Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 31600 dokumen yang sesuai dengan query
cover
Mario Claudius
"Obesitas merupakan salah satu masalah kesehatan yang sering dijumpai hingga saat ini. Menurut World Health Organization, pada tahun 2016 terdapat sekitar 650 juta orang dewasa yang mengalami masalah obesitas. Obesitas sendiri dapat meningkatkan risiko pada berbagai macam penyakit seperti penyakit jantung, diabetes, dan kanker jika tidak dicegah. Salah satu penyebab dari obesitas adalah konsumsi makanan fast food yang berlebihan. Konsumsi makanan fast food yang berlebihan ini seringkali terjadi karena kurangnya informasi mengenai jumlah kalori yang terkandung pada makanan fast food sehingga sulit untuk mengontrol jumlah makanan fast food yang dikonsumsi agar tidak menyebabkan obesitas. Oleh karena itu, dalam penelitian ini dilakukan perancangan aplikasi dengan sistem untuk menghitung estimasi jumlah kalori yang terkandung pada makanan cepat saji menggunakan model Mask R-CNN. Berdasarkan pengujian pada model Mask R-CNN dalam melakukan deteksi pada objek makanan cepat saji, didapatkan nilai mAP 0,636 dan nilai F1 score 0,599. Sedangkan berdasarkan hasil pengujian pada algoritma yang digunakan untuk melakukan perhitungan estimasi jumlah kalori makanan cepat saji, didapatkan tingkat kesalahan kalkulasi berupa nilai MAE sebesar 2,290 kal/g dan RMSE sebesar 2,342 kal/g. 

Obesity is one of the most common health problem until now. According to World Health Organization, there are approximately 650 millions adult who have obesity problem at 2016. If not prevented, obesity itself can increase the risk of various diseases such as heart disease, diabetes, and cancer. One of the causes of obesity is excessive consumption of fast food. This excessive consumption of fast food often happen due to lack of information about number of calories contained in fast food, making it difficult to control the amount of fast food consumed to prevent obesity. Therefore, this research conducts development of application to calculate the amount of calories contained in fast food using Mask R-CNN. Based on the testing result for Mask R-CNN ability to detect fast food object, 0,636 obtained as value of mAP and 0,599 obtained as value of F1 score. While based on the testing result of algorithm used to calculate the estimated amount of calories contained in fast food, the calculation error rate is obtained in the form of MAE value of 2,290 cal/g and RMSE value of 2,342 cal/g."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radyatama Nugraha
"Skripsi ini merupakan pengembangan dari teknologi video surveillance system atau sistem pengawasan video. Video surveillance system yang selama ini diterapkan untuk tujuan deteksi objek menggunakan suatu metode umum yaitu dual background model. Model tersebut bekerja dengan memisahkan latar depan dan latar belakang dari suatu video frame dan memposisikan target deteksi di latar depan sebagai output. Salah satu tujuan dari skripsi ini adalah melakukan pengembangan dari sistem tersebut agar dapat mengklasifikasikan objek yang terdeteksi menjadi abandoned, stolen, dan ghost region. Untuk mencapai tujuan tersebut, digunakan metode pemelajaran mesin Mask R – CNN yang dapat melakukan segmentasi objek berbasis pemaskeran. Selain dari Mask R – CNN, terdapat model pemelajaran mesin lain yang cukup umum digunakan untuk deteksi objek dan segmentasi objek yaitu model YOLACT. Penelitian ini menggunakan video situasi natural di tempat umum seperti stasiun atau jalanan yang akan diproses menggunakan dual background model dan kemudian disegmentasi menggunakan Mask R – CNN atau YOLACT. Hasil penelitian ini diharapkan bisa membuka wawasan tentang penggunaan model pemelajaran mesin dalam aplikasi object detection, sekaligus menganalisis model mana yang paling efektif dan efisien berupa hasil kuantitatif yaitu Frame Rate per Seccond ( FPS ), waktu segmentasi, serta Intersection Over Union ( IOU ).

This thesis is an advancement in video surveillance technology. The existing video surveillance system commonly employs a dual background model for object detection. This model functions by separating the foreground and background within a video frame and positions the detected target in the foreground as the output. One of the goals of this thesis is to enhance this system to classify detected objects into abandoned, stolen, and ghost regions. To achieve this, the Mask R-CNN machine learning method is used, which can perform object segmentation based on masking. Apart from Mask R-CNN, another commonly used machine learning model for object detection and segmentation is the YOLACT model. This research utilizes natural situation videos in public places like stations or streets, processed using the dual background model and then segmented using Mask R-CNN or YOLACT. The anticipated outcome of this study is to broaden insights into the use of machine learning models in object detection applications while analyzing which model is most effective and efficient for similar applications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jauharil Firdaus Bassam
"Pemanfaatan lahan untuk lahan parkir harus dapat dilakukan secara optimal dikarenakan terjadinya peningkatan jumlah kendaraan di setiap tahun serta penurunan jumlah lahan kosong di perkotaan. Selain itu, Konsep smart city juga menuntut pemerintah untuk meningkatkan keefektifan dan efisiensi dari sistem layanan urban termasuk jasa penyedia lahan parkir. Sistem ini dirancang untuk menjawab persoalan tersebut dengan mengimplementasikan algoritma pemrosesan citra dan pendeteksian objek. Tata letak lahan parkir yang didapat dari masukan berupa video akan dipetakan setiap petak parkirnya secara otomatis dengan menggunakan salah satu dari 3 mode pemetaan yaitu pemetaan dengan mobil, garis parkir, serta keduanya. Pemetaan ini dilakukan menggunakan algoritma Canny Edge Detection, Hough Line Transform, dan framework pendeteksian objek Mask R-CNN. Kemudian, data ketersediaan lahan parkir akan divisualisasikan kepada pengguna melalui aplikasi android. Sistem ini mampu menyediakan informasi ketersediaan lahan parkir secara real-time dengan latensi sebesar 1.4-2.2 detik dan mampu bekerja pada berbagai kondisi seperti variasi kondisi cahaya, sudut kamera, ataupun jumlah mobil terparkir.

Utilization of land for parking lots must be done optimally due to an increase in the number of vehicles every year and a decrease in the number of vacant land in urban areas. In addition, the concept of smart city also requires the government to increase effectiveness and efficiency of the urban service system including parking lot service providers. This system is designed to solve these problems by implementing image processing and object detection algorithms. The layout of parking lot obtained from the video input and each parking space will be mapped automatically by using one of 3 mapping modes, i.e. mapping by car, parking lines, or both. This mapping was done using Canny Edge Detection Algorithm, Hough Line Transform, and Mask R-CNN object detection framework. Then, the availability of parking space data will be visualized to users through the android application. This system is able to provide information on the availability of parking lots in real-time with latency of 1.4-2.2 seconds and is able to work in various conditions such as variations in light conditions, camera angles, or the number of parked cars."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilbert Lauren
"Pelayanan di supermarket merupakan salah satu hal yang menjadi pertimbangan seseorang dalam menentukan kualitas dari sebuah supermarket. Antrian di supermarket merupakan salah satu penentu dari kualitas layanan yang dimiliki. Antrian tersebut dapat disebabkan berbagai hal, salah satunya adalah lamanya kasir dalam menyelesaikan transaksi yang dilakukan. Semakin lama transaksi berlangsung, semakin lama waktu yang dibutuhkan untuk dibutuhkan seorang pelanggan sehingga menyebabkan antrian terjadi. Salah satu penyebab lamanya transaksi dapat disebabkan karena proses pemindaian produk yang membutuhkan waktu cukup lama. Oleh karena itu, dengan membuat model pemindaian barcode yang cepat dan efisien berbasis deep learning menggunakan object detection, harapannya dapat membuat proses transaksi menjadi lebih cepat sehingga antrian yang terjadi dapat dikurangi. Dalam penilitian ini, model sistem akan membandingkan antara performa model YOLOv5 dengan Faster R-CNN yang kemudian ditambahkan image enhancement (Super Resolution) untuk dibandingkan dengan tujuan mencari tahu performa dan akurasinya. Hasil pengujian model pada tahap pelatihan menunjukkan model YOLOv5 merupakan model yang lebih akurat dan efisien dengan akurasi Mean Average Precission (mAP) sebesar 81,74%, penggunaan waktu pelatihan sebesar 1,6448 jam, dan loss pada epoch/step terakhir sebesar 0,0208. Hasil pengujian model menggunakan image enhancement (super resolution) menunjukkan peningkatan kualitas decode dari 67% menjadi sebesar 75,5% atau peningkatan sebesar 8,5% dengan super resolution tipe RRDB_PSNR. Kemudian hasil pengujian augmentasi rotasi pada pendeteksian barcode diagonal menunjukan peningkatan sangat signifikan dari 2% menjadi 80%. Pada pengujian terakhir dimana dataset yang digunakan sudah dilakukan augmentasi. Model yang di training memiliki penurunan dari mAP yang dihasilkan menjadi 71,7% dari yang sebelumnya sebesar 81,74% atau penurunan sekitar 10,04%
Service in supermarkets is one of the things that a person considers in determining the quality of a supermarket. Queues at supermarkets are one of the determinants of the quality of service they have. The queue can be caused by various things, one of which is the length of time the cashier completes the transaction. The longer the transaction lasts, the longer it will take for a customer to cause a queue to occur. One of the reasons for the length of the transaction can be due to the product scanning process which takes a long time. Therefore, by creating a fast and efficient barcode scanning model based on deep learning using object detection, it is hoped that it can make the transaction process faster so that queues that occur can be reduced. In this research, the system model will compare the performance of the YOLOv5 model with Faster R-CNN which is then added with image enhancement (Super Resolution) for comparison with the aim of finding out its performance and accuracy. The results of model testing at the training stage show that the YOLOv5 model is a more accurate and efficient model with an accuracy of Mean Average Precision (mAP) of 81.74%, training time usage of 1.6448 hours, and loss in the last epoch/step of 0.0208. The results of model testing using image enhancement (super resolution) show an increase in decoding quality from 67% to 75.5% or an increase of 8.5% with super resolution of type RRDB_PSNR.Then the results of the rotational augmentation test on diagonal barcode detection showed a very significant increase from 2% to 80%. In the last test where the dataset used has been augmented. The training model has a decrease from the resulting mAP to 71.7% from the previous 81.74% or a decrease of about 10.04%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lunnardo Soekarno Lukias
"

Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.


In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alfareza Mahendra
"Jumlah kasus positif COVID-19 yang telah terkonfirmasi di Indonesia saat ini telah melebihi angka 6,4 juta. Walaupun angka kasus kian menurun, aturan menjaga jarak harus tetap dipatuhi. Aturan untuk menjaga jarak atau menjauhi kerumunan juga diterapkan di sekolah-sekolah, namun saat ini belum ada sistem yang dapat memonitoring hal tersebut. Tujuan dari penelitian ini adalah membangun sebuah sistem pendeteksian tingkat kerumunan orang dalam ruangan kelas untuk membantu menekan angka kerumunan yang terjadi di sekolah-sekolah, selain itu sistem yang dibangun dapat mempermudah memantau kerumunan sehingga dapat memperkecil area penyebaran virus COVID-19. Sistem yang dibangun menggunakan algoritma deteksi dan segmentasi pada Mask R-CNN. Sistem yang dirancang dapat mendeteksi objek orang, kerumunan, dan kepadatan dalam ruangan. Pengujian sistem dilakukan menggunakan metrik akurasi dan membandingkan kepadatan hasil perhitungan dengan hasil segmentasi. Pengujian dilakukan di area Indoor ruang kelas dan menggunakan kamera webcam. Hasil pengujian menggunakan matriks konfolusi menunjukkan tingkat akurasi deteksi objek manusia yaitu 92,42 %, sedangkan tingginya performa deteksi adalah 96,5%. Sedangkan Error terendah dan tertinggi yang di dapat pada pengukuran kepadatan masing-masing adalah 7,51% dan 0,79%

The number of confirmed positive cases of COVID-19 in Indonesia has now exceeded 6.4 million. Even though the number of cases is decreasing, the rules for maintaining distance must still be obeyed. Rules to maintain distance or stay away from crowds are also implemented in schools, but currently there is no system that can monitor this. The purpose of this research is to build a crowd level detection system in classrooms to help reduce crowd numbers that occur in schools, besides that the system built can make it easier to serve crowds so as to reduce the area of spread of the COVID-19 virus. The system built uses detection and segmentation algorithms on Mask R-CNN. The designed system can detect objects, people, crowds, and density in the room. System testing is carried out using measurement metrics and comparing the calculated density with segmentation results. Testing was carried out in the indoor area of the classroom and using a webcam camera. The test results using the convolution matrix show that the accuracy of human object detection is 92.42%, while the high detection performance is 96.5%. While the lowest and highest errors that can be achieved in density measurements are 7.51% and 0.79%, respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Rofiqi Rapsanjani
"Pemerintah Indonesia telah menerapkan kebijakan wajib menggunakan masker di ruang publik untuk mencegah penularan Covid-19. Sebagai dukungan terhadap inisiatif ini, petugas bekerja untuk memastikan kepatuhan, terutama di area ramai seperti mal dan gedung perkantoran. Namun, mengandalkan penegakan secara manual menimbulkan tantangan karena potensi kesalahan dan kelalaian manusia. Untuk mengatasi hal ini, penelitian ini berfokus pada pengembangan sistem deteksi masker menggunakan YOLOv5, yang mampu mendeteksi tiga kelas masker yang berbeda. Penulis mengumpulkan dan menyusun dataset dari berbagai sumber, yang terdiri dari total 1500 bounding box, dengan sekitar 500 bounding box per kelas. Selain itu, penulis melakukan perbandingan dengan model CNN sederhana untuk menemukan praktik terbaik sehingga mendapatkan model YOLOv5 yang paling optimal. Melalui berbagai eksperimen dengan parameter yang berbeda, penulis menemukan bahwa hasil terbaik dicapai menggunakan dataset dengan ukuran gambar 640px dan ukuran batch 8. Model menunjukkan nilai precision sebesar 0,864, nilai recall sebesar 0,824, dan nilai mAP50 sebesar 0,877. Penelitian ini memberikan kontribusi dalam upaya kesehatan masyarakat dengan menyediakan sistem deteksi masker otomatis yang dapat membantu pihak berwenang dalam memantau kepatuhan penggunaan masker secara efektif dan efisien, sehingga dapat mengurangi penyebaran Covid-19.

The Indonesian government has implemented a mandatory mask-wearing policy in public spaces to prevent the transmission of Covid-19. In support of this initiative, officials are working to ensure compliance, particularly in crowded areas such as malls and office buildings. However, relying solely on manual enforcement poses challenges due to the potential for human error and negligence. To address this, this research focuses on developing a mask detection system using YOLOv5, capable of detecting three different classes of masks. We collected and curated a dataset from various sources, comprising a total of 1500 bounding boxes, with approximately 500 bounding boxes per class. In addition, we conducted a comparison with a CNN model to find best practice so as to get the most optimal YOLOv5 model. Through various experiments with different parameters, we found that the best results were achieved using a dataset with 640px image size and a batch size of 8. The model demonstrated a precision value of 0.864, recall value of 0.824, and Map50 value of 0.877. This research contributes to the ongoing efforts in public health by providing an automated mask detection system that can assist authorities in monitoring mask compliance effectively and efficiently, thereby mitigating the spread of Covid-19"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Galih Waskito Aji
"Restoran merupakan tempat dimana manusia dapat memenuhi salah satu kebutuhan primer yaitu pangan. Perbedaan cara mendapatkan makanan di restoran dengan di pasar adalah makanan di restoran sudah siap untuk dikonsumsi. Jenis-jenis dari restoranpun berbeda-beda, namun pada penulisan ini hanya membahas kepada restoran cepat saji. Perbedaan yang paling terlihat adalah dimana makanan pada restoran cepat saji seperti namanya, akan menyajikan makanan lebih cepat. Untuk membuat makanan yang disajikan lebih cepat dan dalam jumlah banyak tentunya mebutuhkan alat yang memadai. Selain itu alat-alat tersebut membutuhkan utilitas dalam pengoperasiannya. Utilitas sendiri merupakan unsur yang dapat membuat restoran dapat menjalankan fungsinya dengan tepat. Dalam skripsi ini penulis bertujuan untuk mencari keterhubungan utilitas terhadap proses pembuatan produk pada restoran cepat saji. Utilitas apa saja yang dibutuhkan restoran cepat saji dalam membuat makanan. Untuk mencapai hal tersebut yang harus dilakukan oleh penulis adalah dengan melakukan observasi pada restoran cepat saji terkait mulai dari arsitektur sampai ke utilitas pada bangunan restoran. Selain itu juga mencari tahu bagaimana proses produksi makanan dari bahan makanan yang masih mentah hingga siap disajikan kepada pelanggan serta mencari tahu juga alat apa saja yang digunakan. Setelah melakukan observasi pada akhirnya utilitas bangunan kelistrikan, pemipaan, dan gas yang menjadi paling berpengaruh dalam proses produksi makanan.

Restaurant is a place where people can find one of the primary needs that is food. The difference between how to get food in a restaurant and in a market is that food in a restaurant is ready for consumption. The types of restaurants also differ, but at this thesis only discusses the fast food restaurant. The most noticeable difference is where food at fast food restaurants as the name suggests, will serve food faster. To make food served faster and in large quantities, of course, need adequate tools. In addition, these tools require utilities in operation. Utility itself is an element that can make a restaurant function properly. In this thesis the author aims to look for connectivity between utility and the process of making products in fast food restaurants. What utilities are needed by fast food restaurants in making food. To achieve this, what the writer must do is to make observations on related fast food restaurants ranging from architecture to utilities in restaurant buildings. Besides that, they also find out how the food production process is made from raw food ingredients until they are ready to be served to customers and also find out what tools are used. After doing the observations in the end the utility of electricity, plumbing, and gas plumbing are the most influential in the food production process."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Abraham Bismo Kristanto
"

Seiring dengan perkembangan bidang computer vision terdapat lebih banyak solusi yang dapat diimplementasikan untuk bidang sehari-hari. Salah satu bidang yang paling erat dengan kegiatan sehari-hari adalah kegiatan mengkonsumsi makanan. Dalam memperhatikan pola makan, penting dilakukan proses mengidentifikasi jenis makanan yang dikonsumsi. Dengan memanfaatkan perkembangan model machine learning deteksi objek yang bekerja secara waktu langsung, YOLOv5 dapat digunakan untuk melakukan deteksi objek untuk dapat mengidentifikasi berbagai jenis makanan dalam suatu gambar. Dengan menggunakan YOLOv5, deteksi terhadap makanan yang kerap kali dikonsumsi oleh masyarakat Indonesia dapat dilakukan dan ditingkatkan akurasinya dengan pemrosesan gambar hingga mencapai nilai mAP 94,3%. 

Penggunaan implementasi model ini dalam aktivitas sehari-hari dapat memberikan nilai tambah kepada orang-orang yang ingin lebih memahami jenis makanan yang dikonsumsinya. Dari hasil pengujian user experience yang dilakukan terhadap aplikasi, hasil perbandingan terhadap benchmark mengindikasikan bahwa aplikasi memiliki kualitas penggunaan di atas rata-rata dengan nilai 1,37 untuk daya tarik, 1,58 untuk kejelasan, 1,23 untuk efisiensi, 1,38 untuk ketepatan, 1,13 untuk stimulasi, dan 1,01 untuk kebaruan.

With the advent of computer vision there are more solutions that can be implemented in everyday life. One of the areas most closely related to daily activities is the activity of consuming food. In paying attention to diet, it is important to identify the type of food consumed. By leveraging the development of object detection machine learning models that work in real time, YOLOv5 can be used to perform object detection to identify different foods within a single image. By using YOLOv5, detection of foods that are often consumed by Indonesian people can be carried out and the accuracy is increased by image processing up to a value of mAP 94.3%.
The use of this model's implementation in daily activities can provide added value to people who want to better understand the types of food they consume. From the results of user experience testing carried out on the object detection application, the results of comparisons against benchmarks indicate that the application has above average usage quality with a value of 1.37 for attractiveness, 1.58 for clarity, 1.23 for efficiency, 1.38 for accuracy, 1.13 for stimulation, and 1.01 for novelty.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sihotang, Yanika Judika
"Penelitian ini dilakukan untuk memperoleh nilai kapabilitas proses pelayanan Solaria dan memperoleh faktor yang signifikan mempengaruhi kapabilitas proses pelayanan Solaria dengan menggunakan simulasi. Kapabilitas proses pada jasa adalah pengembangan sebuah metodologi yang mengubah perceived performance ke dalam real performance. Ukuran dari kapabilitas proses pada jasa disebut Indeks Kapabilitas Jasa (Service Capability Index). Simulasi dilakukan dengan menggunakan software Promodel. Promodel adalah sebuah software simulasi berbasis windows yang digunakan untuk mensimulasikan dan menganalisis suatu sistem. Promodel cocok untuk mensimulasikan sistem kejadian diskrit seperti proses pelayanan Solaria. Hasil yang diharapkan oleh peneliti adalah berupa skenario simulasi pelayanan Solaria yang akan meningkatkan nilai SCI (Service Capability Index) di Solaria.

This research aims to obtain an process capability of services in Solaria Restaurant and to obtain significant factor that influence process capability by using simulation. Process capability in services is the development of a methodology to convert perceived performance into real performance. The measurement of process capability in services is Service Capability Index (SCI). Simulation of Solaria Restaurant is developed by using Promodel software. Promodel is an windows basic software to simulate and analyze an real system. Promodel is proposed to simulate an discrete event system such as services in Solaria. The result expected from this research is an scenario model of Solaria services that can enhance the Service Capability Index (SCI) in Solaria."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>