Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 108827 dokumen yang sesuai dengan query
cover
Vien Aulia Rahmatika
"Kepolisian Republik Indonesia (Polri) merupakan alat negara yang terus berusaha memberikan pelayanan publik secara prima salah satu nya dengan melakukan inovasi dengan memanfaatkan teknologi dalam memberikan pelayanan SIM melalui aplikasi bernama Digital Korlantas Polri. Namun sejak aplikasi tersebut diluncurkan pada tahun 2021 hingga tahun 2022 terdapat pemberitaan di berita online terkait kendala pada aplikasi dalam perpanjangan SIM online yang tidak berjalan sebagaimana semestinya. Penelitian ini bertujuan untuk melihat bagaimana pandangan masyarakat sebagai pengguna layanan dari Twitter dan Play Store. Data yang digunakan dalam penelitian ini berasal dari Twitter dan Play Store sebanyak 5944 data. Analisis dilakukan dengan membangun model klasifikasi relevansi, aspek, dan sentimen pada aspek reliability, efficiency, trust, dan citizen support. Algoritma yang digunakan yaitu Decision Tree, Logistic Regression, dan SVM. Hasil pemodelan klasifikasi dengan performa yang paling tinggi dalam klasifikasi relevansi, aspek, dan sentimen pada tiap aspek dihasilkan oleh algoritma Logistic Regression dengan TF-IDF unigram dan SMOTE. Pada model klasifikasi relevansi didapatkan nilai accuracy sebesar 87.05%, precision sebesar 87.38%, recall sebesar 87.04%, dan f1 score sebesar 87.16%. Pada model klasifikasi aspek, nilai accuracy sebesar 74.28%, precision sebesar 75.93%, recall sebesar 74.27%, dan f1 score sebesar 74.70%. Pada model klasifikasi sentimen pada masing-masing aspek, model klasifikasi sentimen pada aspek citizen support mendapatkan nilai yang paling tinggi dibanding aspek lain yaitu dengan nilai accuration sebesar 95.38%, precision sebesar 95.60%, recall sebesar 95.38%, dan f1-score sebesar 94.05%. Pada penelitian ini menghasilkan temuan sentimen pada masing-masing aspek dalam layanan perpanjang SIM online di aplikasi Digital Korlantas Polri dimana reliability merupakan aspek yang paling banyak dikemukakan dan mendapat sentimen negatif, kemudian diikuti oleh aspek efficiency, citizen support, dan aspek trust.

The Indonesian National Police (Polri) continues to strive to provide excellent public services, one of which is by innovating by utilizing technology in providing SIM services through an application called Digital Korlantas Polri. However, since the application was launched in 2021 to 2022 there have been reports in online news regarding problems with applications, so it is necessary to conduct research regarding how the public views the application as service users and maps these views into aspects which affect the quality of government services so that service providers can take improvement to realize excellent service delivery. The data used in this study are from Twitter and Play Store as many as 5944 data. The analysis is carried out by building a classification model of relevance, aspect, and sentiment on the aspects of reliability, efficiency, trust, and citizen support. The algorithms used are Decision Tree, Logistic Regression, and SVM. The results of classification modeling with the highest performance in the classification of relevance, aspect, and sentiment for each aspect were produced by the Logistic Regression algorithm with the TF-IDF unigram and SMOTE. In the relevance classification model, the accuracy value is 87.05%, precision is 87.38%, recall is 87.04%, and f1 score is 87.16%. In the aspect classification model, the accuracy value is 74.28%, precision is 75.93%, recall is 74.27%, and f1 score is 74.70%. In the sentiment classification model for each aspect, the sentiment classification model for the citizen support aspect gets the highest score compared to other aspects, namely with an accuracy value of 95.38%, a precision of 95.60%, a recall of 95.38%, and an f1-score of 94.05% . This study produced sentiment findings for each aspect of the online SIM service in the Digital Korlantas Polri application where reliability was the aspect that was most frequently raised and received negative sentiment, followed by aspects of efficiency, citizen support, and trust."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Aulia Rahman
"Aktivitas produksi dan ekspor komoditas kelapa sawit terus mengalami ekspansi dan peningkatan. Indonesia memiliki perkebunan kelapa sawit dengan luas mencapai 12.761.586 Hektar. menjadikan Indonesia sebagai salah satu penghasil CPO (Crude Palm Oil) terbesar di dunia. Keberhasilan produksi dari kelapa sawit tidak terlepas dari kegiatan perencanaan dan pengawasan sehingga diperlukan pemantauan secara cepat dan efektif. Penelitian ini dilakukan dengan tujuan untuk mengetahui karakteristik dan pola persebaran umur kelapa sawit berdasarkan nilai backscatter pada citra radar Sentinel-1. Data berupa citra radar Sentinel-1 digunakakan untuk dapat melakukan estimasi terhadap umur kelapa sawit berdasarkan nilai backscatter menggunakan pendekatan machine learning. Hasil pemodelan menunjukan bahwa tren nilai backscatter terhadap umur kelapa sawit memiliki karakter berbanding lurus dengan umur kelapa sawit. Estimasi umur kelapa sawit berdasarkan nilai backscatter pada Sentinel-1 GRD menghasilkan 3 kelas umur kelapa sawit dengan tingkat overall accuracy sebesar 93.3% pada anlisis yang dilakukan secara Single Time, sedangkan pada analisis time series diperoleh nilai overall accuracy sebesar 94.5% Hasil menunjukkan bahwa kelas umur dewasa memiliki nilai z score sebesar -4.190963 dengan pola persebaran clustered (mengelompok), kelas umur taruna dengan z score -8.388942 berpola clustered (mengelompok), dan kelas umur remaja dengan perolehan nilai z score 7.801667 dengan pola persebaran dispersed (seragam).

Production and export activities of palm oil commodities continue to expand and increase. Indonesia has oil palm plantations with an area of ​​12,761,586 hectares. making Indonesia one of the largest CPO (Crude Palm Oil) producers in the world. The success of production from oil palm cannot be separated from planning and monitoring activities so that it is necessary to monitor quickly and effectively. This research was conducted with the aim of knowing the characteristics and patterns of age distribution of oil palms based on the backscatter value on Sentinel-1 radar images. Data in the form of Sentinel-1 radar images are used to estimate the age of oil palms based on the backscatter value using a machine learning approach. The modeling results show that the trend of the backscatter value of the age of the oil palm has a character that is directly proportional to the age of the oil palm. Oil palm age estimation based on the backscatter value on Sentinel-1 GRD resulted in 3 oil palm age classes with an overall accuracy rate of 93.3% in the Single Time analysis, while the time series analysis obtained an overall accuracy value of 94.5%. adults have a z score of -4.190963 with a clustered distribution pattern, the cadet age class with a z score of -8.388942 with a clustered pattern, and the adolescent age class with a z score of 7.801667 with a dispersed distribution pattern."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mitchell, Tom M.
New York: McGraw-Hill, 1997
006.31 MIT m
Buku Teks  Universitas Indonesia Library
cover
Michael Harditya
"Penelitian ini melakukan pengembangan integrasi metode perangkum abstraktif dengan metode ekstraktif dalam merangkum teks berita yang melebihi input maksimal dari model machine learning. Penggabungan metode abstraktif dan ekstraktif menciptakan rangkuman yang lebih natural tanpa kehilangan makna semantiknya, serta menyelesaikan keterbatasan jumlah input maksimal dari model machine learning yang digunakan pada metode abstraktif. Bagian abstraktif dibuat menggunakan model machine learning yang menggunakan arsitektur Transformer, yaitu model BART. Bagian ekstraktif menggunakan algoritma gabungan untuk melakukan pembobotan tiap kalimat menggunakan term frequency – inverse document frequency (TF-IDF), konjungsi antar kalimat, dan peletakan kalimat pada paragraf yang dapat diidentifikasi menggunakan algoritma pemrograman. Dataset yang digunakan adalah benchmark IndoSum, yaitu dataset bahasa Indonesia untuk merangkum teks, sehingga dapat dievaluasikan dengan model pada penelitian yang serupa. Beberapa pengujian dilakukan pada model BART dan tokenizer, dengan nilai ROUGE Score menunjukan adanya peningkatan pada tokenizer bahasa Indonesia ketimbang bahasa Inggris. Hasil evaluasi pada finetuning model BART mendapatkan nilai ROUGE Score sebesar 0,725 untuk ROUGE-1, 0,635 untuk ROUGE-2, 0,699 untuk ROUGE-L, dan 0,718 untuk ROUGE-Lsum, menjadikan model BART lebih tinggi pada beberapa model lainnya pada riset terkait. Human evaluation dilakukan pada hasil integrasi, menunjukan hasil yang baik untuk morfologi, semantik, dan kenaturalan rangkuman, namun masih buruk untuk kesalahan pengetikan.

This research develops the integration of abstractive summarization methods with extractive methods in summarizing news texts that exceed the maximum input from the machine learning model. Combining abstractive and extractive methods creates a more natural summary without losing its semantic meaning, and resolves the limitations of the maximum number of inputs from the machine learning model used in the abstractive method. The abstractive part was created using a machine learning model that uses the Transformer architecture, namely the BART model. The extractive section uses a combined algorithm to weight each sentence using term frequency - inverse document frequency (TF-IDF), conjunctions between sentences, and placement of sentences in paragraphs that can be identified using a programming algorithm. The dataset used is the IndoSum benchmark, namely an Indonesian language dataset for summarizing text, so that it can be evaluated with models in similar research. Several tests were carried out on the BART model and tokenizer, with the ROUGE Score showing an increase in the Indonesian language tokenizer compared to English. The evaluation results of finetuning the BART model obtained a ROUGE Score of 0.725 for ROUGE-1, 0.635 for ROUGE-2, 0.699 for ROUGE-L, and 0.718 for ROUGE-Lsum, making the BART model higher than several other models in related research. Human evaluation was carried out on the integration results, showing good results for morphology, semantics and naturalness of summaries, but still poor results for typing errors."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditra Vito Abdul Kadir
"ABSTRACT
Big data or Data driven farming have been the latest improvement in agricultural sector. Data driven farming allows farmers to maximize the output of harvest by processing any significant data gathered regarding the crop. With the data of the crop available, it opens the possibility of evaluating the data to make a model for the crop. This model will allow predictions to be made which would improve the data driven farming to an extent. This project is based on improving Farmbot, a data driven farming tool, to allow the makings of a prediction based on sensor readings gathered by the tool. Several machine learning algorithms have been evaluated which takes account two sensor reading of the plant, and performances have been discussed. These parameters include soil moisture and light exposure level and the performance level gauged are predictability and interpretability. Based on the said parameters, Decision Tree Machine Learning Algorithm have been deemed the best method of prediction for a 2 class problem. This is based on its ability to make a prediction with relatively high confidence level with the addition of having high interpretability about how the algorithm come to the said conclusion. Decision Trees current state may be improved by implementing tree pruning method to omit unnecessary splits.

ABSTRACT
Big-Data Farming atau pertanian berbasis data merupakan perkembangan mutakhir pada sektor agrikultur. Dengan berbasis data mengenai asupan cahaya dan tingkat kelembaban, petani dapat memaksimalkan hasil panen dari suatu tanaman dengan memproses data mengenai tanaman tersebut. Dengan menyediakan data mengenai tanaman, hal ini memungkinkan pengolahan data dan membuat model yang menggambarkan pengaruh data ndash; data yang diperoleh dengan hasil panen suatu tanaman. Proyek ini dilaksanakan atas dasar mengembangkan sistem Farmbot, sebuah alat tanam automatis berbasis data, untuk menyediakan prediksi tentang bagaimana hasil panen tanaman tersebut berdasarkan data yang diperoleh dari sensor yang terdapat pada alat tersebut. Kemampuan Farmbot untuk melakukan perdiksi tersebut bisa dilakukan dengan mengimplementasikan algoritma Machine Learning, Dengan adanya berbagai macam algoritma Machine Learning, pemilihan algoritma yang paling tepat untuk implementasi Farmbot juga merupakan salah satu bahan pembahasan. Berhubung 2 parameter yang telah disebutkan merupakan kunci dari pembuatan model prediksi, algoritma Decision Tree dianggap sebagai algoritma yang paling optimal untuk diimplementasikan. Keputusan ini berdasarkan kemampuan Decision Tree dalam membuat prediksi dengan tingkat keyakinan yang tinggi dan juga berkemampuan untuk menggambarkan langkah langkah yang ditempuh untuk mencapai suatu prediksi. Algoritma Decision Tree yang telah diimplementasikan pada Farmbot dapat ditingkatkan dengan mengimplementasikan metode Tree Pruning untuk menghilangkan perpisahan yang tidak dibutuhkan."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ananda Fadhil Eka Prakoso
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Izzan Nufail Arvin
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Razaqa Aulia
"Kualitas pendidikan tinggi di Indonesia merupakan salah satu upaya penting dalam menghasilkan sumber daya manusia unggul yang dapat memberikan manfaat besar bagi negara. Salah satu aspek penilaian yang dapat dijadikan acuan adalah ketepatan waktu lulus mahasiswa serta perkembangan indeks prestasi yang sejalan. Mahasiswa dikatakan lulus tepat waktu jika menyelesaikan studi dalam kurun waktu empat tahun. Saat ini, penelitian terkait prediksi ketepatan waktu lulus mahasiswa di Indonesia masih terbatas, dengan penelitian terakhir hanya mencakup lingkup Universitas Indonesia. Penelitian ini bertujuan untuk membandingkan setidaknya lima model prediksi dan memanfaatkan ensemble learning untuk membangun model yang diinginkan. Metrik yang digunakan sebagai acuan adalah F1-Score, dengan hasil akhir model ensemble learning yang memanfaatkan stacking classifier mencapai nilai 83%. Produk akhir dari penelitian ini adalah sebuah website yang memiliki fitur prediksi dan fitur statistik. Fitur prediksi digunakan untuk memprediksi ketepatan waktu lulus berdasarkan model machine learning yang telah dikembangkan. Fitur statistik menyediakan berbagai visualisasi yang memberikan informasi terkait ketepatan waktu lulus pada tingkat nasional, universitas, dan program studi. Visualisasi yang digunakan mencakup line chart, pie chart, geo chart, dan bar chart, serta menyediakan data mentah untuk informasi yang lebih sederhana.

The quality of higher education in Indonesia is a crucial effort in producing superior human resources that can significantly benefit the country. One of the assessment aspects that can be used as a reference is the timeliness of student graduation and the development of a corresponding performance index. Students are considered to graduate on time if they complete their studies within four years. Currently, research related to predicting the timeliness of student graduation in Indonesia is still limited, with the last study covering only the University of Indonesia. This study aims to compare at least five predictive models and utilize ensemble learning to build the desired model. The metric used as a reference is the F1-Score, with the final result of the ensemble learning model utilizing a stacking classifier reaching a score of 83%. The final product of this research is a website featuring both prediction and statistical tools. The prediction feature is used to predict the timeliness of graduation based on the previously developed machine learning model. The statistical feature provides various visualizations that offer information related to graduation timeliness at the national, university, and study program levels. The visualizations used include line charts, pie charts, geo charts, and bar charts, and also provide raw data for simpler information."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Danita Astriatmi Kusuma
"ABSTRACT
Osteoartritis adalah penyakit sendi kronis pada tulang rawan yang sering terjadi pada orang berusia lanjut. Penyaki ini umumnya terjadi pada tulang rawan sendi lutut Orang berusia lanjut sering menyepelekan perasaan sakit di sekitar sendi mereka atau tidak menyadari bahwa mereka telah terkena osteoartritis lutut, sehingga penyakit osteoartritis lutut yang mereka alami menjadi semakin kronis. Menurut beberapa penelitian, melakukan tindakan sejak stadium dini dapat mencegah penyakit. Salah satu tindakan untuk mencegah osteoartritis lutut agar tidak semakin kronis adalah mendeteksi penyakit tersebut sejak dini, sehingga pasien osteoartritis lutut dapat mendapatkan pengobatan yang tepat dan dapat memperbaiki kehidupan mereka di masa yang akan datang. Pada penelitian ini, osteoartritis lutut dideteksi dengan mengklasifikasikan stadium pasien osteoartritis lutut menggunakan AdaBoost Support Vector Machine dan AdaBoost Decision Tree. Klasifikasi osteoartritis lutut menggunakan AdaBoost Support Vector Machine dibandingkan dengan klasifikasi oteoartritis lutut menggunakan AdaBoost Decision Tree berdasarkan nilai akurasi klasifikasi yang dihasilkan dari kedua metode tersebut.

ABSTRACT
Osteoarthritis is a chronic joint disease of cartilage that often occurs in elderly people. One of the joints that can be infected is the knee. Older people often underestimate painful feeling around their joint or do not realize that they have been affected by knee osteoarthritis, so the knee osteoarthritis disease becomes more chronic. According to some studies, preventive measure from an early stage are very crucial to overcome the disease. One of the preventive measure to overcome knee osteoarthritis is to detect the current stage of the disease, so the knee osteoarthritis patient can have the right treatment and can improve their lives in the future. In this research, knee osteoarthritis was detected by classifying the stage of knee osteoarthritis patients by using AdaBoost Support Vector Machine and AdaBoost Decision Tree. The classification of knee osteoarthritis using AdaBoost Support Vector Machine was compared with the classification of knee osteoarthritis using AdaBoost Decision Tree based on the classification accuracy value generated from both methods."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ronald Grant
"Dengan memperhatikan serta menyusun pola makan, kesehatan tubuh dapat meningkat dikarenakan nutrisi yang didapatkan oleh tubuh. Pemanfaatan machine learning, melalui model deteksi multiobjek, dapat membantu pendeteksian berbagai jenis makanan hanya dengan input sebuah gambar. Dengan terdeteksinya jenis makanan digabungkan dengan output berupa nutrisi yang terkandung dalam makanan dapat membantu dalam mengatur pola makan. Pengaturan pola makan dengan memanfaatkan deteksi objek dapat dilakukan dengan pelatihan sebuah dataset dengan menggunakan algoritma YOLO. Pendeteksian makanan yang dilakukan dengan menggunakan algoritma YOLO memerlukan acuan evaluasi dengan tujuan meningkatkan akurasi dari deteksi yang dilakukan, yang mana merupakan alasan dari pengukuran mAP. Penggunaan arsitektur YOLOv7 terlihat dapat menghasilkan model yang lebih baik dibandingkan YOLOv5 dengan mAP 0,947. Penggabungan YOLOv7 dengan dataset yang berisikan multiclass single image juga berhasil dalam melakukan deteksi multi-object makanan sesuai dengan kategori yang telah ditentukan. Dengan tujuan penggunaan model oleh masyarakat luas, model deteksi jenis makanan diimplementasikan dalam bentuk aplikasi mobile dengan basis Java. Implementasi dalam bentuk aplikasi membuat masyarakat luas dapat memanfaatkan model deteksi objek sebagai salah satu acuan pemilihan pola makan yang lebih sehat.

By paying attention to and compiling a diet, body health can improve due to the nutrients the body gets. Utilization of machine learning, through a multi-object detection model, can help detect various types of food only by inputting an image. Diet adjustment using object detection can be done by training a dataset using the YOLO algorithm. Food detection carried out using the YOLO algorithm requires an evaluation reference with the aim of increasing the accuracy of the detection carried out, which is the reason for using mAP.. The use of the YOLOv7 architecture seems to produce a better model than YOLOv5 with a mAP of 0.947. Merging YOLOv7 with a dataset containing multiclass single images was also successful in detecting multi-object food according to predetermined categories. With the aim of using the model by the wider community, a food type detection model is implemented in the form of a mobile application based on Java. Implementation in the form of an application allows the general public to utilize the object detection model as a reference for choosing a healthier diet."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>