Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 192141 dokumen yang sesuai dengan query
cover
Sherena Meirani
"Karbon dioksida (CO2) merupakan salah satu jenis gas rumah kaca yang menyebabkan terjadinya pemanasan global. Salah satu cara teknologi carbon dioxide capture and storage adalah dengan cara proses karbonasi pada magnesium silikat yang dapat menyimpan CO2 dalam keadaan termodinamika yang stabil. Sampel yang digunakan adalah by-product hasil ekstraksi dari bittern water yang mengandung magnesium silikat (sampel A) dan magnesium silikat komersial (sampel B). Magnesium silikat dilakukan leaching dengan asam sulfat untuk melakukan ekstraksi Mg dari silikatnya dan menghasilkan filtrat magnesium sulfat untuk proses karbonasi. Karbonasi dilakukan dengan variasi tekanan gas CO2 0,1, 0,3, dan 0,5 bar pada kondisi temperatur 30°C selama 45 menit. Penambahan amonia dilakukan secara berkala untuk menaikan dan mengontrol pH menjadi 8–9 agar terjadi reaksi pengendapan. Hasil pengujian XRD pada endapan hasil karbonasi didominasi oleh senyawa berupa magnesium carbonate hydroxide hydrate dengan jenis hydromagnesite (Mg5(CO3)4(OH)2·4(H2O), dypingite (Mg5(CO3)4(OH)2·8(H2O), dan giorgiosite (Mg5(CO3)4(OH)2·5(H2O) serta terdapat senyawa magnesium karbonat (MgCO3). Variasi tekanan gas CO2 pada percobaan ini memiliki pengaruh terhadap peningkatan konsentrasi magnesium. Semakin besar tekanan yang diinjeksikan akan membuat kadar magnesium semakin meningkat. Konsentrasi magnesium yang tertinggi dihasilkan oleh sampel A pada variasi tekanan 0,5 bar sebesar 71,203% dan sampel B pada variasi tekanan 0,5 bar menghasilkan kadar magnesium sebesar 71,317%.

Carbon dioxide (CO2) is a type of greenhouse gas that causes global warming. One way of carbon dioxide capture and storage technology is by means of the carbonation process on magnesium silicate which can store CO2 in a state that thermodynamically stable. The sample used is a by-product extracted from bittern water containing magnesium silicate (sample A) and commercial magnesium silicate (sample B). Magnesium silicate is leached with sulfuric acid to extract Mg from the silicate and produce magnesium sulfate filtrate for the carbonation process. Carbonation was carried out with variations in CO2 gas pressure of 0,1, 0,3, and 0,5 bar at 30°C for 45 minutes. The addition of ammonia is carried out periodically to raise and control the pH to 8–9 so that the precipitation reaction occurs. The results of the XRD test on the carbonated precipitate were dominated by compounds in the form of magnesium carbonate hydroxide hydrate of the type hydromagnesite (Mg5(CO3)4(OH)2·4(H2O), dypingite (Mg5(CO3)4(OH)2·8(H2O), and giorgiosite (Mg5(CO3)4(OH)2·5(H2O) and magnesium carbonate (MgCO3). Variations in CO2 gas pressure used in this experiment have an effect on increasing the concentration of magnesium. The greater the injected pressure, the higher the magnesium content will be. The highest magnesium concentration was produced by sample A at a pressure variation of 0,5 bar of 71,203% and sample B at a pressure variation of 0,5 bar produced a magnesium content of 71,317%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sekar Andhira Puteri
"Adanya permasalahan mengenai tingkat emisi CO2, menyebabkan meningkatnya kesadaran untuk mengurangi emisi CO2 dengan penelitian untuk mengembangkan teknologi Carbon Capture, Storage, and Utilization (CCSU). Dikarenakan sumber magnesium silicate melimpah dan mudah untuk ditemukan di dunia, magnesium silicate digunakan untuk mengurangi emisi CO2dengan menangkap dan menyimpan CO2 menggunakan carbon capture storage (CCS). Pada penelitian ini, magnesium silicate diberikan perlakuan leaching untuk memulihkan kandungan unsur magnesiumnya. Filtrat hasil proses leachingakan digunakan untuk proses karbonasi dengan penambahan NH3 dan diinjeksikan oleh tekanan gas CO2. Perlakuan karbonasi menggunakan temperatur sebagai variabel bebas dengan variasi 30, 40, dan 50oC. Karakterisasi yang dilakukan yaitu pengujian X-ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscope – energy dispersive X-ray (SEM–EDS), dan Inductively coupled plasma-optical emission spectrometry (ICP-OES) yang bertujuan untuk mengetahui morfologi mikrostruktur permukaan dan kandungan senyawa yang dihasilkan dari percobaan. Dari proses karbonasi didapatkan bahwa semakin tinggi temperatur proses karbonasi menghasilkan peningkatan konsentrasi unsur magnesium pada endapan yang dihasilkan. Pada proses karbonasi yang diinjeksi CO2 dengan penambahan NH3 membentuk senyawa hydromagnesite (Mg5(CO3)4(OH)2·4H2O), magnesium carbonate (MgCO3), dan calcium carbonate (CaCO3).

The existence of problems regarding CO2 emission levels has led to increased awareness to reduce CO2 emissions with research to develop Carbon Capture, Storage, and Utilization (CCSU) technology. Because the source of magnesium silicate is abundant and easy to find in the world, magnesium silicate is used to reduce CO2 emissions by capturing and storing CO2 using carbon capture storage (CCS). In this study, magnesium silicate was treated with a leaching process to recover magnesium content. The leaching filtrate will be used for the carbonation process with the addition of NH3 and injected with CO2 gas pressure. The carbonation treatment uses temperature as an independent variable with variations of 30, 40 and 50oC. The characterization carried out was testing X-ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscope-energy dispersive X-ray (SEM–EDS), and Inductively coupled plasma-optical emission spectrometry (ICP-OES) which aims to determine the morphology of the surface microstructure and the content of the experimental compounds. From the carbonation process it is known that the higher the temperature of the carbonation process results in an increase in the concentration of the element magnesium in the resulting precipitate. In the carbonation process, CO2 is injected with the addition of NH3 to form hydromagnesite (Mg5(CO3)4(OH)2·4H2O), magnesium carbonate (MgCO3), dan calcium carbonate (CaCO3)."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anindya Putri Pratista
"Perubahan iklim yang disebabkan oleh peningkatan emisi karbon dioksida (CO2) dunia berdampak negatif pada kehidupan. Karbonasi mineral merupakan salah satu metode carbon capture, storage, and utilisation (CCUS) untuk menangkap CO2 dengan memanfaatkan mineral alkali seperti magnesium silikat yang keberadaannya melimpah di dunia. Pada penlitian ini dilakukan eksperimen karbonasi tidak langsung terhadap produk sampingan magnesium silikat dari bittern tambak garam. Eksperimen dilakukan dengan melindi magnesium silikat bersama asam sulfat sehingga memulihkan magnesium dalam bentuk magnesium sulfat. Larutan filtrat pelindian digunakan pada proses karbonasi dengan dialirkan gas CO2 dan penambahan NH3 secara berkala, yang dilakukan dengan variasi waktu 30 menit, 45 menit, dan 60 menit. Setelah pengujian dengan analisa karakterisasi, didapatkan kenaikan konsentrasi unsur magnesium pada produk karbonasi naik secara signifikan pada waktu karbonasi 45 menit menjadi sebesar 63,257% pada sampel magnesium silikat bittern dan 62,042% pada sampel magnesium silikat sintetis. Dimana pada waktu 30 menit konsentrasi magnesium sebesar 56,808% pada sampel magnesium silikat bittern dan 46,963% pada sampel magnesium silikat sintetis, dan kenaikan konsentrasi setelah waktu tersebut tidak signifikan. Sementara pada produk karbonasi, yang dihasilkan adalah senyawa karbonat, seperti hydromagnesite, magnesite, calcite, dan dolomite yang dapat menyimpan gas CO2 yang ramah lingkungan dan bersifat stabil untuk disimpan dalam jangka waktu yang lama. Hal ini dapat berpotensi untuk menurunkan emisi gas CO2 yang dihasilkan industri.

Climate change caused by the increasing carbon dioxide emissions (CO2) globally negatively impacts life. Mineral carbonation is one of the methods for carbon capture, storage, and utilization (CCUS) to capture CO2 by utilizing alkaline minerals such as magnesium silicate, which are abundant worldwide. This study conducted an indirect carbonation experiment on the byproduct of magnesium silicate from salt pond bittern. The experiment involved leaching magnesium silicate with sulfuric acid to recover magnesium as magnesium sulfate. The leachate filtrate solution was used in the carbonation process by flowing CO2 gas and periodic addition of NH3, with variations in the time intervals of 30 minutes, 45 minutes, and 60 minutes. After testing and analyzing the characteristics, it was observed that the concentration of magnesium in the carbonate product significantly increased during the 45-minute carbonation time, reaching 63.257% in the bittern magnesium silicate sample and 62.042% in the synthetic magnesium silicate sample. At the 30-minute mark, the magnesium concentration was 56.808% in the bittern magnesium silicate sample and 46.963% in the synthetic magnesium silicate sample. There was no significant increase in concentration beyond that time. The resulting carbonate products, such as hydromagnesite, magnesite, calcite, and dolomite, can store environmentally friendly CO2 gas and remain stable for long-term storage. This experiment has the potential to reduce the emissions of CO2 gas produced by industries."
Depok: 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fariz Adriansyah Putra
"ABSTRAK
Seiring menurunnya produksi minyak dan gas konvensional secara cepat di Indonesia, gas metana batubara coalbed methane; CBM menjadi sebuah sumber energi nonkonvensional yang patut dipelajari secara mendalam karena Indonesia memiliki cadangan CBM yang besar 453 TCF , namun produksi CBM belum dapat mencapai targetnya yang hanya 1 MMSCFD KESDM, 2014 . Sebuah studi perlu dilakukan untuk menghasilkan pemahaman dalam pengembangan lapangan CBM melalui implementasi metode peningkatan perolehan CBM enhanced coalbed methane recovery/ECBM-R : injeksi nitrogen dan karbon dioksida. Studi simulasi reservoir CBM Indonesia di Sumatera Selatan, yaitu Lapangan T, dan uji sensitivitas teknis seperti komposisi dan laju fluida terinjeksi dengan menggunakan simulator numerik dilakukan untuk memprediksi besarnya peningkatan perolehan metana melalui ECBM. Sebuah model yang didasarkan pada data aktual dibuat dan diverifikasi dengan perhitungan volumetrik sebelum digunakan untuk simulasi. Hasil perhitungan volumetrik menunjukkan kecocokan dengan model yang dibuat dengan perbedaan hasil mencapai 0,68 . Dengan perbedaan dibawah 10 maka model ini dianggap sudah terverifikasi dan applicable untuk simulasi. Setelah itu, model dijalankan sesuai skenario-skenario yang telah ditentukan dan dibandingkan dengan primary production. Berdasarkan hasil simulasi, reservoir CBM lsquo;T rsquo; mendapatkan penambahan perolehan metana dengan penambahan paling besar mencapai 3,52 . Dengan kata lain, studi ini menunjukkan bahwa injeksi CO2- N2 memiliki dampak positif pada peningkatan produksi nasional CBM, khususnya pada lapangan CBM lsquo;T rsquo; Sumatra Selatan, dan harapannya berguna untuk pengembangan CBM lebih lanjut di Indonesia.

ABSTRACT
As conventional oil and gas production keeps declining rapidly in Indonesia, coalbed methane CBM is an unconventional energy source which worth to be explored more as Indonesia has a huge CBM reserves 453 TCF , unfortunately, CBM production hasn rsquo t reached its target which is only 1 MMSCFD Ministry of Energy and Mineral Resources, 2014 . A research needs to be performed to deliver an understanding in terms of the development of CBM field through the implementation of enhanced CBM recovery ECBM method nitrogen and carbon dioxide injection. Reservoir simulation study of Indonesia rsquo s CBM reservoir in South Sumatera, named Field lsquo T rsquo , and technical sensitivity test regarding composition and rate of injected fluid are conducted by the numerical simulator in order to predict the enhancement of methane rsquo s recovery through ECBM. A model which based on actual data was constructed and then verified by volumetric calculation. Volumetric calculation result showed a compatibility with model simulation result with the differences of 0,68 . With the difference below 10 , this model is considered as a verified model and applicable for simulation. The model was then performed according to predetermined scenarios and compared to primary production. Based on the simulation results, CBM Reservoir lsquo T rsquo gained the additional methane recovery with the greatest increase of 3,52 . In other words, this study concludes that CO2 N2 Injections have a positive impact on increasing national production of CBM, particularly in South Sumatra rsquo s CBM lsquo T rsquo field, and can be useful for further CBM development in Indonesia"
2018
T51092
UI - Tesis Membership  Universitas Indonesia Library
cover
Juniarto Matasak Palilu
"Saat ini ada kendala dalam pengadaan semen khusus yang sesuai untuk dijadikan bahan penyekat sumur injeksi CO2 pada Carbon Capture and Storage (CCS). Semen Kelas-G merupakan bahan dasar yang dapat dimodifikasi sehingga sesuai untuk penggunaan pada sumur injeksi CO2 di mana dalam bentuk suspensi semen dan air banyak digunakan untuk penyekat ruang anulus pada sumur minyak dan gas bumi. Suspensi semen berbahan semen Kelas-G mengalami penyusutan volume selama proses pengerasan. Hal ini merupakan salah satu kekurangan semen Kelas-G jika diaplikasikan tanpa modifikasi. Selain itu semen Kelas-G cenderung terdegradasi apabila berada di lingkungan air dengan kandungan CO2 tinggi. Pada penelitian ini, semen Kelas-G dimodifikasi dengan menambahkan aditif mengembang (swelling) CaO dan MgO untuk mengatasi penyusutan volume dan degradasi tersebut. Selain itu, silica flour sebagai supplementary cementitious material dipergunakan juga dengan komposisi 35% by weight of cement (BWOC) sebelum ditambahkannya aditif tersebut. Penelitian ini bertujuan untuk meneliti dampak penambahan aditif tersebut di atas terhadap perubahan ketahanan korosi dan kekuatan mekanik suspensi semen di lingkungan air dengan kandungan CO2 tinggi. Pembuatan sampel dilakukan di laboratorium dengan variasi komposisi aditif (5%, 10%, 15%, dan 20% BWOC) temperatur cure (26°C dan 50°C) dan waktu cure sebelum uji korosi (1 hari dan 7 hari). Untuk mensimulasikan kondisi air dengan kandungan CO2 tinggi, sampel dibenamkan di dalam air tersaturasi CO2 di dalam autoclave bertekanan 2,0684 MPa dan temperatur 50°C selama 14 hari. Selain uji korosi, dilakukan juga pengujian X-Ray Diffraction, Scanning Electron Microscopy/Energy-Disperse X-ray Spectroscopy, Scanning Electron Microscopy, Laser Particle Size Analyzer, Uniaxial Expansive/Shrinkage, Ultrasonic Cement Analyser, Three Point Bending Test, dan Macro Photo Imaging. Hasil percobaan menunjukkan bahwa penambahan aditif CaO (komposisi 5%, 10%, 15%, dan 20% BWOC) dan MgO 20% BWOC dapat mencegah penyusutan volume pada suspensi semen Kelas-G. Peningkatan ketahanan korosi tertinggi terjadi pada sampel SC15(1d-26C) yakni sebesar 70,50%. Peningkatan kekuatan mekanik tertinggi terjadi pada sampel SC5(1d-50C) yakni sebesar 43,82%. Peningkatan ketahanan korosi tertinggi akibat penambahan aditif MgO terjadi pada SM20(7d-50C) sebesar 61,93% dan peningkatan kekuatan mekanik tertinggi pada SM10(7d-50C) sebesar 10,58%.

Currently there are obstacles in the procurement of special cement that is suitable to be used as an insulating material for CO2 injection wells in Carbon Capture and Storage (CCS). Class-G cement is a base material that can be modified so that it is suitable for use in CO2 injection wells where in the form of a cement and water suspension it is widely used to insulate the annulus spaces in oil and gas wells. Cement suspensions made from Class-G cement experience volume shrinkage during the hardening process. This is one of the disadvantages of Class-G cement when applied without modification. In addition, Class-G cement tends to degrade when exposed to water with high CO2 content. In this study, Class-G cement was modified by adding swelling additives (swelling) CaO and MgO to overcome the volume shrinkage and degradation. In addition, silica flour as a supplementary cementitious material is also used with a composition of 35% by weight of cement (BWOC) before adding the additive. This study aims to examine the impact of the addition of the above additives on changes in corrosion resistance and mechanical strength of cement suspensions in water environments with high CO2 content. Sampling was carried out in the laboratory with various additive compositions (5%, 10%, 15%, and 20% BWOC), cure temperature (26°C and 50°C) and cure time before corrosion test (1 day and 7 days). To simulate water conditions with high CO2 content, the sample was immersed in CO2-saturated water in an autoclave at a pressure of 2.0684 MPa and a temperature of 50°C for 14 days. In addition to the corrosion test, X-Ray Diffraction, Scanning Electron Microscopy/Energy-Disperse X-ray Spectroscopy, Scanning Electron Microscopy, Laser Particle Size Analyzer, Uniaxial Expansive/Shrinkage, Ultrasonic Cement Analyser, Three Point Bending Test, and Macro Photo tests were also conducted. Imaging. The experimental results showed that the addition of CaO additives (composition of 5%, 10%, 15%, and 20% BWOC) and MgO 20% BWOC could prevent volume shrinkage in Class-G cement suspensions. The highest increase in corrosion resistance occurred in the SC15 (1d-26C) sample, which was 70.50%. The highest increase in mechanical strength occurred in the SC5 (1d-50C) sample, which was 43.82%. The highest increase in corrosion resistance due to the addition of MgO additives occurred at SM20(7d-50C) by 61.93% and the highest increase in mechanical strength at SM10(7d-50C) by 10.58%."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fitria Nur Hayati
"ABSTRACT
Umumnya, Industri gas menggunakan amina sebagai absorben untuk memisahkan CO2 dari gas asam. Namun, degradasi dari amina memiliki efek buruk terhadap lingkungan selain itu regenerasi amina membutuhkan energi yang besar. Deep Eutectic Solvent DES merupakan absorben alternatif yang ramah lingkungan yang dapat dijadikan pelarut CO2. Dalam penelitian ini, kelarutan CO2 menggunakan DES yang disintesis dari kolin klorida dan 1,4-butanadiol diamati pada 30oC, 40oC, dan 50oC pada tekanan mencapai 25 bar. Rasio mol kolin klorida dan 1,4-butanadiol yang digunakan adalah 1:2, 1:3, dan 1:4. Penelitian absorpsi CO2 menggunakan metode volumetrik. Rasio antara mol CO2 yang mampu diabsorpsi oleh setiap mol DES dan tekanan gas dihitung dari data kelarutan. Kelarutan CO2 menggunakan DES menurun dengan kenaikan suhu dan meningkat seiring dengan kenaikan tekanan absorpsi. DES dengan komposisi kolin klorida: 1,4-butanadiol 1:2 memiliki kapasitas absorpsi CO2 terbesar yaitu 0,085 mol CO2/mol DES pada suhu 25 bar dan 30oC dengan nilai parameter yaitu 0,0034 mol CO2/mol DES per bar.

ABSTRACT
Nowadays, Gas industry use amines technology to separate CO2 from the natural gas but the degradation of amines have some bad effects to environmental and the regeneration of amines consumed much enegy. Deep Eutectic Solvent DES have recently been considered as alternative solvent and have been proved its ability to absorp CO2. In this research, the solubility of CO2 in DES which is syntezsized by choline cloride and 1,4 butanadiol was determined at 30oC, 40oC, dan 50oC under pressure up to 25 bar. The mole ratios of choline chloride and 1,4 butanadiol selected were 1 2, 1 3, and 1 4. This research uses volumetric method. The ratio of moles from CO2 which can be absorbed per mole DES and the pressure of gas is calculated from the solubility data. The solubility of CO2 in DES decreased by with increasing temperature and increased by increasing pressure. The best composition to absorp CO2 is choline cloride 1,4 butanadiol 1 2 which can absorp 0,085 mol CO2 mol DES at 25 bar and 30oC with constant is 0,0034 mol CO2 mol DES per bar."
2017
S67896
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pancar Muhammad Pribadi
"ABSTRACT
Penerapan magnesium sebagai implan merupakan salah satu contoh aplikasi dari penggunaan biomaterial yang marak dikembangkan oleh para peneliti. Namun, salah satu kekurangan dari penggunaan magnesium adalah laju korosinya yang sangat besar. Agar dapat digunakan, magnesium tersebut perlu mengalami modifikasi hingga pada akhirnya, laju korosi dari magnesium tersebut pun tidak menjadi terlalu cepat. Salah satu contoh modifikasi yang dapat dilakukan adalah dengan menjadikan magnesium tersebut menjadi sebuah komposit dengan material reinforcement berupa karbonat apatit. Pada penelitian ini, metode yang digunakan dalam fabrikasi implan berbahan komposit logam tersebut adalah dengan menggunakan metode metalurgi serbuk. Pembuatan implan dengan metode powder metallurgy tersebut memungkinkan pembuatan sebuah objek dengan dari material serbuk. Hasil dari studi ini menunjukan bahwa nilai dari kekuatan produk komposit Mg/5CA, berupa spesimen implan miniplat, memiliki nilai flexural stress sebesar 34,02 MPa, flexural strain sebesar 0,9, dan nilai modulus elastisitas sebesar 3,53 GPa. Rendahnya ketiga nilai properties tersebut menunjukan bahwa proses fabrikasi yang dilakukan masihlah belum sempurna, terutama pada proses sinteringnya.

ABSTRACT
The application of magnesium as implants material is an example of using biomaterial, which is currently being widely studied and experimented by researchers. However, one of its biggest weaknesses is its high corrosion rate. To be commercially used, the magnesium needs some modification in order to retard the corrosion, which occurs after the implantation. One of the available method is to turn the magnesium into a composite material, reinforced with carbonate apatite. In this research, the method to be used in fabricating the metal composite based implant is by powder metallurgy. The method of powder metallurgy in fabricating the miniplate implant enables a product to be fabricated from powder material. Based on the result of this study, it is known that the flexural stress, flexural strain, and the modulus of elasticity are 34,02 MPa 0,9 and 3,53 GPa, respectively. Such low properties value indicate that the fabrication process taken in this study is still considered poor for the material, especially for the sintering process."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ainu Safira Corni
"[ABSTRAK
Penelitian ini mengevaluasi kinerja absorpsi gas CO2 dari campurannya dengan
CH4 melalui membran kontaktor superhidrofobik. Kinerja kontaktor membran
superhidrofobik ini ditinjau dari empat parameter utama dengan variasi laju alir
pelarut DEA (100, 300 dam 500 mL/menit) dan jumlah serat membran kontaktor
(2000 dan 8000). Hasil penelitian ini menunjukkan bahwa kenaikan laju alir pelarut
DEA meningkatkan kinerja kontaktor membran superhidrofobik, dalam hal
koefisien perpindahan massa, fluks dan efisiensi penyerapan CO2. Sedangkan
kenaikan jumlah serat membran akan menurunkan koefisien perpindahan massa
dan fluks CO2. Namun, meningkatkan efisiensi penyerapan CO2 dan acid loading.
Koefisien perpindahan massa dan fluks CO2 tertinggi yang didapatkan pada
penelitian ini berturut-turut adalah 2,31 x 10-4 cm/s dan 7,15 x 10-6 mmol/cm2s pada
laju alir DEA 500 mL/menit dan jumlah serat membran 2000. Sedangkan efisiensi
penyerapan CO2 tertinggi adalah 72% pada laju alir DEA 500 mL/menit dan jumlah
serat membran 8000.
ABSTRACT
This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000.;This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000.;This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000., This study evaluates performance of CO2 absorption from its mixture with CH4
through membran contactor superhydrophobic. Superhidrophobic membrane
contactor performance is observed using four main parameters by varying the flow
rate of solvent DEA (100, 300 dam 500 mL/min) and the number of fiber membrane
contactors (2000 and 8000). The results showed that increasing DEA solvent flow
rate increase superhidrophobic membrane contactor performance, in terms of mass
transfer coefficient, flux and efficiency removal of CO2. While increasing the
number of fiber membrane will reduce the mass transfer coefficient and CO2 flux.
However, it will increase the efficiency removal of CO2 and acid loading. The
highest mass transfer coefficient and CO2 flux obtained in this study are
respectively 2,31 x 10-4 cm/s and 7,15 x 10-6 mmol/cm2s on DEA flow rate of 500
mL/min and the number of fiber membranes 2000. The highest CO2 absorption
efficiency is 72% at DEA flow rate of 500 mL/min and the number of fiber
membranes 8000.]"
Fakultas Teknik Universitas Indonesia, 2016
S62292
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Ratna Endriana
"ABSTRACT
Karbon dioksida (CO2) adalah gas rumah kaca utama yang menyebabkan pemanasan global dan perubahan iklim. Karena jumlahnya yang melimpah, CO2 dapat dijadikan sebagai sumber C1 terbarukan untuk sintesis bahan kimia yang berguna. Dalam penelitian ini, telah dilakukan studi reaksi karboksilasi fenilasetilena dengan CO2 menggunakan katalis logam Ni terimpregnasi pada support karbon mesopori. Karbon mesopori telah berhasil disintesis dengan metode soft template menggunakan Pluronik F127 sebagai pembentuk pori, formaldehida dan phloroglucinol sebagai sumber karbon, dan HCl sebagai katalis asam. Material ini dikarakterisasi dengan FTIR, XRD, SEM, dan BET. Modifikasi support dilakukan dengan cara impregnasi logam Ni ke dalam karbon mesopori (Ni@MC). Katalis Ni@MC digunakan sebagai katalis dalam reaksi karboksilasi fenilasetilena dengan CO2. Reaksi dilakukan dalam reaktor dengan kondisi reaksi yang bervariasi, yakni variasi jenis pelarut (DMF dan Toluene), variasi tekanan (1 atm, 3 atm, 5 atm), variasi suhu (85oC, 100oC, 125oC). Produk reaksi karboksilasi ini yang diharapkan merupakan asamsinamat yang kemudian dianalisis dengan menggunakan HPLC untuk menentukan %yield dan %konversi.

ABSTRACT
Carbon dioxide (CO2) is the main greenhouse gas that causes global warming and climate change. Due to its abundance, CO2 can be used as a renewable C1 source for the synthesis of useful chemicals. In this research, carboxylation reaction of phenylacetylene with CO2 has been carried out using nickel impregnated in mesoporous carbon as catalyst support. Mesoporous carbon has been successfully synthesized using soft template method with Pluronik F127 as a pore-forming, formaldehyde and phloroglucinol as carbon source, and HCl as acid catalyst. Material was characterized by FTIR, XRD, SEM, and BET. Modification of support was done by impregnating nickel into mesoporous carbon (Ni@MC). Ni@MC was then used as a catalyst in carboxylation reaction of phenylacetylene with CO2. The reactions were carried out in reactor with various conditions, such as temperature (85oC, 100oC, 125oC), solvent (DMF and Toluene), and pressure (1 atm, 3 atm, 5 atm). The result of carboxylation reactions which is expected to be cinnamic acid, were analyzed by HPLC and LC MS to determine yield and conversion."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rikiyar Magfur
"Lapangan Subang terletak di Desa Pelawad, Karawang, Jawa Barat termasuk wilayah kerja PT. Pertamina EP Asset 3. Berdasarkan data analisa kadar CO2 pada fase gas sangat tinggi yaitu, 50,66% mol. Pada kondisi saat ini associated gas tidak memilik nilai ekonomis karena langsung dialirkan ke flare untuk dibakar. Oleh karena itu diperlukan penangan khusus untuk memisahkan CO2 dari aliran associated gas agar kadar nilai CO2 maksimal sebesar 5% mol dan kadar air di bawah 7 lb/MMSCF sehingga dapat dikirim ke sales point. Pada penelitian ini, dilakukan simulasi proses pengolahan dengan teknologi solid adsorption yang menggunakan peranti lunak Simulator Adsorption V.10 dan dibandingkan dengan simulasi proses pengolahan dengan teknologi solvent absorption yang menggunakan piranti lunak Unisim. Keluaran dari simulasi ini akan menghasilkan beberapa aspek yaitu jumlah pelarut, konsentrasi penggunaan pelarut dan dimensi dari bed adsorbent pada laju alir gas umpan. Selain itu dilakukan perbandingan secara kualitatif dari kedua teknologi pengolahan gas yang mengandung CO2 tersebut. Berdasarkan hasil simulasi AGRU diperoleh laju alir gas produk yang mengandung kadar CO2 4,49% mol dengan menggunakan larutan amine yang memiliki konsentrasi 35%wt MDEA, 9%wt MEA dan 56%wt Air. Dan hasil simulasi PSA diperoleh laju alir gas produk yang mengandung kadar CO2 4,98% mol dengan menggunakan dimensi bed adsorbent (D:H) adalah 1m:3,5m. Dan dari hasil analisis keekonomian diperoleh 9,32% IRR, NPV USD -396.119 dan payback period 11 tahun untuk teknologi AGRU. Dan 31,82% IRR, NPV USD 5.927.106 dan payback period 3,35 tahun untuk teknologi PSA. Sehingga teknologi PSA lebih ekonomis untuk diterapkan di Lapangan Subang.

Subang Field is located in Pelawad Village, Karawang, West Java, including the working area of PT. Pertamina EP Asset 3. Based on the analysis data, the CO2 content in the gas phase is very high, 50.66% mol. In the current condition, the associated gas has no economic value because it is directly release to the flame to be burned. Therefore a special handler is needed to separate CO2 from the gas stream so that the maximum CO2 content is 5% mol and the water content is below 7 lb/MMSCF so that it can be sent to sales gas point. In this study, a simulation process devide on two (2) solid adsorption technology that will simulated by Simulator Adsorption V.10 software and compared with the separation process solvent absorption technology that will simulated by Unisim software. The output of this simulation will result several aspects such as quantity of solvent, concentration of solvent and bed adsorbent dimensinon at feed gas flow rates. In addition, a qualitative comparison was made of the two gas processing technologies containing CO2. Based on the AGRU simulation, the gas product have a content of 4.49% mol CO2 by using an amine solution that has a concentration of 35%wt MDEA, 9%wt MEA and 56%wt water. Meanwhile PSA simulation, gas product have a content of 4.98% mol CO2 by using bed dimensions of the adsorbent (D:H) is 1m:3.5m. And then, from economic analysis obtained 9.32% IRR, NPV USD -396,119 and a payback period of 11 years for AGRU technology. And 31.82% IRR, NPV USD 5,927,106 and payback period of 3.35 years for PSA technology. So that PSA technology is more economical to be applied in the Subang Field."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>