Ditemukan 129918 dokumen yang sesuai dengan query
Ranya Andjani Khairunnisa Johan
"Proses industri banyak melibatkan penggunaan coupled tank, salah satu proses yang dilakukan adalah pengendalian ketinggian cairan. Pada penelitian ini dilakukan pengendalian ketinggian air pada sistem coupled tank menggunakan Reinforcement Learning berbasis algoritma Soft Actor Critic (SAC) menggunakan MATLAB dan Simulink. Sebelum diimplementasikan ke dalam sistem coupled tank dilakukan serangkaian proses training pada algoritma SAC. Hasil dari proses training ini merupakan action dalam bentuk besar bukaan control valve. Kinerja pengendali dievaluasi menggunakan nilai rise time, settling time, overshoot, dan steady state error. Berdasarkan parameter ini, algoritma SAC dapat mengendalikan sistem dengan baik dengan rise time kurang dari 47 sekon, settling time kurang dari 62 sekon, overshoot dibawah 10%, dan steady state error kurang dari 1%. Ketika diberikan gangguan algoritma SAC dapat kembali ke keadaan stabil dalam waktu kurang dari 45 sekon.
A lot of industrial processes utilize the use of coupled tanks, with one of the processes being liquid level control. In this study, Reinforcement Learning is implemented to control the water level in the coupled tank system using Soft Actor Critic (SAC) algorithm through MATLAB and Simulink. Before being implemented into the coupled tank system, the SAC algorithm went through a series of training processes. The result of this training process is an action in the form of adjusting control valve opening percentage. The controller performance is evaluated using parameters such as rise time, settling time, overshoot, and steady state error. Based on these parameters, the SAC algorithm manages to perform well in controlling the system with a rise time of less than 47 seconds, a settling time of less than 62 seconds, overshoot of less than 10%, and steady state error below 1%. When the system received a disturbance the SAC algorithm can return to a steady state in less than 45 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Miftahur Roziqiin
"Sistem pengendalian merupakan suatu sistem yang banyak ditemukan dan berhubungan dengan beragam jenis proses yang ada pada berbagai bidang, terutama bidang industri. Proses pengendalian yang umum ditemukan dalam industri adalah proses thermal mixing. Salah satu contoh proses thermal mixing yang cukup sederhana adalah proses pencampuran air panas dan air dingin atau water thermal mixing, dengan tujuan untuk mencapai temperatur campuran yang diinginkan, tetapi tetap menjaga ketinggian air agar tidak melebihi kapasitas wadah. Nilai temperatur tersebut dapat dicapai dengan cara mengatur debit aliran air yang masuk ke dalam wadah pencampuran. Pada penelitian ini, diimplementasikan sistem pengendalian menggunakan Reinforcement Learning dengan algoritma Soft Actor-Critic pada simulasi pengendalian ketinggian dan temperatur air pada proses water thermal mixing menggunakan Simulink pada MATLAB. Agent dilatih agar dapat mengendalikan sistem secara cepat dan tepat dalam menentukan action berupa nilai untuk mengatur valve menghasilkan debit aliran air yang diperlukan. Hasil dari penelitian ini menunjukkan bahwa algoritma SAC dapat digunakan untuk mengendalikan sistem dengan baik, dengan nilai overshoot terbesar yaitu 1.33% untuk pengendalian ketinggian air dan steady-state error terbesar yaitu 0.33℃ saat mengendalikan temperatur campuran, dan nilai settling time terbesar yaitu 160 sekon saat terjadi perubahan set point untuk ketinggian air dari 2.5 dm menjadi 5 dm, serta mampu mengendalikan kestabilan sistem ketika mengalami gangguan dalam waktu 93 sekon.
The control system is a system that is widely found and relates to various types of processes that exist in various sector, especially the industrial sector. The control process commonly found in industry is the thermal mixing. One of the thermal mixing processes is the process of mixing hot and cold water or water thermal mixing, with the aim of reaching the desired temperature, but still maintaining the water level, so that it does not exceed the capacity of the container. This temperature value can be reached by adjusting the flow of water entering the mixing container. In this study, a control system was implemented using Reinforcement Learning with Soft Actor-Critic algorithm on a simulation of controlling water level and temperature in the water thermal mixing using Simulink in MATLAB. Agents are trained to be able to control the system quickly and precisely in determining the action in the form of a value to adjust the valve to produce the required water flow rate. The results of this study indicate that the SAC algorithm can be used to control the system properly, with the biggest overshoot of 1.33% for controlling water level and steady-state error of 0.33℃ when controlling the temperature of the mixture, and the settling time of 160 seconds when the set point value change for the water level from 2.5 dm to 5 dm, as well as being able to control the stability of the system when experiencing disturbances within 93 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.
The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.
The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.
The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Ziyad Ain Nur Rafif
"Sistem coupled-tank merupakan konfigurasi yang digunakan pada industri dalam hal pengendalian ketinggian air, biasanya dengan metode pengendalian proportional, integral, derivative (PID). Namun, metode lain seperti reinforcement learning (RL) juga bisa diterapkan. Metode RL dapat dikombinasikan dengan programmable logic controller (PLC) yang sering digunakan dalam proses industri. PLC mengontrol ketinggian air dengan membaca data dari water level transmitter dan mengatur bukaan control valve berdasarkan algoritma RL yang sudah dilatih untuk mencapai kontrol optimal. Algoritma RL yang digunakan adalah twin-delayed deep deterministic (TD3) policy gradient. Performa algoritma ini diukur menggunakan parameter seperti overshoot, rise time, settling time, dan steady-state error, lalu dibandingkan dengan pengendali PID konvensional. Hasil simulasi dan pengujian pada hardware menunjukkan bahwa algoritma RL menghasilkan overshoot sebesar 6.59% dan steady-state error sebesar 3.53%, di mana steady-state error ini terjadi karena sensor yang sensitif sehingga data ketinggian air tidak pernah terekam konstan dan stabil. Sebagai perbandingan, pengendali PID memiliki overshoot sekitar 23.38% dan steady-state error terkecil berkisar pada 7.15%, yang berarti pengendali RL sudah memiliki performa yang lebih baik dibandingkan pengendali PID.
Coupled-tank system is a configuration commonly used in industry, mainly for water level control with proportional, integral, and derivative (PID) control method. But, other methods like reinforcement learning (RL) can be implemented for this control problem. This RL method can be combined with programmable logic controller (PLC) which is often used in industry process. PLC will control water level by reading data from water level transmitter and controlling a control valve opening according to a trained RL algorithm to gain an optimal control. The RL algorithm used is twin-delayed deep deterministic (TD3) policy gradient. The algorithm’s performance will be measured by parameters such as overshoot, rise time, settling time, and steady-state error, and then compared with the conventional PID control method. According to the results from simulation and from the real hardware, the overshoot value that happens is only in the range of 6.59% with the smallest steady-state error value ranged around 3.53%, which happens due to the sensitive sensor so that water level data never recorded at a constant and stable state. For comparison, the PID control has an overshoot around 23.38% and smallest steady-state error around 7.15%, which means that the RL control method has a better performance than the PID control method."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Gesha Mahendra Cunyadha
"Temperatur dan kelembaban dapat mengubah sifat dari suatu material sehingga akan menyebabkan penurunan kualitas material. Dalam penelitian ini dilakukan simulasi sistem pengendalian temperatur dan kelembaban relatif menggunakan permodelan heat-exchanger untuk mengubah nilai temperatur dan humidifier untuk mengubah nilai kelembaban relatif. Pengendalian dilakukan menggunakan Agent Reinforcement Learning dengan Algoritma Soft Actor-Critic (SAC) pada perangkat lunak Simulink-MATLAB. Penelitian ini bertujuan untuk menghasilkan pengendalian yang lebih baik daripada pengendalian yang telah digunakan dengan pengendali PI. Parameter pembanding yang digunakan merupakan respon transient yang meliputi nilai persentase overshoot, settling time, rise time, dan steady state error. Adapun batasan dalam penelitian ini adalah nilai temperatur dan kelembaban relatif yang dibatasi pada daerah kerja dengan temperatur dibawah 25°C dan kelembaban relatif dengan rentang 20-60%. Dari hasil penelitian ini agent RL-SAC dapat mengendalikan sistem temperatur dan kelembaban relatif dengan respon transient dengan rata-rata nilai overshoot 82% lebih cepat dan rata-rata nilai settling time 47% lebih cepat dibandingkan dengan pengendali PI.
Temperature and humidity can change the properties of a material so that it will cause a decrease in the quality of the material. In this study, a simulation of a temperature and relative humidity control system was carried out using a heat-exchanger model to change the temperature value and a humidifier to change the relative humidity value. Control is carried out using Reinforcement Learning Agent with the Soft Actor-Critic (SAC) Algorithm in the Simulink-MATLAB software. This study aims to produce a better control than the control that has been used with the PI controller. The comparison parameter used is the transient response which includes the percentage value of overshoot, settling time, rise time, and steady state error. The limitations in this study are the values of temperature and relative humidity which are limited to work areas with temperatures below 25°C and relative humidity with a range of 20-60%. From the results of this study the RL-SAC agent can control the temperature and relative humidity system with transient responses with an average overshoot value of 82% faster and an average settling time value of 47% faster than the PI controller."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ardi Ferdyhana
"Sistem pengendalian ketinggian air merupakan aplikasi yang umum digunakan dalam bidang industri otomasi. Aplikasi dari sistem ini berguna untuk menjaga nilai ketinggian air yang dibutuhkan dalam proses kontrol. Pada penelitian ini, sistem pengendalian ketinggian air dibuat dalam skala lab dengan menerapkan sistem kendali menggunakan reinforcement learning dengan policy gradient agent. Pada plant yang dibuat ini terdapat perangkat keras programmable logic controller (PLC), control valve, flow transmitter dan water level transmitter. Perangkat keras tersebut dihubungkan ke MATLAB dan Simulink menggunakan OPC server sebagai jalur komunikasi dua arah. Implementasi policy gradient agent pada sistem pengendalian ketinggian air digunakan dalam dua kondisi yaitu simulasi dan plant. Parameter yang digunakan untuk menentukan performa pengendalian adalah overshoot, rise time, dan settling time. Berdasarkan hasil pengendalian yang didapatkan, terdapat nilai overshoot yang cukup kecil, yaitu 0.38 % pada simulasi dan sebesar 2,92 % pada plant.
Water level control system is a commonly used application in industrial automation. The application of this system is useful for maintaining the value of the water level needed in the control process. In this study, the water level control system was made on a lab-scale by implementing a control system using reinforcement learning with a policy gradient agent. In this plant, there is a programmable logic controller (PLC), control valve, flow transmitter, and water level transmitter. The hardware is connected to MATLAB and Simulink using an OPC server as a two-way communication line. The implementation of the policy gradient agent in the water level control system is used in two conditions, namely simulation and plant. The parameters used to determine the control performance are overshoot, rise time, and settling time. Based on the control results obtained, there is a fairly small overshoot value, namely 0.38% in the simulation and 2.92% in the plant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Dandung Sektian
"Pengendalian ketinggian atau biasa disebut Level Controller adalah hal yang penting di berbagai bidang industri, termasuk industri kimia, industri minyak bumi, industri pupuk, industri otomatif dan lain-lainnya. Pada penelitian ini, dirancang sebuah pengendali non-konvesional menggunakan Reinforcement Learning dengan Twin Delayed Deep Deterministic Polic Gradient (TD3). Agent ini diterapkan pada sebuah miniature plant yang berisi air sebagai fluidanya. Miniature plant ini disusun dengan berbagai komponen yaitu flow transmitter, level transmitter, ball-valve, control valve, PLC, dan pompa air. Kontroler agent TD3 dirancang menggunakan SIMULINK Matlab di computer. Data laju aliran dan ketinggian air diambil melalui flow transmitter dan level transmitter yang dikoneksikan dengan OPC sebagai penghubung antara Matlab ke SIMULINK. Penerapan agent TD3 pada sistem pengendalian ketinggian air digunakan pada dua kondisi yaitu secara riil plant dan simulasi. Dari penelitian ini didapatkan, bahwa kontroler agent TD3 dapat mengendalikan sistem dengan baik. overshoot yang didapatkan kecil yaitu 0,57 secara simulasi dan 0,97 secara riil plant.
In this study, the level controller is the most important in many industry fields, such as chemical industry, petroleum industry, automotive industry, etc., a non-conventional controller using Reinforcement Learning with Twin Delayed Deep Deterministic Policy Gradient (TD3) agent was designed. This agent was implemented in water contain the miniature plant. This miniature plant consists of many components: flow transmitter, level transmitter, ball-valve, control valve, PLC, and water pump. Agent controller was designed using SIMULINK Matlab on a computer, which obtained flow rate and height information comes from flow transmitter and level transmitter connected to OPC that link between Matlab to SIMULINK. Implementation of TD3 to control water level system used two conditions, in real plant and simulation. In this study, we obtain that the TD3 agent controller can control the designs with a slight overshoot value, namely 0,57 in the simulation and 0,97 in the real plant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Lintang Adyuta Sutawika
"Karya ini menggunakan encoder visual berbasis Concept-Map yang menanggulangi masalah penghubungan informasi dari citra yang telah di-encode oleh sebuah jaringan saraf tiruan konvolusional ke dalam ranah semantik yang diproses oleh jarinagn saraf tiruan berbasis waktu. Pendekatan ini menggunakan komponen attention visual yang mengembangkan jaringan konvolusional sebelum dipropagasi ke jaringan berbasis waktu. Untuk meningkatkan pembelajaran cross-entropy, model dilatih dengan metode reinforcement learning dengan cara melatih value dan policy network berdasarkan jarak visual-semantic embedding distance dari representasi vector sebagai sinyal reward. Visual-semantic embedding space belajar dan menghasilkan vector space untuk citra dan teks, lalu digunakan sebagai tolak ukur qualitas suatu teks yang mendeskripsikan suatu citra. Sinyal reward membantu mengarahkan dan memaksimalkan probabilitas suatu deskripsi bagus muncul. Dataset yang digunakan adalah Flickr8k dan metric yang dilaporkan adalah BLEU-1 hingga BLEU-4
This work features a Concept-Map visual encoder that tackles the issue of linking encoded image information from convolutional neural networks to semantic domain processed by recurrent neural networks. The approach utilizes visual attention that extends the convolutional network before being propagated to through the recurrent network. To improve upon cross entropy learning, the model is then trained on reinforcement learning by training a value and policy network on visual-semantic embedding distance of vector representations as reward signals. The visual-semantic embedding space that jointly learns a common vector space for encoding image and caption is used to measure the quality of generated caption computing how close the vector representation is to the vector representation of the input image. The reward signal guides the policy to maximize the probability of producing good captions. The Flickr8K dataset is used and BLEU-1 to BLEU-4 for is reported."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership Universitas Indonesia Library