Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123516 dokumen yang sesuai dengan query
cover
Jodian Fariza Aji
"

Banjir merupakan bencana alam yang sering terjadi di Indonesia, menimbulkan kerusakan dan mengakibatkan kerugian ekonomi. Hingga saat ini pun, ibukota negara, Jakarta, tak lepas dari banjir akibat luapan dari Sungai Ciliwung. Untuk itu, diperlukan langkah preventif seperti peringatan dini banjir untuk mengurangi kerugian akibat banjir. Namun, sistem peringatan dini banjir yang saat ini dimiliki oleh Balai Besar Wilayah Sungai Ciliwung-Cisadane masih memiliki beberapa kekurangan, seperti model hidrologi yang tidak cocok untuk prediksi jangka pendek dan akurasinya yang belum optimal dan waktu yang belum efisien untuk tahap simulasi berikutnya. Untuk mengatasi kekurangan tersebut, pendekatan machine learning dikembangkan untuk mendapatkan model prediksi tinggi muka air dengan tingkat galat yang rendah dan waktu komputasi yang efisien. Model prediksi banjir diwakilkan oleh tinggi muka air berdasarkan limpasan air hujan dan limpasan dari aliran air ruas hulunya melalui 4 ruas Sungai Ciliwung. Dilakukan perbandingan dua metode berbasis neural network, yaitu Adaptive Neuro-Fuzzy Inference System (ANFIS) dan Recurrent Neural Network-Long Short Term Memory (RNN-LSTM). Model yang unggul secara umum adalah RNN-LSTM dengan tingkat galat yang lebih rendah dan waktu komputasi yang lebih cepat. Pada RMSE dan MAPE, RNN-LSTM unggul pada 3 dari 4 ruas. Waktu komputasi RNN-LSTM selalu lebih cepat dibandingkan dengan ANFIS. Sedangkan dilihat dari R2, baik ANFIS maupun RNN-LSTM memiliki kemampuan yang cukup baik kecuali untuk RNN-LSTM pada ruas ketiga. Sehingga secara keseluruhan RNN-LSTM lebih unggul dalam memprediksi tinggi muka air Sungai Ciliwung dilihat dari tingkat galatnya yang lebih rendah dan efisiensi waktunya. RNN-LSTM juga lebih unggul dalam memprediksi tinggi muka air yang fluktuasi dan standar deviasinya lebih besar.


Floods are natural disasters that often occur in Indonesia, causing damage and economic losses. Until now, the nation's capital, Jakarta, has not been free from flooding due to the overflow of the Ciliwung River. Therefore, preventive action like early warning of floods is needed, to reduce losses due to flooding. However, the flood early warning system currently done by the Ciliwung-Cisadane River Center still has several drawbacks, such as hydrological models that are not suitable for short-term predictions in which resulting their accuracy is not optimal and efficient computing time is needed. To overcome these deficiencies, a machine learning approach is developed to obtain a water level prediction model with a low error and efficient computing time. The model is predicting water level based on rainwater and upstream segment of the river runoff through the 4 segments of the river. Two neural network-based methods, Adaptive Neuro-Fuzzy Inference System (ANFIS) and Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) are compared. Generally, the RNN-LSTM outperformed with a lower error rate and faster computation time. On the RMSE and MAPE, RNN-LSTM excels on 3 out of 4 segments. Based on computing time, RNN-LSTM is always faster than ANFIS. Meanwhile, seen from the R2, both ANFIS and RNN-LSTM have decent capabilities except for RNN-LSTM on the third segment. Hence, the RNN-LSTM is superior in predicting the water level of the river based on its lower error and time efficiency. RNN-LSTM is also superior in predicting water level fluctuations with a larger standard deviation.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ozananda Fachristiary Adji
"Tujuan penelitian ini adalah melakukan studi awal guna memprediksi nilai kerma udara dan half value layer (HVL) pesawat CT scan berdasarkan citra fantom homogen. Penelitian ini dilakukan dengan menggunakan citra homogen dari fantom standar CT scan yang dilakukan ekstraksi fitur GLCM (Gray Level Co-occurence Matrix), dengan data tambahan berupa nilai kVp pengambilan citra. Sebagai label output adalah hasil pengukuran kerma udara dan HVL. Model yang digunakan berbasis artificial neural network, dengan hyperparameter ditentukan berdasarkan teknik hyperparameter tuning dengan menggunakan Teknik Gridsearch. Pencarian hyperparameter berupa fungsi aktivasi, jumlah hidden layer, jumlah hidden unit, kernel initializer, dan optimizer dilakukan dengan Analisa performa hasil. Kualitas performa klasifikasi model artificial neural network menggunakan confusion matrix menunjukkan akurasi sebesar 84,4% pada model yang dilatih menggunakan input fitur GLCM, sedangkan pada model artificial neural network yang menggunakan input fitur GLCM dan kVp menunjukkan akurasi sebesar 100%. Hasil ini menunjukkan bahwa fitur GLCM mampu menghasilkan akurasi yang baik untuk melakukan prediksi kerma udara dan HVL. Namun, jika disertai dengan fitur kVp sebagai input, maka proses training akan menghasilkan akurasi yang sangat baik, dengan gejala dominasi fitur kVp terhadap fitur GLCM.

The goals of this research is to do preliminary study to predict air kerma and half value layer (HVL) of CT scan base on phantom image which has homogeneous characteristic. This research starts with GLCM (Gray Level Co-occurence Matrix) feature extraction process from the phantom image, the kVp value also extracted from the phantom image dicom information. While the target during training is air kerma and HVL measurement resulted from the dosimeter and solid state device. Machine learning model used for this research is artificial neural network (ANN) base Machine Learning model. However, the hyperparameter have not yet been found. Thus, this problem could be solved by using Hyperparameter tuning technique, specifically using Gridsearch with variety of activation function, hidden layers, hidden units, kernel initializer, and optimizer as the parameter guideline. The performance of classification model is measured using confusion matrix technique. The classification performance show that the model which trained using GLCM feature only has 84.4% accuracy to predict air kerma and HVL. While, the classification performance show that the model which trained using GLCM feature and kVp that extracted from the dicom information has 100% accuracy to predict air kerma and HVL. Although, the model that train using GLCM feature and kVp can predict much better than the model which trained using GLCM feature only, it shows that GLCM feature is dominated by kVp feature that extracted from the dicom information."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arifudin
"Pada skripsi ini dibahas tentang simulasi dan perancangan pengendalian sistem Tangki Berhubungan Multivariabel (3 x 3) dengan menggunakan Neural Network model Kendali lnvers Langsung (Direct Inverse Control / DIC). Pengendali Neural Network model Kendali Invers Langsung mencari invers dari plant sehingga pengendali NN model DIC yang dirangkai seri dengan plant menghasilkan fungsi alih satu satuan, sehingga keluaran sistem akan sama dengan sinyal referensi yang diberikan. Penghilangan interaksi (kopling) yang terjadi pada sistem Tangki Berhubungan Multivariabel dilakukan dengan perancangan dekopling yang menggunakan metode Relative Gain Matrix. Perancangan dan simulasi sistem pengendalian Neural Network model Kendali Invers Langsung ini menggunakan program Matlab versi 6.1. Perbandingan antara analisa tanggapan waktu terhadap sistem kendali yang dirancang dengan sistem kendali Proportional Integral Derivartive (PID) dan sistem kendali Logika Fuzzy menghasilkan tanggapan untuk mencapai keadaan steady srare,dan pada Neural Network model Kendali Invers langsung lebih cepat dibandingkan dengan tanggapan waktu yang dihasilkan oleh pengendali konvensional PID dan Fuzzy."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40135
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Hakim Mustaqim
"ABSTRAK

Kanker Payudara (KPD) merupakan salah satu penyakit penyebab kematian terbesar. Indonesia merupakan negara dengan jumlah KPD cukup besar. KPD ini merupakan benjolan. Benjolan ini dapat diperiksa menggunakan cara manual yaitu diraba bagian dekat dengan putting susu. Jika benjolan tidak kunjung mengecil dianjurkan untuk memeriksa ke dokter. Pendektesian KPD ini dapat dilakukan dengan menggunakan proses pencitraan. Data yang digunakan pada penelitian ini diambil dari website Pilot European Image Processing Archive (PEIPA) yaitu dataset Mammographic Image Analysis Society (MIAS). Pendektesian dilakukan dengan menganalisa gambar payudara (mammography) pasien dengan menggunakan metode Principal Component Analysis (PCA) mengubah gambar dalam bentuk matriks. Matriks ini akan digunakan sebagai data yang akan digunakan dalam Neural Network (jaringan saraf tiruan) dengan metode Backpropagation Neural Network (BNN). Dari hasil Percobaan dapat diketahui bahwa metode ini menghasilkan nilai akurasi pembelajaran dari deep learning supervised sebesar 98%.


ABSTRACT
Breast Cancer is one of the biggest causes of death. Indonesia is a country with a large number of KPDs. This KPD is a lump. This lump can be examined using a manual method that is palpated near the nipple. If the lump does not go away it is recommended to see a doctor. This breast cancer assessment can be done using the imaging process. . The data used in this study was taken from the website of the Pilot European Image Processing Archive (PEIPA) namely the Mammographic Image Analysis Society (MIAS) dataset. The assessment is done by analyzing the breast image (mammography) of the patient using the Principal Component Analysis (PCA) method to change the image in the form of a matrix. This matrix will be used as data to be used in Neural Networks with the Backpropagation Neural Network (BNN) method. From the results of the Experiment it can be seen that this method produces the value of accuracy of learning from supervised deep learning about 98%.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yodi Deza
"Peran transformasi wavelet dalam bidang kompresi dan pengkodean citra telah sangat dikenal dan telah menghasilkan standar format citra digital. Dengan konsep multiskala dan multiresolusi, sebuah citra dapat memberikan representasi yang informatif dengan titur-fitur yang ada. Fitur-fitur ini dapat dimanfaat untuk sebuah sistem pengenalan citra. Jaringan syaraf tiruan sebagai pengklasifikasi telah digunakan secara umum dengan tujuan pengenalan terhadap suatu objek ataupun fungsi. Kelebihan yang dimilikinya karena penggunakan metode training. Training dilakukan terhadap sekumpulan training set yang representatif untuk dapat melakukan proses klasifikasi terhadap objek yang akan dikenali. Skripsi bertujuan untuk memanfaatkan kemampuan transformasi wavelet untuk ekstraksi fitur dengan pengklasifikasi jaringan syaraf tiruan. Penerapannya dilakukan terhadap citra tekstur yang memiliki pola teratur. Pengambilan fitur-fiturnya menggunakan wavelet histogram signazures yang memperlihatkan fitur-fitur wavelet dalam karakteristik statistik orde pertama. Percobaan dilakukan dengan sebuah simulasi software pengenalan pola yang dibuat dengan MATLAB. Sistem dibuat berdasarkan transformasi wavelet dan jaringan syaraf tiruan. Hasil dari percobaan adalah berapa persen jumlah keberhasilan pengenalan sistem terhadap objek pengujian yang diberikan. Pengujian juga dilakukan terhadap tekstur yang diberi gangguan (noise)."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39977
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siauw, Luke
"Perkembangan bare dalam neural network telah memberikan keuntungan-keuntungan dalam aplikasi sistem kontrol. Berdasarkan teori stale space dan pendekatan neural network, dikembangkan suatu algoritma yang disebut Stochastic Neural Direct Adaptive Control (SNDAC) untuk mengendalikan plant yang diketahui sebagian matriks sistemnya, yaitu matdks masukan B(.) dan matriks keluaran C(.). Pengendali neural network menggunakan algoritma SNDAC untuk mengubah bobot-bobotnya sehingga dihasilkan sinyal kendali yang mengoptimalkan quadratic performance index. Parameter yang berpengaruh pada pengendalian adalah banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar. Pemilihan banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar tidak dapat dilakukan secara eksak, tetapi dengan trial and error. Dengan pemilihan yang tepat dihasilkan pengendalian yang stabil dengan toleransi kesalahan yang kecil, seperti terlihat pada hasiI simulasi."
Depok: Universitas Indonesia, 1997
S38826
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Qadri Nuranti B.
"Pertumbuhan dokumen putusan pengadilan sangat pesat, setiap bulannya bertambah hingga kurang lebih sebanyak 100.000 dokumen dan 94% diantaranya merupakan putusan pengadilan tingkat pertama. Meskipun sistem hukum Indonesia menganut sistem civil law yang mengutamakan perundang-undangan sebagai sumber hukum, namun salah satu sumber pertimbangan hukum dapat bersumber dari putusan hakim terdahulu (yurisprudensi). Oleh karena pertumbuhan dan kebermanfaatan yurisprudensi dalam memutuskan suatu perkara, sangat sulit menemukan informasi atau memanfaatkan dokumen yang bersesuaian dengan kasus yang dihadapi. Penelitian ini melakukan suatu prediksi masa hukuman putusan pengadilan tingkat pertama dengan memanfaatkan yurisprudensi menggunakan Multi-Level Learning CNN+Attention. Hasil dari eksperimen ini mendapatkan kombinasi fitur terbaik yang diperoleh dari dokumen yaitu dengan menggunakan fitur informasi dari riwayat_tuntutan, fakta, fakta_hukum, dan pertimbangan_hukum. Prediksi dilakukan dengan cara category prediction dan regresion prediction. Pada category prediction membuktikan bahwa model Multi- Level CNN+Attention mendapatkan akurasi yang lebih baik dibandingkan model deep learning lainnya yaitu sebesar 77.32%. Untuk regresion prediction menunjukkan bahwa label amar putusan representasi tahun menghasilkan R2-Score lebih baik dibanding representasi hari dan bulan dengan peningkatan sebesar 28.51% dan 25.62%.

The growth of court decision documents has been extremely rapid, each month increasing to approximately 100,000 cases, and 94% of them are court decisions of the first-level case. Although the Indonesian legal system adheres to a civil law system that prioritizes legislation as a source of law, one source of legal considerations can come from previous judges' decisions (jurisprudence). Because of jurisprudence's growth and usefulness in deciding a case, it is complicated to find information or use documents relevant to the topic at hand. This study conducted a prediction of first-level judicial decisions by utilizing jurisprudence using Multi- Level Learning CNN+Attention. This experiment's results get the best combination of features obtained from the document, namely by using the features of prosecution history, facts, legal facts, and legal considerations. Prediction is made through category prediction and regression prediction. The category prediction proves that the Multi-Level CNN+Attention model gets better accuracy than other deep learning models, which is 77.32%. The regression prediction shows the label of year representation decision results in a better R2-Score than the representation of days and months with an increase of 28.51% and 25.62%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Salihun Z.
"Jaringan syaraf tiruan (Arrgficial Neural Nerwork) merupakan salah satu bagian dari kecerdasan buatan (Artificial Intelligence) yang mengambil prinsip kerja jaringan syaraf manusia. Perhitungan propagasi balik (Back Propagartion) adalah algoritma belajar yang populer, yang merupakan generalisasi kaidah least square untuk jaringan syaraf berlapis jamak (Mulfflayer Neural Network).
Proses aromatisasi heptana menjadi toluena, dengan nama hydroforming, telah dikembangkan ketika Perang Dunia II (World War II) dengan tujuan untuk mendapatkan bahan baku peledak. Kondisi operasi diatas sangatlah riskan dan penuh resiko.
Pendeteksian yang akurat dan dini diperlukan guna mencegah kesalahan yang timbul, yang dapat mengakibatkan kerugian baik material maupun immaterial. Diagnosa kesalahan proses pada aromatisasi heptana dapat dilakukan dengan metode Jaringan Syaraf Tiruan Propagasi Balik (ANN/JNA BP) ini. Berdasarkan data lapangan (kondisi masukan dan kondisi keluaran), jaringan syaraf akan melakukan pembelajaran (learning) secara simultan dan kontinyu, yang pada akhirnya akan terbentuk sebuah pengetahuan. BP inilah metode ajar yang paling sederhana dan cocok sekali untuk diterapkan, karena sanggup mengenali pola (pattern recognition).
Sebagai studi kasus, proses aromatisasi heptana, penerapan ANN/JNA BP yang diteliti oleh Watanabe dan Himmelblau dapat dibuktikan dengan baik pada skripsi ini. Model ANN/JNA BP dapat melakukan pengenalan pola dengan balk dimana toleransi error lebih kecil dari 0.001, dengan jumlah iterasi pelatihan lebih dari 5000 iterasi, dan waktu pelathan lebih dari 40 menit."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49207
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosandi Prarizki
"ABSTRAK
Algoritma pembelajaran jaringan saraf tiruan dewasa ini semakin beragam.
Masing-masing algoritma memiliki kelebihan dan kekurangan dan menjadi hal
yang menarik untuk dipelajari. Pada penelitian ini akan dibahas mengenai
algoritma pembelajaran metode Levenberg-Marquardt yang akan digunakan
untuk jaringan saraf tunggal dan Ensemble Neural Network. Hasil percobaan
menunjukan bahwa metode Levenberg-Marquardt memiliki keunggulan dalam
kecepatan dan kestabilan.

ABSTRACT
Neural network learning algorithm is more diverse today. Each algorithm has
advantages and disadvantages, and those are interesting thing to learn. This
research will be discussed on the learning algorithm Levenberg-Marquardt
method to be used for a single neural network and Ensemble Neural Network.
Results of this research shows Levenberg-Marquardt learning algorithm has a
good speed and stability."
Fakultas Teknik Universitas Indonesia, 2012
S42239
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>