputer host setelah proses akuisisi selesai. Keluaran data dari sistem ini setara dengan data keluaran dari geophone konvensional, yaitu dalam domain kecepatan. Sistem ini menggunakan komunikasi Wi-Fi untuk terhubung ke sebuah server sehingga memungkinkan kegiatan eksplorasi tanpa memerlukan kabel. Hasil rekaman sistem ini dibandingkan dengan geophone konvensional. Uji coba dilakukan di Universitas Indonesia.

Currently recording seismic waves still use conventional geophones, which consists of coils suspended by springs. This research has developed a system of recording seismic waves using MEMS accelerometer. Accelerometer output data acquired using microcomputers Raspberry Pi, then the data is stored in the Raspberry Pi and sent to a host computer after the acquisition is completed. The output data from this system is equivalent to the output data from conventional geophones, which is in the domain of speed. This system uses the Wi-Fi communication to connect to a server making it possible exploration activities without cables. Recording the results of this system compared with conventional geophones. Tests performed at the University of Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60171
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sigalingging, Geraldo Martua
"Elektroensefalografi (EEG), adalah metode perekaman aktivitas kelistrikan otak pada kulit kepala. Aktivitas kelistrikan ini direkam dan diubah menjadi sinyal amplitudo tegangan. Hasil sinyal yang sudah diproses ini akan terklasifikasi pengguna melakukan perintah atau tidak. Sistem ini adalah purwarupa untuk pengembangan Sistem Pengendalian Tangan Artifisial Dengan EEG yang berfungsi menggerakkan tangan artifisial dengan bantuan sinyal gelombang otak. Sistem ini bekerja dengan mendeteksi keberadaan sinyal ERP P300 dalam sinyal EEG.
Dalam penelitian ini, metode untuk menganalisis data EEG adalah filtrasi, ekstraksi P300 dan algoritma klasifikasi Support Vector Machines (SVM). Dari metode yang digunakan akan menunjukkan nilai rekognisi yang akan dibandingkan antar filtrasi, ekstraksi dan klasifikasi sehingga menghasilkan Filtrasi dengan Chebyshev Type I Orde 5 dengan nilai rekognisi 61.07%, ekstraksi fitur dengan Independent Component Analysis (ICA) dengan nilai rekognisi 58.64 %, dan klasifikasi data dengan Back Propagation Neural Network dengan nilai 59.97 % adalah algoritma yang paling efektif.

Electroencephalography (EEG), is a method of recording the brains electrical activity on the scalp. This activity is recorded and converted to a signal amplitude voltage. The result of this signal will be classified as a user or not. This system is a prototype for the development of an Artificial Hand Control System with EEG which functions to move the artificial hand with the help of brain wave signals. This system works by detecting the presence of an ERP P300 signal in the EEG signal.
In this study, methods for analyzing EEG data were filtration, extraction P300, and Support Vector Machines (SVM) classification algorithms. From the method used will show the value of recognition that will be compared between filtration, extraction and classification so as to produce Filtration with Chebyshev Type I Order 5 with recognition value of 61.07%, feature extraction with Independent Component Analysis (ICA) with recognition value of 58.64%, and data classification with Back Propagation Neural Network with a value of 59.97% is the most effective algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Aldiya Yusuf
"ABSTRAK
Isu kesehatan mental merupakan sebuah isu yang sangat berkembang pesat pada masa ini. Remaja dan dewasa muda pada usia 16 hingga 30 tahun adalah korban utama yang menjadi penderita penyakit mentalitas. Isu kesehatan mental merupakan isu yang cukup serius dalam bidang medis dan social. Salah satu penyebab dari penyakit pada mentalitas manusia adalah kurangnya kemawasan diri, yang merupakan salah satu kunci dalam menjaga kestabilan mental pada diri seseorang. Sinyal otak merupakan suatu sinyal yang diduga mampu mendekteksi aktifitas otak manusia, dan dari sinyal tersebut, kita mampu membuat suatu sistem klasifikasi kondisi emosional manusia. Pada penelitian ini, EEG Neurostyle dengan 24 kanal digunakan untuk menangkap sinyal kelistrikan dari otak manusia. Metodenya meliputi reaksi seorang subjek terhadap stimulus berupa audio-visual yang berdurasi kurang lebih 5 menit. Subjek terdiri dari 10 orang manusia berumur 18 hingga 22 tahun, dimana tiap subjek menonton sebuah video pada lingkungan yang sama. Ekspresi mimik wajah akan direkam menggunakan kamera sebagai referensi dan konfirmasi agar sesuai dengan emosi yang dideskripsikan oleh subjek. Fitur emosi berupa RPR kemudian diambil untuk kemudian dimasukan kedalam algoritme classifier. Emosi dibagi berdasarkan 4 jenis yaitu: senang, sedih, takut, dan jijik Menggunakan Supervised Machine Learning, kita dapat menggunakan fitur fitur tersebut untuk klasifikasi. Menggunakan k-NN, didapat akurasi diatas 70% dengan menggunakan 4 kelas.

ABSTRACT
Mental health issues are growing rapidly in these recent years. Teenagers and young adult on age 16-30 years old are the most common victims. Mental health is a really serious issue concerning emotional health. One of the causes on emotional health issues is a lack of self-awareness, which is the key cornerstone on maintaining emotional-state. Brain signals has proven that it can read human emotion, and from there we can use brain waves to classify human emotional-state. In this research study, EEG Neurostyle of 24 channels is used to obtain brain electrical signals. The method involves the subject reaction to a set of audio-visual stimuli of approximately 5 minutes, the subject consists of 10 subjects aged 18-22, with each person watched the video-clips in the same environment. The expressions of the subjects were recorded separately to ensure their emotion accordance with the source (i.e. sad clips resulting sad emotion). Then its feature were extracted. The feature were used to classify the emotion into 4 classes: happy, sad, scared, and disgust. Using Supervised Machine Learning Method, we can use these features to identify a new sample to predict which class it belongs to. Using k-NN algorithm as classifier, an accuracy greater than 70% is obtained with 4 classes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faizal Adila Ferdiansyah
"

Brain-Machine Interface (BMI), atau saat ini juga terdapat Hybrid Brain-Machine Interface (hBMI),teknologi yang saat ini sedang berkembang pesat. Teknologi ini juga telah diaplikasikan pada berbagai bidang. BMI adalah sistem yang secara langsung mengubah pikiran seseorang dari otak menjadi sebuah informasi yang dapat diproses untuk mengartikannya menjadi informasi yang dapat dipahami manusia. BMI ini juga memiliki pengembangan lanjut dimana sinyal otak digabungkan oleh sinyal biologis lain seperti electromyography (EMG), electrooculography (EOG), atau juga electrocardiography (ECG). Pengembangan teknologi ini memiliki aplikasi sebagai alat bantu rehabilitasi untuk seseorang yang menderita ketidakmampuan dalam menggerakkan anggota tubuhnya, seperti tangan. Melalui penelitian ini diharapkan untuk dapat merancang sistem pengendalian orthosis sebagai alat bantu rehabilitasi dengan menggunakan metode klasifikasi dengan sinyal otak dan sinyal otot, sehingga subjek yang menggunakan alat ini dapat melakukan rehabilitasi dalam pergerakan lengan atas khususnya pada sendi siku. Hasil klasifikasi gerakan dengan menggunakan sinyal otak dan sinyal otot ini, dengan menggunakan fitur delta alpha rasio dan root mean square, didapatkan akurasi training untuk tiga gerakan yakni relaks, fleksi, dan ekstensi yaitu sebesar 90.3% dan untuk akurasi testing sebesar 85.2%.


Brain-Machine Interface (BMI) or also its advancement, hybrid brain machine interface (hBMI), is a technology that is vastly developed. This technology has been used in many fields. BMI is a system that directly changes human’s mind into information that can be extracted to informations that can be meaningful to people. BMI also has advancement in which the brain signal is combined with other biopotential signal such as electromyography (EMG), electrooculography (EOG), or electrocardiography (ECG). The development of this technology has applications as a rehabilitation aid for someone suffering from an inability to move his limbs, such as the hands. Through this research it is hoped to be able to design an orthosis control system as a rehabilitation device by using a classification method with brain signals and muscle signals, so that subjects who use this tool can carry out rehabilitation in upper arm movements especially in the elbow joint. The results of the movement classification using brain signals and muscle signals, using the delta alpha ratio and root mean square features, obtained training accuracy for three movements namely relax, flexion, and extension of 90.3% and for testing accuracy of 85.2%.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cooper, R.
London : Butterworth, 1971
616.8 COO e
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>