Ditemukan 88522 dokumen yang sesuai dengan query
Andreas Parasian
"Persaingan antar perusahaan semakin sengit seiring waktu. Banyak perusahaan optimis akan performanya di masa depan, namun banyak juga perusahaan yang tidak yakin dapat bersaing. Kesulitan ini terutama dihadapi oleh perusahaan-perusahaan pada sektor dengan potensi besar yang diperebutkan seperti sektor video game. Perusahaan-perusahaan tersebut perlu memerhatikan persepsi / sentimen pelanggan agar dapat meningkatkan dan mempertahankan daya saingnya dalam jangka panjang. Persepsi ini umumnya ditunjukkan pelanggan melalui ulasan mereka terhadap produk perusahaan. Dengan demikian, perusahaan video game dapat mengidentifikasi kesempatan pengembangan atau peningkatan daya saing dengan memerhatikan persepsi pelanggan dari ulasan video game. Pembuatan model dengan metode Aspect Category Sentiment Analysis, salah satu bagian dari rangkaian metode Aspect-based Sentiment Analysis, dapat menjadi salah satu solusi agar perusahaan video game dapat melakukan hal tersebut. Oleh karena itu, penelitian ini memakai metode Aspect Category Sentiment Analysis secara unsupervised untuk membuat model sebagai solusi terhadap permasalahan perusahaan video game dan perusahaan lain yang kesulitan bersaing. Model tersebut dibuat dengan memanfaatkan vektor yang dihasilkan oleh model Word Embedding untuk merepresentasikan hubungan sentimen antar kata yang ada di ulasan video game. Hasil evaluasi menunjukkan bahwa model yang dibuat dapat merepresentasikan hubungan sentimen terhadap aspek video game yang diulas oleh pelanggan. Informasi ini kemudian dapat dipetakan agar perusahaan video game dapat mengidentifikasi kesempatan pengembangan atau peningkatan daya saing.
Competition among firms is intensifying over time. Many are optimistic about its future growth, but there are also many who are unsure about their own competitive capabilities. This pessimistic outlook is shared by a lot of firms in business sectors with many yet heavily contested business opportunities such as the video game sector. These firms must pay closer attention to the perception or sentiment of their customers so they can increase and maintain their long-term competitiveness. Such perception is generally expressed by customers through their product reviews. Hence, video game companies can identify product development opportunities or unknown competitive advantages/disadvantages by closely monitoring customer perception from video game reviews. Models created through Aspect Category Sentiment Analysis, a sub-discipline of Aspect-based Sentiment Analysis, can be a solution for video game companies to do such an endeavor. Therefore, this research created an unsupervised Aspect Category Sentiment Analysis model as a solution for video game companies and companies that face a similar problem. The model is created by utilizing the capability of word vectors from word embeddings to represent semantic relationships such as sentiment toward video game aspects that are mentioned in customer reviews. Thorough numerical and qualitative evaluation shows that the model can reliably represent such sentiment. Video game companies can then map the sentiment that is identified by the model to identify product development opportunities or unknown competitive advantages/disadvantages."
Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Dokumentasi Universitas Indonesia Library
Riko Wijayanto
"Perkembangan teknologi informasi dan komunikasi (TIK) yang pesat menuntut inovasi dalam pengembangan aplikasi juga berkembang cepat. Aplikasi Tokopedia Seller merupakan salah satu aplikasi utama milik PT Tokopedia yang diperuntukkan bagi penjual dalam melakukan kegiatan operasional penjualan produk. Aplikasi yang baru diluncurkan di Android ini tergolong aplikasi perintis dan memerlukan banyak masukan dari pengguna, salah satunya dari Google Play Store. Akan tetapi, banyaknya ulasan yang masuk dan beragamnya opini, mengakibatkan proses analisis sentimen dan aspek ulasan menjadi lambat dan banyak terlewat. Oleh karena itu, perlu dilakukan suatu penelitian yang mengusulkan sistem otomatis untuk melakukan analisis sentimen berbasis aspek. Tujuan dari usulan sistem otomatis ini adalah untuk memudahkan proses analisis ulasan pengguna. Adapun data ulasan yang digunakan sebagai masukan eksperimen bersumber dari Google Play Store sejumlah 6.221 data berlabel dari Juli – September 2021. Penelitian ini menunjukkan bahwa algoritma Support Vector Machine (SVM) yang dipadukan dengan SMOTE menghasilkan performa yang paling baik dibandingkan dengan CNN dan Logistic Regression dengan accuracy 54%, precision 48%, dan recall 52% untuk mengklasifikan sentimen. Selaras dengan analisis sentimen, SVM dengan SMOTE juga menghasilkan performa yang lebih baik dengan accuracy 40%, precision 41%, dan recall 40%. Kondisi data ulasan yang cenderung singkat yakni kurang dari 10 kata, mengakibatkan performa klasifikasi kurang optimal.
The rapid development of information and communication technology (ICT) requires innovation in the field of application development. The Tokopedia Seller application is one of the main applications owned by PT Tokopedia which develops for sellers in carrying out product sales operational activities. It was just launched on Android, and it is classified as a pioneering application and requires a lot of input from users, one of which is from the Google Play Store. However, due to a lot of reviews came in, it makes the process of sentiment analysis and aspect review being slow and many being missed. Therefore, it is necessary to conduct a study that proposes a automatic system to perform aspect-based sentiment analysis. The purpose of this automated system proposal is to simplify the process of analyzing user reviews. The review of the data used as experimental input sourced from the Google Play Store with a total of 6,221 data labeled from July – September 2021. This study shows that the Support Vector Machine (SVM) algorithm combined with SMOTE produces the best performance compared to CNN and Logistic Regression with 54% accuracy, 48% precision, and 52% recall for classifying sentiments. In line with sentiment analysis, SVM with SMOTE also produces better performance with 40% accuracy, 41% precision, and 40% recall. The condition of the short review data is less than 10 words, resulting in a less than optimal classification performance."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Anindito Izdihardian Wibisono
"Pada tahun 2020, nilai customer satisfaction index (CSI) PT XYZ yang mempresentasikan kepuasan konsumen XYZ berjumlah 83.9. Angka ini gagal mencapai target PT XYZ di tahun tersebut yaitu 87, dan turun dari tahun sebelumnya yaitu 86,5 di tahun 2019. Berdasarkan pengambilan data, diketahui bahwa XYZ mengelola aduan konsumen hanya melalui Twitter. Dari ribuan tweet yang diterima akun resmi customer care PT XYZ (@XYZCares) tiap bulan di Twitter, diperkirakan hanya 1-2% yang dideteksi sebagai aduan dengan proses pengawasan manual. Penelitian ini merancang solusi dua langkah berupa implementasi social media listening dalam bentuk sentiment analysis dan topic modelling, untuk mengetahui isu dalam tweet aduan kepada XYZ. Dataset berupa kumpulan tweet yang menyebutkan @XYZCares pada kurun waktu 1 Januari 2020 - 31 Desember 2020. Data di-scrape dari Twitter menggunakan script Python. Hasil evaluasi secara cross-validation menunjukkan akurasi rerata sentiment analysis dengan algoritme SVM lebih akurat (77%) untuk kasus ini dibandingkan algoritme RF (75%). Untuk task pemodelan topik, algoritme LDA menghasilkan klaster topik sejumlah 4 dengan rerata TPC sebesar 80%. Diketahui bahwa topik yang dominan adalah isu korupsi dan suap di badan PT XYZ. Dengan mempertimbangkan penemuan tersebut, saran yang dapat diberikan berdasarkan penelitian ini adalah memberhentikan staf yang diduga terlibat dalam isu-isu tersebut, serta menerapkan good corporate governance berupa aspek pengawasan dan pencegahan korupsi.
The customer satisfaction index (CSI) for the year 2020 is calculated at 83.9. This value fails to reach the company’s target for the year at 87 and is lower than the CSI value for 2019 at 86.5. Data acquired from the company shows that consumer complaints are accepted and processed only through Twitter. It is estimated that of the thousands of tweets processed by PT XYZ’s official customer care account (@XYZCares) each month, only 1-2% of the tweets are considered complaints based on manual searching and classification. This research proposes a two-step solution by implementing social media listening in the form of sentiment analysis and topic modelling, to detect the most frequent issues addressed to XYZ. The dataset consists of tweets created from January 1st, 2020, to December 31st, 2020 which mentioned @XYZCares. The tweets were scraped from Twitter using Python scripts. The results of cross-validation show that for the task of sentiment analysis, SVM is a more accurate algorithm on average (77%) compared to Random Forest (75%). For the following task of topic modelling, the LDA algorithm model produced 4 topic clusters with an average TPC of 80%. The most dominant topic detected relate to allegations of bribery and corruption within PT XYZ. Taking these finds into consideration, this research suggests that PT XYZ immediately dismiss all staff implicated in the aforementioned cases, as well as implementing good corporate governance in the form of tighter supervision and prevention of corrupt dealings."
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2021
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Dwi Retnoningrum
"Melalui teknologi, kegiatan sosial yang dahulu memerlukan kontak fisik kini dapat dilakukan jarak jauh melalui media sosial. Media sosial saat ini banyak digunakan untuk menyebarkan berbagai infromasi, baik mengungkapkan opini, perasaan, ataupun pendapat. Twitter memiliki pengguna akif terbanyak di Indonesia. Twitter merupakan salah satu sarana perusahaan untuk berkomunikasi dengan pelanggan. Salah satu perusahaan yang memanfaatkan twitter untuk berkomunikasi ke nasabahnya BNI. BNI memiliki jasa dan produk yang ditawarkan salah satunya yaitu Agen46. Agen46 merupakan mitra BNI dalam menyediakan layanan perbankan kepada masyarakat dalam rangka keuangan inklusif. Selain mitra BNI dalam penyediaan berbagai macam layanan perbankan, BNI Agen46 juga merupakan partner di dalam berbagai program pemerintah, seperti penyaluran bantuan sosial maupun subsidi untuk Keluarga Penerima Manfaat. Terdapat beberapa tweet yang cenderung mengarah ke ulasan yang negative, namun saat ini belum ada analisis sentimen terkait Agen46 berdasarkan data twitter. Penelitian ini bertujuan untuk membandingkan performa metode klasifikasi yang digunakan untuk sentiment analysis serta mencari topik terkait Agen46. Metode yang digunakan yang digunakan untuk pemodelan klasifikasi yaitu SVM, Naïve Bayes, dan KNN serta metode pemodelan topik yang digunakan yaitu LDA.Hasil dari penelitian menunjukkan bahwa SVM memiliki performa terbaik dengan nilai f1-score 91.25% dan akurasi 91.28%. Sedangkan Topik yang dihasilkan yaitu 2 topik kelas Positive (agen dapat memberikan tambahan penghasilan dan agen46 menjadi agen transformasi yang lebih dekat dengan nasabah), 2 topik kelas neutral (penyaluran bansos dapat dilakukan melalui agen46 dan selain melalui kantor cabang, internet banking, sms banking, transaksi juga bisa dilakukan di agen46), dan 6 topik kelas negative (permohonan buka blokir proses lama, belum ada respon saat gagal login, kendala mesin EDC Agen46, agen tidak dapat dihubungi, dan adanya ketidaknyamanan penyaluran bpnt).
Through technology, social activities that once required physical contact can now be done remotely through social media. Social media is currently widely used to disseminate various information, whether expressing opinions, feelings, or opinions. Twitter has the most active users in Indonesia. Twitter is one of the means for companies to communicate with customers. One company that utilizes twitter to communicate to its customers is BNI. BNI has services and products to offer, one of which is Agent46. Agen46 is a BNI partner in providing banking services to the community in the context of inclusive finance. In addition to BNI's partners in providing various banking services, BNI Agen46 is also a partner in various government programs, such as the distribution of social assistance and subsidies for Beneficiary Families. There are several tweets that tend to lean towards negative reviews, but currently, there hasn't been any sentiment analysis conducted regarding Agen46 based on Twitter data. This research aims to compare the performance of classification methods used for sentiment analysis and find topics related to Agent46. The methods used for classification modeling are SVM, Naïve Bayes, and KNN and the topic modeling method used is LDA.The results of the study show that SVM has the best performance with an f1-score value of 91.25% and an accuracy of 91.28%. While the topics generated are 2 Positive class topics (agents can provide additional income and agent46 becomes a transformation agent that is closer to customers), 2 neutral class topics (social assistance distribution can be done through agent46 and in addition to branch offices, internet banking, sms banking, transactions can also be done at agent46), and 6 negative class topics (unblock request is a long process, there is no response when login fails, Agent46 EDC machine constraints, agents cannot be contacted, and there is inconvenience in bpnt distribution)"
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Irfanda Husni Sahid
"Persaingan pasar yang ketat membuat pengelola aplikasi XYZ harus dapat menghadirkan keunggulan dari produknya. Untuk itu, pengelola XYZ melakukan analisis terhadap ulasan yang diberikan oleh penggunanya. Namun, pengelola aplikasi XYZ mengalami kesulitan dalam melakukan analisis ulasan karena menggunakan cara yang manual dan tidak efisien. Penelitian ini dilakukan untuk mengetahui sentimen dari aspek-aspek mobile service quality (M-S-QUAL) dan topik-topik yang sering dibicarakan oleh pengguna aplikasi XYZ pada review Google Playstore. Data ulasan yang digunakan merupakan ulasan dari bulan Januari 2023 hingga Agustus 2024, data ini berjumlah 13,364 data. Terdapat 5,000 data yang dianotasi. Data tersebut kemudian dibersihkan dan digunakan untuk melakukan analisis sentimen berbasis aspek (ABSA) dan pemodelan topik. Hasil penelitian menunjukkan dari sembilan aspek M-S-QUAL, terdapat tiga aspek yang dieliminasi karena kekurangan data, dan terdapat empat aspek yang dieliminasi karena model machine learning yang dilatih memiliki performa yang kurang baik dengan F1-score dibawah 0.7. Model yang layak digunakan untuk scoring hanya ada pada aspek billing dan system availability yaitu model XGBoost dengan teknik oversampling synthetic minority over-sampling technique (SMOTE) untuk kedua aspek. Performa dari model-model ini adalah 0.758 pada aspek billing, dan 0.802 pada aspek system availability. Dari 4,006 ulasan relevan pada aspek billing, 6.44% adalah sentimen positif, 90.81% adalah sentimen negatif, dan 2.75% adalah sentimen netral. Dari 2,410 ulasan relevan pada aspek system availability, 7.88% memiliki sentimen positif, 86.76% memiliki sentimen negatif, dan 5.35% memiliki sentimen netral. Hasil ini menunjukkan bahwa sentimen dominan pada ulasan yang relevan dengan aspek billing dan system availability adalah sentimen negatif. Pemodelan topik dilakukan untuk masing-masing sentimen positif dan negatif pada aspek billing dan system availability. Pemodelan topik aspek billing menghasilkan 3 topik untuk sentimen positif, 3 topik untuk sentimen negatif. Pemodelan topik aspek system availability menghasilkan 2 topik untuk sentimen positif, dan 2 topik untuk sentimen negatif. Topik-topik ini yang dapat dijadikan poin perbaikan dan peningkatan aplikasi XYZ.
The intense competition in the market forces the XYZ management to offer competitive advantages in their product. To achieve this, they analyze user reviews. However, they face challenges in analyzing user reviews because they still use manual methods, which makes the process inefficient. This study aims to understand the sentiment of aspects of mobile service quality (M-S-QUAL) and the popular topics from XYZ app users in Google Play Store reviews. The data used in this study was 13,364 reviews from January 2023 to August 2024, with 5,000 of them manually labeled. The data was cleaned and used for aspect-based sentiment analysis (ABSA) and topic modeling. The results showed that, out of nine M-S-QUAL aspects, three were excluded due to insufficient data, and four more were excluded because the machine learning models performed poorly, with F1-scores below 0.7. Only the billing and system availability aspects had decent models. The models for these aspects used the XGBoost algorithm combined with synthetic minority over-sampling technique (SMOTE). The models’ performance scores were 0.758 for billing and 0.802 for system availability. For the billing aspect, out of 4,006 relevant reviews, 6.44% had positive sentiment, 90.81% were negative, and 2.75% were neutral. For system availability, out of 2,410 relevant reviews, 7.88% were positive, 86.76% were negative, and 5.35% were neutral. This shows that most users had negative sentiment about billing and system availability. Topic modeling was conducted separately for positive and negative sentiments in both the billing and system availability aspects. For the billing aspect, topic modeling resulted in three topics for positive sentiment and three topics for negative sentiment. For the system availability aspect, two topics were identified for both positive and negative sentiments. These topics can serve as key areas for improving and enhancing the XYZ application."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2025
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Steven Nathaniel Trosno
"Pemilihan umum presiden merupakan momen krusial dalam demokrasi, di mana opini publik memainkan peran penting dalam menentukan hasil. Dalam era digital, media sosial menjadi platform utama bagi masyarakat untuk menyampaikan pandangan dan opini mereka. Penelitian ini bertujuan untuk menganalisis sentimen masyarakat terhadap pemilihan bakal calon presiden Indonesia 2024, yaitu Ganjar, Prabowo, dan Anies melalui media sosial X menggunakan model IndoBERT. Data dikumpulkan dari media sosial X melalui teknik crawling untuk memastikan relevansi data. Model IndoBERT diterapkan untuk melakukan analisis sentimen terhadap data teks yang diklasifikasikan ke dalam kategori positif, negatif, dan netral. Hasil menunjukkan bahwa model dengan hyperparameter terbaik (learning rate 5e-6 dan data splitting 0.2) mencapai akurasi 94.66% dalam mengklasifikasikan sentimen, dengan nilai precision, recall, dan f1-score yang konsisten. Meskipun demikian, terdapat kecenderungan bahwa model memprediksi kurang atau memprediksi berlebih jumlah data pada semua kandidat. Analisis dari precision-recall curve menunjukkan bahwa ketidakseimbangan data memiliki pengaruh terhadap performa model, namun model dengan hyperparameter terbaik tetap mencapai nilai AUC 0.92 terhadap ketidakseimbangan data tersebut. Analisis sentimen ini memberikan wawasan penting bagi partai politik dalam menentukan strategi kampanye dan mengidentifikasi kandidat yang paling disukai oleh masyarakat dalam pemilihan umum presiden 2024.
The presidential election is a crucial moment in democracy, where public opinion plays a vital role in determining the outcome. In the digital era, social media has become a primary platform for people to express their views and opinions. This research aims to analyze public sentiment towards the 2024 Indonesian presidential candidates—Ganjar, Prabowo, and Anies—through social media platform X using the IndoBERT model. Data was collected from social media X through crawling techniques to ensure data relevance. The IndoBERT model was applied to perform sentiment analysis on the text data, classifying it into positive, negative, and neutral categories. The results show that the model with the best hyperparameters (learning rate of 5e-6 and data splitting of 0.2) achieved 94.66% accuracy in sentiment classification, with consistent precision, recall, and f1-score values. However, there is a tendency for the model to underpredict or overpredict the amount of data for all candidates. Analysis of the precision-recall curve indicates that data imbalance affects the model's performance, but the model with the best hyperparameters remains achieved AUC 0.92, indicating robustness against this imbalance. This sentiment analysis provides important insights for political parties in determining campaign strategies and identifying the most favored candidates by the public in the 2024 presidential election."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Jihan Prama Nurahman
"Pandemi covid-19 di Indonesia yang terjadi pada tahun 2020 telah mengubah berbagai aspek di setiap lini masyarakat Indonesia, termasuk cara masyarakat berbelanja. Regulasi terkait pembatasan akses dan jarak memaksa masyarakat Indonesia bertransformasi menggunakan aplikasi daring untuk memenuhi kebutuhan sehari-hari. Salah satu aplikasi daring yang penggunaannya meningkat adalah penggunaan aplikasi grosir daring seperti HappyFresh, Sayurbox, dan TaniHub. Peningkatan transaksi tidak serta merta menggambarkan bahwa layanan yang diberikan oleh ketiga aplikasi itu baik, keluhan pelanggan masih ditemukan pada media sosial seperti Twitter dan ulasan pengguna aplikasi di Google Play Store. Penelitian ini bertujuan untuk menghitung Net Brand Reputation (NBR) dari ketiga aplikasi dengan melakukan analisis sentimen analisis. Data yang digunakan berasal dari Twitter dan ulasan pengguna di Google Playstore dalam rentang waktu Januari 2020 hingga Maret 2021. Model klasifikasi analisis sentimen dibuat dengan menggunakan tiga algoritma klasifikasi Naïve Bayes, Support Vector Machine (SVM), dan Decision Tree. Hasil dari penelitian didapatkan aplikasi Happyfresh, Sayurbox, dan TaniHub memiliki sentimen positif di masyarakat. Aplikasi grosir daring yang memiliki nilai NBR terbesar adalah Tanihub, kedua adalah Happyfresh, dan yang terakhir adalah Sayurbox.
The COVID-19 pandemic in Indonesia that occurred in 2020 has changed various aspects in every line of Indonesian society, including the way people shop. Regulations related to access and distance restrictions force Indonesians to transform using online applications to meet their daily needs. One of the online applications whose use is increasing is the use of online wholesale applications such as HappyFresh, Sayurbox, and TaniHub. The increase in transactions does not necessarily illustrate that the services provided by the three applications are good, customer complaints are still found on social media such as Twitter and application user reviews on the Google Play Store. This study aims to calculate the Net Brand Reputation (NBR) of the three applications by performing sentiment analysis. The data used comes from Twitter and user reviews on the Google Playstore in the period January 2020 to March 2021. The sentiment analysis classification model is created using three classification algorithms, Naïve Bayes, Support Vector Machine (SVM), and Decision Tree. The results of the study showed that Happyfresh, Sayurbox, and TaniHub applications had positive sentiments in the community. The online wholesale application that has the largest NBR value is Tanihub, the second is Happyfresh, and the last is Sayurbox."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Fathia Amira Nuramalia
"Twitter adalah platform media sosial microblogging yang memungkinkan komunikasi dua arah untuk mengutarakan opini dan komentar. Komentar-komentar yang beragam ini dapat memperlihatkan sentimen-sentimen masyarakat apabila dilakukan analisis sentimen. Analisis sentimen adalah studi yang menganalisis opini orang terhadap suatu produk, organisasi, individu, atau jasa tertentu. Machine learning merupakan metode yang dapat mempermudah proses klasifikasi sentimen. Penelitian ini dilakukan pada cuitan berbahasa Indonesia terkait Kampus Merdeka yang diambil dari Twitter menggunakan package tweepy sebanyak 1.651 cuitan terhitung dari tanggal 5 Maret 2022 hingga 13 Maret 2022. Model machine learning yang digunakan pada penelitian ini adalah Bidirectional Long Short-Term Memory (BiLSTM), dengan dua model hybrid LSTM-based, yaitu CNN-LSTM dan LSTM-CNN sebagai pembanding. Kinerja model diukur dengan metrik kinerja accuracy, precision, recall, dan F1-score. Implementasi dilakukan pada data yang telah dilakukan oversampling untuk mendapatkan hasil yang optimal. Penelitian menunjukkan bahwa model BiLSTM memiliki kinerja yang lebih unggul dibandingkan dengan dua model pembanding lainnya pada seluruh metrik dengan besar metrik, yaitu: accuracy dan recall sebesar 79,577%; precision sebesar 73,097%; dan F1-score sebesar 75,634%.
Twitter is a microblogging social media platform that allows two-way communication to express opinion and comments. These various comments can show us sentiment of the public when we perform a sentiment analysis. Sentiment analysis is a study that analyze the opinion of people towards a specific product, organization, individual, or service. Machine learning is a method that will help perform sentiment classification easier. This study performs analysis on 1.651 data tweets about Kampus Merdeka taken from Twitter using a package called tweepy since March 5th 2022 until March 13th 2022. The machine learning model used in this study is Bidirectional Long Short-Term Memory (BiLSTM), with two LSTM-based hybrid model, CNN-LSTM and LSTM-CNN as comparison models. Model performance is measured by performance metrics accuracy, precision, recall, and F1-score. Implementation was done on data that has been going through oversampling to achieve the best result. The study shows that BiLSTM performs better than the other two comparison models for all the metrics with the percentage of the each metric being: 79.577% for accuracy and recall; 73,097% for precision; and 75,634% for F1-score."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Mohammad Luthfi Pratama
"Perkembangan teknologi informasi khususnya internet di Indonesia terbilang sangat pesat. Media sosial hadir sebagai sarana baru dalam berkomunikasi dengan perantara internet. Salah satu media sosial pemicu hal tersebut adalah twitter. Banyak sekali variasi topik yang dihasilkan para pengguna twitter. Setiap topik yang dihasilkan memiliki nilai sentimen. Nilai sentimen dibagi menjadi positif, negatif, dan netral. Untuk mengetahui nilai sentimen, digunakanlah analisis sentimen. Namun dengan banyaknya pengguna twitter, akan memakan waktu banyak untuk mengetahui nilai sentimen. Sehingga digunakanlah Support Vector Machine (SVM). Tetapi SVM hanya bisa mengklasifikasikan 2 kelas. Sehingga diperlukan pendekatan Multiclass. terdapat dua cara dalam melakukan pendekatan Multiclass, yaitu pendekatan One Vs One dan One Vs All.
The growth of information technology, especially the Internet in Indonesia, is rapidly increasing. Social media is the new way to communicate with other users on the internet. Twitter is one of the social media that contribute the growth. There are many topics that are generated by the users. Each topic that is generated by the users has the sentiment value. The sentiment value is divided into positive, negative, and neutral. To determine the value of the sentiment, we need to use the sentiment analysis. However, with so many twitter users, it will take a lot of time. That is why we use Support Vector Machine (SVM). However, SVM can only classify two classes. Therefore, we need multiclass approach. There are two ways of doing multiclass approach: One Vs One and One vs All."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S58011
UI - Skripsi Membership Universitas Indonesia Library
Angga Pratama
"Pemerintah Indonesia mengeluarkan kebijakan untuk melakukan pemindahan ibu kota negara (IKN) dari Jakarta ke Kalimantan di tahun 2019. Hal tersebut menuai respons dari masyarakat, ada kelompok yang setuju dan ada yang tidak setuju. Opini dari masyarakat tentang pemindahan ibu kota banyak beredar melalu sosial media khususnya Twitter. Pemindahan ibu kota butuh proses panjang dan direncanakan dimulai di tahun 2024. Sampai saat ini sudah banyak kebijakan turunan dari pemerintah agar proses pemindahan ibu kota negara tetap berlangsung. Begitu juga dengan opini masyarakat di Twitter bermunculan menanggapi kebijakan tersebut. Sudah hampir 4 tahun sejak ditetapkan, sudah cukup banyak juga opini dari masyarakat tentang pemindahan IKN. Maka dari itu penelitian ini bertujuan untuk mengetahui sentimen masyarakat tentang pemindahan ibu kota negara beserta topik-topik yang menjadi perbincangannya. Penelitian ini dilakukan dengan cara mengumpulkan data dari Twitter sejak 2019 sampai 2022 tentang pemindahan ibu kota negara. Data yang dikumpulkan akan melewati serangkaian data preprosesing yang kemudian diklasifikasikan ke dalam sentimen positif, netral, dan negatif. Pemodelan sentimen dilakukan menggunakan lima model klasifikasi untuk mencari keakuratan terbaik, yaitu Naïve Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), dan Random Forest (RF). Masing-masing algoritma dijalankan dua kali dari 2 sampel yang tanpa melewati balancing, dan satunya lagi menggunakan oversampling. Pemodelan topik dilakukan menggunakan Latent Dirichlet Allocation (LDA). Kedua pemodelan ini digunakan untuk memvisualisasikan sentimen dan topik-topiknya ke dalam visualisasi time series. Pemodelan sentimen terbaik yang dihasilkan adalah RF dari sampel oversampling dengan nilai akurasi 82%. Pemodelan tersebut menghasilkan distribusi sentimen dengan sentimen positif mendominasi sebanyak 46.5%, sentimen netral sebanyak 31.6%, dan sentimen negatif sebanyak 21.9%. Hasil visualisasi time series menunjukkan bahwa sentimen positif tidak selalu mendominasi, namun hanya pada tahun 2022. Pemodelan topik menghasilkan 15 topik untuk sentimen positif, 11 topik untuk sentimen netral, dan 8 topik untuk sentimen negatif. Visualisasi topik time series memperlihatkan bahwa beberapa topik mendominasi perbincangan di Twitter, namun hanya pada bulan-bulan tertentu. Visualisasi time series dapat memberikan gambaran yang lebih komprehensif pada penelitian analisis sentimen dan pemodelan topik.
Indonesian government issued a policy to move the national capital or ibu kota negara (IKN) from Jakarta to Kalimantan in 2019. This drew pros and cons from the public, there were groups who agreed and there were those who disagreed. Opinions from the public regarding the relocation of the capital city are widely circulated through social media, especially Twitter. Moving the capital city requires a long process and is planned to begin in 2024. Until now, there have been many derivative policies from the government so that the process of moving the national capital continues. Likewise, public opinion has sprung up ont Twitter in response to this policy. It's been almost 4 years since it was established, so there's been quite a lot of opinion from the public about the transfer of the IKN. Therefore this study aims to determine public sentimen about the relocation of the national capital along with the topics of discussion. This research is conducted by collecting data from Twitter from 2019 to 2022 regarding the relocation of the national capital. The data collected will go through a series of pre-processing data which are then classified into positive, neutral and negative sentimens. Sentimen modeling is carried out using five classification models to find the best accuracy, namely Naïve Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF). Each algorithm is run twice from 2 samples without going through balancing, and the other uses oversampling. Topic modeling is done using Latent Dirichlet Allocation (LDA). These two models are used to visualize sentimen and topics into a time series visualization. The best sentimen modeling produced is RF from oversampling samples with an accuracy value of 82%. This modeling produces a sentimen distribution with positive sentimen dominating by 46.5%, neutral sentimen by 31.6%, and negative sentimen by 21.9%. The results of the time series visualization show that positive sentimen does not always dominate, but only in 2022. The topic modeling produces 15 topics for positive sentimen, 11 topics for neutral sentimen, and 8 topics for negative sentimen. The time series topic visualization shows that several topics dominate the conversation on Twitter, but only in certain months. Time series visualization can provide a more comprehensive picture of sentimen analysis research and topic modeling."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library