Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 71936 dokumen yang sesuai dengan query
cover
Muhammad Hafizh
"AMC, Automatic Modulation Classification, adalah suatu teknologi yang dapat mengklasifikasi jenis modulasi pada suatu sinyal. Dalam perkembangan AMC model Deep Learning yang digunakan biasanya mengejar akurasi dari model tanpa memperhatikan ukuran dari model itu sendiri. Pada penelitian ini, dirancang sebuah model Convolutional Long short-term memory Deep Neural Network (CLDNN) yang ringan dengan metode optimasi model tambahan yang dinamakan Pruning. Pruning sendiri adalah metode optimasi model yang dapat memutus hubungan antar neuron dalam suatu Neural Network guna memperkecil ukuran model dan mempercepat waktu komputasi dengan tetap menjaga akurasi dari model tersebut. Penelitian ini mampu membuktikan bahwa metode optimasi pruning dapat mengurangi ukuran model CLDNN-Y3 hingga 76,92% pada sparsity 0,95. Akurasi model CLDNN-Y3 yang telah dioptimasi sebesar 64,07% pada sparsity 0,5, 64,04% pada sparsity 0,8, 63,74% pada sparsity 0,9, dan 62,86% pada sparsity 0,95.

AMC, Automatic Modulation Classification, is a technology that can classify the type of modulation on a signal. In the development of AMC, Automatic Modulation Classification, Deep Learning models used usually pursue the accuracy of the model regardless of the size of the model itself. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was designed with an additional model optimization method called Pruning. Pruning itself is a model optimization method that can remove connections between neurons in a Neural Network to reduce the size of the model and speed up computational time while maintaining the accuracy of the model. This research has proven that the pruning optimization method is capable of reducing the size of the CLDNN-Y3 model by up to 76.92% at a sparsity level of 0.95. The optimized CLDNN-Y3 model achieves an accuracy of 64.07% at a sparsity of 0.5, 64.04% at a sparsity of 0.8, 63.74% at a sparsity of 0.9, and 62.86% at a sparsity of 0.95."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elyaser Ben Guno
"Automatic Modulation Classification (AMC) secara otomatis mengidentifikasi jenis modulasi apa yang digunakan pada pemancar berdasarkan pengamatan terhadap sinyal yang diterima. Seiring dengan perkembangan pada topik ini, Deep Learning (DL) dapat diterapkan pada AMC dan memiliki kinerja yang menjanjikan. Namun, sebagian besar model DL yang dibuat hanya berfokus pada akurasi, mengabaikan ukuran model dan kompleksitas komputasi yang dapat menjadi masalah bagi perangkat dengan ukuran memori dan daya komputasi yang terbatas. Dalam penelitian ini, model Convolutional Long short-term memory Deep Neural Network (CLDNN) ringan diusulkan untuk mengklasifikasi modulasi. Model yang diusulkan dilatih dan diuji dengan dataset RML2016.10b. Model yang diusulkan memiliki ukuran model dan jumlah parameter yang lebih kecil, serta waktu pelatihan dan klasifikasi yang lebih cepat, relatif terhadap model pembanding, dengan tetap menjaga kualitas akurasinya.

Automatic Modulation Classification (AMC) automatically identifies what type of modulation is used on the transmitter based on observations of the received signal. Along with the development on this topic, Deep Learning (DL) can be applied to AMC and has promising performance. However, most of the DL models created only focus on accuracy, ignoring the model size and computational complexity which can be a problem for devices with limited memory size and computing power. In this study, a lightweight Convolutional Long short-term memory Deep Neural Network (CLDNN) model was proposed to classify modulation. The proposed model was trained and tested with the RML2016.10b dataset. The proposed model has a small model size and parameters, as well as fast training and classification time, relative to the comparison models, while maintaining the quality of its accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akmal Muzakki Utomo
"Hutan industri merupakan wilayah hutan dengan persentase paling banyak di Indonesia. Hutan industri juga menyumbang salah satu pemasukan yang cukup besar bagi negara. Untuk menghasilkan kualitas kayu yang konsisten diperlukan perawatan pada pohon yang menghasilkan kayu industri. Salah satu cara perawatan yang dapat dilakukan untuk menjaga kualitas hasil kayu adalah melalui pemangkasan ranting. Pemangkasan ranting merupakan hal yang cukup berbahaya untuk dilakukan seseorang. Resiko yang dihadapi oleh pekerja untuk melakukan perawatan pohon sangatlah besar. Jatuh dari ketinggian merupakan kecelakaan kerja terbesar bagi pekerja yang berada dalam bidang kehutanan. Untuk mengurangi resiko tersebut, dilakukanlah suatu perancangan alat untuk melakukan pemangkasan pada pohon yang dapat dilakukan tanpa perlu memanjat pohon. Alat yang dirancang disesuaikan dengan kebutuhan dari industri di Indonesia yang berfokus pada pohon jati dan pohon mahoni. Perancangan dilakukan dengan pemilihan komponen yang yang dapat dicari serta proses perakitan yang mudah untuk dilakukan. Perancangan dilakukan menggunakan perhitungan kinematika dan dinamika serta pengguanaan aplikasi CAD untuk melakukan proses desain.

Industrial forest is the forest area with the highest percentage in Indonesia. Industrial forests are also a fairly large source of income for the state. To produce consistent wood quality, care is needed on trees that produce industrial wood. One way of care that can be done to maintain the quality of wood products is through nagging pruning. Pruning nagging is a pretty dangerous thing for a person to do. risks faced by workers to carry out tree maintenance on big hills. Falling from a height is the biggest occupational accident for workers in forestry. To reduce this risk, a tool is designed for pruning trees that can be done without the need to climb trees. A tool designed according to the needs of the industry in Indonesia which focuses on teak and mahogany trees. The design is done by selecting components that can be searched and the assembly process is easy to do. The design is carried out using kinematics and dynamics calculations and the use of CAD applications to carry out the design process."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maranatha Florensia Wijaya
"Analisis sentimen merupakan bidang studi yang menganalisis pendapat seseorang terhadap suatu entitas untuk mencari polaritas sentimennya. Potensi manfaat yang besar didukung dengan ketersediaan data teks beropini yang melimpah di internet memicu dikembangkannya model yang mampu melakukan analisis sentimen secara otomatis dan seakurat mungkin. Dua diantaranya adalah Long Short-Term Memory (LSTM) dan Convolutional Neural Network (CNN) yang merupakan arsitektur deep learning. LSTM digunakan karena dapat menangkap aliran informasi pada kalimat, sedangkan CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dari tiap penggalan kalimat atau region. Kedua model ini dapat digabungkan menjadi model gabungan LSTM-CNN yang telah terbukti mampu meningkatkan akurasi model. Penelitian ini kemudian akan mengajukan modifikasi pada model gabungan LSTM-CNN dengan mengganti LSTM menjadi Bidirectional LSTM (BiLSTM) dan CNN menjadi CNN Multi Region Size CNNMRS sehingga terbentuk tiga model modifikasi yaitu BiLSTM-CNN, LSTM-CNNMRS, dan BiLSTM-CNNMRS. Implementasi model, baik untuk model gabungan LSTM-CNN standar maupun model modifikasi, dilakukan pada data tweets berbahasa Indonesia. Hasilnya, didapatkan kesimpulan bahwa penggunaan BiLSTM untuk menggantikan LSTM pada model gabungan LSTM CNN tidak meningkatkan akurasi dari model. Hal berbeda didapatkan dari penggunaan CNNMRS untuk menggantikan CNN yang memberikan peningkatan akurasi pada model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Noer Fitria Putra Setyono
"SIBI merupakan bahasa isyarat resmi yang digunakan di Indonesia. Penggunaan SIBI seringkali ditemukan permasalahan karena banyaknya gerakan isyarat yang harus diingat. Penelitian ini bertujuan untuk mengenali gerakan isyarat SIBI dengan cara mengekstraksi fitur tangan dan wajah yang kemudian diklasifikasikan menggunakan Bidirectional Long ShortTerm Memory (BiLSTM). Ekstraksi fitur yang digunakan dalam penelitian ini adalah Deep Convolutional Neural Network (DeepCNN) seperti ResNet50 dan MobileNetV2, di mana kedua model tersebut digunakan sebagai pembanding. Penelitian ini juga membandingkan performa dan waktu komputasi antara kedua model tersebut yang diharapkan dapat diterapkan pada smartphone nantinya, dimana model tersebut akan diimplementasikan. Hasil penelitian menunjukkan bahwa penggunaan model ResNet50-BiLSTM memiliki kinerja yang lebih baik dibandingkan dengan MobileNetV2-BiLSTM yaitu 99,89%. Namun jika akan diaplikasikan pada arsitektur mobile, MobileNetV2-BiLSTM lebih unggul karena memiliki waktu komputasi yang lebih cepat dengan performa yang tidak jauh berbeda jika dibandingkan dengan ResNet50-BiLSTM.

SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89\%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM."
Depok: Fakultas Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gita Kartika Suriah
"Analisis sentimen merupakan suatu proses untuk menentukan sikap atau sentimen dari penulis mengenai hal tertentu. Proses pengelompokan sentimen secara manual membutuhkan waktu cukup lama, sehingga diusulkan untuk menggunakan machine learning. Pada penelitian ini, model machine learning yang digunakan merupakan model CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) dan BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) yang menghasilkan kinerja yang lebih baik dibandingkan model CNN dan BiLSTM pada permasalahan analisis sentimen. Supaya model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan lifelong learning. Hasilnya, model CNN-BiLSTM menunjukkan kinerja transfer of knowledge yang lebih baik dibandingkan oleh model BiLSTM-CNN maupun model dasarnya. Di sisi lain, model BiLSTM-CNN menunjukkan kinerja yang lebih buruk dibandingkan model dasarnya. Sedangkan, hasil loss of knowledge menunjukkan bahwa kinerja model CNN- BiLSTM lebih buruk dari BiLSTM-CNN. Selain itu, kedua model gabungan tersebut menunjukkan kinerja yang lebih baik dibandingkan model CNN, tetapi lebih buruk dibandingkan model BiLSTM. Untuk pengembangan lebih lanjut, diimplementasikan pula lifelong learning dengan pembaruan vocabulary. Dengan implementasi tersebut, model mampu mempelajari vocabulary dari domain data 2, 3, 4, dan 5. Pembaruan vocabulary ternyata meningkatkan kinerja model pada transfer of knowledge dan loss of knowledge.

Sentiment analysis is a process to determine the attitude or sentiment of the author regarding certain matters. The process of classifying sentiments manually takes a long time, so it is proposed to use machine learning. In this study, the machine learning model used is the CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long Short-Term Memory) and BiLSTM-CNN (Bidirectional Long Short-Term Memory - Convolutional Neural Network) models which produce better performance than the CNN and BiLSTM models on the problem of sentiment analysis. In order for the model to learn continuously from several data domains, the model is also implemented lifelong learning. As a result, the CNN-BiLSTM model shows better transfer of knowledge performance compared to the BiLSTM-CNN model and its base model. On the other hand, the BiLSTM-CNN model shows a worse performance than its base model. Meanwhile, the results of loss of knowledge show that the performance of the CNN-BiLSTM model is worse than the BiLSTM-CNN model. In addition, the two combined models show better performance than the CNN model, but worse than the BiLSTM model. For further development, lifelong learning is also implemented with an update to vocabulary. With this implementation, the model is able to learn vocabulary from data domain 2, 3, 4, and 5. In fact, the vocabulary update has an effect in increasing the performances of transfer of knowledge and loss of knowledge.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhatun Nurhaniifah
"Analisis sentimen dilakukan untuk menganalisis pendapat atau pandangan seseorang terhadap suatu masalah tertentu. Analisis sentimen dapat dilakukan secara manual, tetapi jika menggunakan data berskala besar akan lebih mudah dilakukan secara otomatis yaitu dengan menggunakan machine learning. Namun, machine learning hanya efektif digunakan pada satu domain saja sehingga dikembangkanlah lifelong learning. Lifelong learning merupakan machine learning yang dapat melakukan pembelajaran secara berkelanjutan. Pada penelitian ini, model yang digunakan adalah model CNN-LSTM dan LSTM-CNN. Pada kinerja transfer of knowledge, model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model LSTM, tetapi kedua model gabungan tersebut kinerjanya lebih buruk dibanding model CNN. Sedangkan, pada kinerja loss of knowledge, model model CNN-LSTM dan LSTM-CNN menunjukkan hasil lebih baik dibanding model CNN, tetapi lebih buruk dibanding model LSTM. Pada penelitian ini, diimplementasikan juga lifelong learning dengan pembaruan vocabulary. Penambahan pembaruan vocabulary pada lifelong learning meningkatkan kinerja model CNN, LSTM, CNN-LSTM, dan LSTM-CNN pada transfer of knowledge dan loss of knowledge

Sentiment analysis is done to analyze a person's opinion or views on a particular problem. Sentiment analysis can be done manually, but if you use large-scale data it will be easier to do it automatically by using machine learning. However, machine learning is only effective in one domain, so lifelong learning is developed. Lifelong learning is machine learning that can carry out continuous learning. In this study, the models used are the CNN-LSTM and LSTM-CNN models. In the transfer of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the LSTM model, but the two combined models performed worse than the CNN model. Meanwhile, for the loss of knowledge performance, the CNN-LSTM and LSTM-CNN models showed better results than the CNN model, but worse than the LSTM model. In this study, lifelong learning with vocabulary updates was also implemented. The addition of vocabulary updates to lifelong learning improves the performance of the CNN, LSTM, CNN-LSTM, and LSTM-CNN models on transfer of knowledge and loss of knowledge"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferdiansyah Zhultriza
"Turbin gas di Pembangkit Listrik Tenaga Gas dan Uap (PLTGU) harus dijaga keandalannya dengan melakukan prediksi anomali untuk menghindari kerusakan turbin gas. Untuk melakukan prediksi anomali turbin gas, perlu menggunakan metode yang tepat dengan memperhatikan beberapa hal. Prediksi anomali pada real-performance turbin gas di pembangkit listrik sulit dilakukan dengan simulasi model fisik karena kondisinya yang dinamis dan banyaknya parameter operasi yang saling memiliki korelasi, sehingga, dibutuhkan metode yang memiliki kemampuan ekstrasi informasi input dengan baik. Selain itu, parameter operasi turbin gas juga memiliki sifat sekuensi waktu, dimana hubungan parameter sebelum dan sesudah waktu tertentu memiliki hubungan yang berkorelasi. Beberapa penelitian belum dapat mengatasi kedua permasalahan tersebut untuk pemodelan real-performance turbin gas. Metode Convolutinal Neural Network dapat digunakan untuk menjawab permasalahan pertama dan metode Recurrent Neural Network dapat menjawab permasalahan kedua. Oleh karena itu, penelitian ini mengajukan metode hybrid Convolutional Neural Network (CNN) dengan tipe dari Recurrent Neural Network (RNN), yakni Long Short-term Memory (LSTM) dan Gate Recurrent Unit (GRU), untuk dapat mengekstrasi korelasi hubungan antar-parameter yang tepat dengan kemampuan komputasi time variant yang baik. Prediksi anomali yang didapatkan menggunakan model CNN sebesar 81,33%, metode hybrid CNN-LSTM sebesar 91,79%, dan hybrid CNN-GRU sebesar 91,46%. Sehingga, hybrid CNN-LSTM memberikan peningkatan akurasi prediksi anomali turbin gas dengan kemampuan ekstrasi fitur parameter dan komputasi time-variant yang lebih baik.

The reliability of the gas turbine in Combined Cycle Power Plant (CCPP) should be maintained by predicting anomalies to avoid damage failure. To predict the gas turbine anomaly, it is necessary to use the right method by paying attention to several things. The operating parameters of the gas turbine system are a form of inter-parameter correlation with a high dynamic change correlation, so it requires a method that can extract the feature input between parameters correctly. In addition, the gas turbine operating parameters also have time sequence properties, where the correlation between parameters before and after a certain time has a correlated variant. Several studies have not been able to overcome these two problems for modeling real-performance gas turbines. The Convolutional Neural Network method can be used to answer the first problem and the Recurrent Neural Network method can answer the second problem. Therefore, this research proposes a hybrid Convolutional Neural Network (CNN) method with a type of Recurrent Neural Network, called Long Short-term Memory (LSTM) and Gate Recurrent Unit (GRU), in order to extract the right correlation between parameters with better time variant computation. The anomaly prediction obtained using the CNN model is 81.33%, the CNN-LSTM hybrid method is 91.79%, and the CNN-GRU hybrid is 91.46%. Thus, the CNN-LSTM hybrids provide increased accuracy of gas turbine anomaly predictions with better parameter extraction and time-variant analysis capabilities."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>