Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 97625 dokumen yang sesuai dengan query
cover
Rafif Fadhilah Ushaim
"Dalam sistem presensi konvensional, seringkali terjadi kecurangan dalam proses presensi baik itu yang menggunakan RFID ataupun manual dengan tanda tangan. Begitu pula dengan presensi menggunakan teknologi pengenalan wajah juga terjadi kecurangan dengan menggunakan foto gambar wajah atau rekaman video,  Oleh karena itu, penelitian ini mengusulkan penggunaan algoritma Deep Learning untuk mendeteksi serangan face spoofing dalam sistem presensi berbasis wajah. Pada pengimplementasiannya digunakan Raspberry Pi 4 Model B agar lebih efektif dan efisien dalam penerapannya. Metodologi yang digunakan dalam penelitian ini adalah dengan mengumpulkan dataset wajah asli dan palsu, kemudian dilakukan proses pelatihan menggunakan algoritma Deep Learning. Algoritma Deep Learning sudah terkenal efektif dalam mengenali fitur wajah. Dataset yang digunakan dalam penelitian ini adalah kombinasi antara dataset wajah asli dan palsu yang dikumpulkan dari berbagai sumber. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa penggunaan teknologi pengenalan wajah dengan penerapan algoritma Deep Learning sebagai Face Anti-Spoofing (FAS) mampu mendeteksi serangan face spoofing dalam sistem presensi berbasis wajah. Hal ini terlihat dari tingkat keakuratan yang diperoleh dari proses pengujian yang dilakukan pada sistem presensi yang dikembangkan. Diharapkan sistem presensi ini dapat diimplementasikan secara luas untuk meningkatkan keamanan dan keandalan dalam sistem presensi berbasis wajah.

In conventional attendance systems, cheating often occurs in the attendance process, whether using RFID or manual methods with signatures. Similarly, in attendance systems that utilize facial recognition technology, cheating can occur through the use of facial photos or video recordings. Therefore, this research proposes the use of Deep Learning algorithms to detect face spoofing attacks in facial-based attendance systems. For implementation, Raspberry Pi 4 Model B is employed to enhance effectiveness and efficiency. The methodology utilized in this study involves collecting genuine and fake face datasets, followed by training processes using Deep Learning algorithms. Deep Learning algorithms are renowned for their effectiveness in recognizing facial features. The dataset used in this research is a combination of genuine and fake face data collected from various sources. The results obtained from this research demonstrate that employing facial recognition technology with the application of Deep Learning algorithms as Face Anti-Spoofing (FAS) is capable of detecting face spoofing attacks in facial-based attendance systems. This is evident from the accuracy achieved during the testing process conducted on the developed attendance system. It is hoped that this attendance system can be widely implemented to enhance security and reliability in facial-based attendance systems."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alzy Maulana Bermanto
"Sistem pengenalan wajah (face recognition system) merupakan salah satu sistem yang dibangun berdasarkan pre-trained model. Sistem ini memanfaatkan teknik biometrik yang menggunakan wajah sebagai pengenalan atau identifikasi seseorang. Implementasi sistem pengenalan wajah dapat diaplikasikan dalam berbagai macam aplikasi seperti sistem absensi untuk mengecek kehadiran, sistem monitoring pengunjung di tempat wisata ataupun tempat-tempat publik, hingga dapat digunakan untuk mengenali tingkah laku seseorang untuk analisis-analisis yang dibutuhkan di berbagai bidang. Dalam penelitian ini, akan diimplementasikan sistem pengenalan wajah untuk sistem absensi menggunakan metode pembelajaran deep learning. Proses training data dan validasi hasil pengenalan wajah akan dibandingkan antara model CNN (Convolutional Neural Network) berarsitektur ResNet-50 dengan VGG16 yang telah dilatih sebelumnya menggunakan dataset Open Data Science (ODSC) untuk mendapatkan model perancangan sistem wajah terbaik. Simulasi real-time dilakukan dengan menggunakan model latih dengan validasi akurasi tertinggi sebesar 98.2%. Model latih yang digunakan dalam simulasi adalah ResNet-50 dengan dataset B sebagai data training serta learning rate sebesar 0.01. Hasil analisis menunjukkan bahwa proses training menggunakan model ResNet-50 jauh lebih ringan dan memberikan hasil model pelatihan dengan validasi akurasi yang lebih tinggi dibanding dengan model VGG16 yang membutuhkan banyak resource selama proses training berlangsung. Pengujian real-time yang dilakukan menunjukkan bahwa model ResNet-50 akan akurat jika memperhatikan beberapa kondisi yang diperlukan seperti jarak deteksi harus 50 hingga 100 cm dari kamera deteksi dan posisi wajah harus lurus menghadap kamera deteksi.

The face recognition system is a system that is built based on a pre-trained model. This system utilizes biometric techniques that use the face as an identification or authentication of a person. The facial recognition system can be applied in various applications such as attendance systems to check attendance, visitor monitoring systems at tourist attractions or public places, and to identify a person's behavior for the analyzes needed in various fields. In this study, a facial recognition system will be implemented for the attendance system using deep learning methods. To obtain the best system design, training, and validation of facial recognition results will be compared between the CNN (Convolutional Neural Network) model with the ResNet-50 and VGG16, which has been previously trained using the Open Data Science (ODSC) dataset. Real-time simulations were carried out using a training model with the highest validation accuracy of 98.2%. The training model used in the simulation is ResNet-50 with dataset B as training data and a learning rate of 0.01. The analysis results show that the training process using the ResNet-50 model is much lighter and provides results with higher accuracy validation than the VGG16 model, which requires a lot of resources during the training process. Real-time testing has shown that the ResNet-50 model will be accurate if it considers several conditions, such as the detection distance must be 50 to 100 cm from the detection camera, and the face position must be in a straight facing towards the detection camera."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Idham Ramadito
"Proses identifikasi dan pengenalan emosi seseorang selama ini hanya dapat dilakukan secara langsung dengan melihat raut wajahnya secara langsung dan mengolah raut wajah dari orang tersebut untuk mengerti emosi yang sedang dirasakan. Emosi dari raut wajah seseorang merupakan sesuatu yang paling susah dimengerti dan manfaat dari aplikasi yang dapat mengenali emosi ini dari raut wajah seseorang sangat tinggi. Untuk memenuhi minat yang tinggi atas pengenalan emosi pada raut wajah seseorang, penulis berniat untuk mengembangkan sebuah aplikasi yang dapat mengenali emosi seseorang dari raut wajahnya dengan menggunakan machine learning face recognition. Penulis berniat menggunakan framework CNN sebagai algoritma untuk melakukan machine learning face emotion recognition karena algoritma ini yang paling cocok dan mudah untuk digunakan, serta menggunakan arsitektur EfficientNet karena arsitektur ini merupakan arsitektur pengembangan dari Google yang bersifat opensource dan mudah digunakan karena sudah terintegrasi langsung dengan Keras. Program face emotion recognition ini menggunakan arsitektur EfficientNetB2 dan menggunakan dataset FER2013 berhasil mendapatkan akurasi training di angka 95.55% dan akurasi validasi sebesar 63.71%. Walaupun terjadinya overfitting karena perbedaan akurasi validasi dan training yang besar, akurasi testing dari program ini mendapatkan angka 88.21% dan berhasil mendeteksi 7 kategori emosi yang dihasilkan oleh raut wajah manusia
The process of identifying and recognizing a person's emotions so far can only be done directly by looking at his face directly and processing the facial expressions of the person to understand the emotions that are being felt. The emotion of a person's facial expression is something that is the most difficult to understand and the benefits of an application that can recognize this emotion from a person's facial expression is very high. To meet the high interest in recognizing emotions on a person's facial expression, the author intends to develop an application that can recognize a person's emotions from his facial expression using machine learning face recognition. The author intends to use the CNN framework as an algorithm to perform machine learning face emotion recognition because this algorithm is the most suitable and easy to use and uses the EfficientNet architecture because this architecture is a development architecture from Google that is open source and easy to use because it is integrated directly with Keras. This face emotion recognition program using the EfficientNetB2 architecture and using the FER2013 dataset managed to get a training accuracy of 95.55% and a validation accuracy of 63.71%. Despite the occurrence of overfitting due to the large difference in validation and training accuracy, the testing accuracy of this program scored 88.21% and succeeded in detecting 7 categories of emotions generated by human facial expressions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmad Mumtaz Firdaus
"Dampak wabah COVID yang mempengaruhi sektor pendidikan membuat pelajar dan juga tenaga pendidik diharuskan untuk melakukan pembelajaran secara daring. Penerapan pembelajaran melalui daring ini memberikan dampak terhadap pelajar khususnya pada mahasiswa. Dengan diterapkannya New Normal, dibutuhkan teknologi yang dapat melakukan pemantauan dengan skala yang besar. Penelitian ini bertujuan untuk membuat perangkat presensi mahasiswa berbasis face recognition dengan menambahkan fitur pembacaan suhu tubuh sebagai langkah pengawasan pada lingkungan kampus. Penelitian ini dilakukan pada area kampus FMIPA UI. Bahasa pemrograman yang digunakan untuk membuat perangkat lunak adalah python versi 3.6. Pada proses face recognition, digunakan metode Histogram of Oriented Gradients (HOG) sebagai pendeteksi lokasi wajah dan modul Openface untuk pengambilan fitur pada wajah. Untuk tahap pencocokan wajah, digunakan Euclidean Distance untuk mencari nilai kecocokan pada tiap citra database. Dari hasil pengujian terhadap 30 mahasiswa didapatkan akurasi sebesar 93.3%. Pada pengujian jarak terhadap pendeteksian wajah, didapatkan bahwa sistem dapat mendeteksi wajah hingga jarak 120 cm pada kondisi penerangan ruangan yang normal. Pada pengujian pembacaan suhu dengan menggunakan Thermal Camera AMG8833, didapatkan bahwa nilai akurasi menurun seiring bertambahnya jarak pembacaan. Jarak optimal untuk pembacaan suhu adalah sejauh 30 cm.

The impact of the COVID outbreak that has affected the education sector has forced students and educators to study online. The application of online learning has an impact on students, especially college students. With the implementation of the New Normal, technology is needed to perform health monitoring on a large scale. This study aims to create a face recognition-based student presence device by adding a body temperature reading feature. This research was conducted in the FMIPA UI campus area. The programming language used to create the software is python version 3.6. In the face recognition process, the Histogram of Oriented Gradients (HOG) method is used to detect the location of the face and the Openface module is used to capture features of the face. For the face matching stage, Euclidean Distance is used to find the match value for each database image. From the results of testing on 30 students, obtained an accuracy of 93.3%. While testing the distance capability in face detection, it was found that the system can detect faces up to a distance of 120 cm in normal room lighting conditions. While testing the Thermal Camera AMG8833, it was found that the accuracy value decreased as the distance increased. The optimal distance for temperature readings is 30 cm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryanoto Negoro
"Dengan beredarnya pandemi corona-virus (Covid-19) menuntut masyarakat untuk menjaga protokol kesehatan saat bepergian, salah satunya adalah menggunakan masker untuk mengurangi risiko terkena virus. Penggunaan masker juga disarankan oleh World Health Organization (WHO) agar digunakan saat beraktivitas dengan orang lain. Dengan mengacu hal tersebut, banyak perubahan yang terjadi pada teknologi yang digunakan sehari-hari, salah satunya adalah untuk sistem absensi. Apabila sebelum adanya Covid-19 absensi mahasiswa masih menggunakan buku tulis atau fingerprint, kini lebih baik beralih ke dalam sistem absensi berbasis face recognition dengan memanfaatkan salah satu algoritma deep learning, yaitu metode Convolutional Neural Network (CNN) untuk mengindentifikasi wajah seorang mahasiswa yang telah terdaftar. Dengan mengaplikasikan sistem absensi ini, memungkinkan mahasiswa untuk melakukan absensi tanpa terjadinya sentuhan langsung melalui media tangan. Bahasa pemrograman yang digunakan pada pengembangan aplikasi sistem absensi merupakan bahasa Python dengan implementasi Single Shot Detection (SSD) dan fitur ekstraksi ResNet. Evaluasi pengukuran pada sistem dilakukan pada situasi yang mempengaruhi kejelasan gambar dan model jumlah titik karakteristik yang berbeda.

With the spread of the corona-virus (Covid-19) pandemic, it requires the public to maintain health protocols when traveling, one of them is to use masks to reduce the risk of infected the virus. The use of masks is also recommended by the World Health Organization (WHO) to be used when doing activities with other people. Because of this, many changes have occurred in the technology that used in daily, one of them is the attendance system. If before Covid-19 student attendance was still using notebooks or fingerprints, now it is better to switch to a face recognition-based attendance system by utilizing one of the algorithm deep learning, namely the Convolutional Neural Network (CNN) method to identify the face of a student who has been recorded in. By applying this attendance system, it allows students to take attendance without direct touch through hand media. The programming language used in making attendance system applications is Python with Single Shot Detection (SSD) implementation and ResNet extraction feature. Evaluation of measurements on the system is carried out on situations that affect image clarity and the model number of different characteristic points."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Supeni
"Proses optimasi pada Probabilistic Neural Network (PNN) dapat dilakukan terhadap nilai smoothing parameter maupun struktur neuron. Setiap permasalahan memiliki nilai smoothing parameter optimal yang berbeda. Optimasi struktur neuron bertujuan untuk mereduksi banyak neuron yang digunakan sehingga dapat mempersingkat waktu komputasi.
Skripsi ini membahas proses pencarian nilai smoothing parameter optimal menggunakan algoritma genetika dan struktur neuron optimal menggunakan algoritma ortogonal dalam sistem pengenal wajah. Terdapat dua jenis teknik optimasi yang akan dibahas, lalu membandingkan hasilnya dengan PNN struktur utuh dan backpropagation. Data wajah yang digunakan berupa foto infra merah dan cahaya tampak.

Optimization of Probabilistic Neural Network (PNN) can be performed to the value of smoothing parameter and neuron structure. Every problem has different value of smoothing parameter. Optimization of neuron structure aims to reduce the number of neurons used, in order to shorten computation time.
This thesis discusses the process of finding the optimal value of smoothing parameter using genetic algorithms and optimal neuron structure using orthogonal algorithms in face recognition system. Two types of optimization techniques which will be discussed, then the results are compared with full structure PNN and backpropagation. Face data used in the form of infrared and visible light images.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1579
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Imran Shehzad
"Face recognition is one of the most important technologies, which has been well-developed over the last two decades. Face recognition technology has reached a level of utmost importance as the security issues increase worldwide. Most of the previously proposed systems, based on half face images are computationally slow and require more storage. In the proposed model, an average half face image is used for recognition to reduce computational time and storage requirements. The Viola Jones method is used in conjunction with intensity-based registration for real time face detection and registration, before splitting the full face. Finally, Principal Component Analysis (PCA) is used to compress the multi-dimensional data space and recognition. Experimental results clearly elaborate that half face recognition produces much better results as compared to the full face recognition and other previously proposed half face recognition models."
Depok: Faculty of Engineering, Universitas Indonesia, 2014
UI-IJTECH 5:2 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
M. Alwi Sukra
"Teknologi deep learning dapat menyelesaikan banyak masalah yang sulit dipecahkan oleh rumus matematis biasa. Salah satu masalah yang bisa diatasi adalah bahaya akibat rasa kantuk yang dialami pengemudi saat berkendara. Pada penelitian ini dibuat aplikasi android sistem deteksi kantuk yang memanfaatkan kamera smartphone. Kamera digunakan untuk mendapatkan informasi fitur citra wajah yaitu aspek rasio mata kanan, aspek rasio mata kiri, aspek rasio mulut, percentage of eye closure (PERCLOS), tingkat kejadian microsleep, dan tingkat kejadian menguap. Fitur-fitur tersebut didapat dari proses transformasi titik-titik landmark wajah. Pada penelitian ini, ditemukan bahwa metode terbaik untuk mendapatkan titik landmark wajah adalah dengan pelacakan Lucas-Kanade optical flow dengan 5 jumlah frame yang dilacak. Fitur-fitur yang dikumpulkan dapat digunakan untuk mendeteksi tingkat kantuk dengan memanfaatkan model deep learning yang telah dilatih dengan data yang dikumpulkan dari 10 orang. Pada penelitian ini, ada 2 jenis model deep learning yang dilatih untuk mendeteksi tingkat kantuk yaitu model deep neural network (DNN) dan long short-term memory (LSTM). DNN memiliki keseluruhan performa yang lebih baik dibandingkan LSTM. DNN memiliki accuracy sebesar 0.902538 dan f1 sebesar 0.899563. Sedangkan LSTM memiliki dari accuracy sebesar 0.891857 dan f1 sebesar 0.892689. Aplikasi android sistem deteksi kantuk yang dibuat menggunakan model deep learning DNN dan memiliki performa yang bagus dengan accuracy sebesar 0.844 dan f1 sebesar 0.865052. Aplikasi Android memiliki mekanisme pemberitahuan berupa suara yang dimainkan ketika pengemudi mengantuk. Selain itu, pada aplikasi Android juga terdapat 2 fungsi tambahan yaitu deteksi tidur dan deteksi gangguan konsentrasi pengemudi. Kedua fungsi tersebut akan mengeluarkan suara ketika terdeteksi untuk memberitahukan kepada pengguna. Dengan adanya aplikasi sistem deteksi kantuk yang dibuat pada penelitian ini, diharapkan dapat mendeteksi tingkat kantuk pengemudi sehingga mengurangi risiko kecelakaan akibat mengantuk.

Deep learning technology can solve many problems that are difficult to solve by ordinary mathematical formulas. One of the problems that can be overcome is the danger due to drowsiness experienced by the driver while driving. In this study, a drowsiness detection system on Android application that uses a smartphone camera is made. The camera is used to obtain facial image feature informations which is right eye aspect ratio, left eye aspect ratio, mouth aspect ratio, percentage of eye closure (PERCLOS), microsleep rate, and yawning rate. These features are obtained by transforming and processing facial landmark points. In this study, it was found that the best method for obtaining facial landmarks points is from Lucas-Kanade optical flow tracking with 5 frames tracked. The features collected can be used to detect drowsiness by utilzing a deep learning model that has been trained with data collected from 10 volunteers. In this study, there are 2 types of deep learning models that are trained to detect drowsiness that are deep neural network (DNN) and long short-term memory (LSTM). DNN has better overall performance than LSTM. DNN has an accuracy of 0.902538 and f1 of 0.899563. Whereas LSTM has an accuracy of 0.891857 and f1 of 0.892689. The drowsiness detection system Android application is created using the DNN model and has a good performance with an accuracy of 0.844 and f1 of 0.865052. The Android application has a notification mechanism in the form of sound that played when the driver is detected to be drowsy. In addition, the Android application also has an additional function that are sleeping detection and driver distraction detection. Both functions will make a sound when detected to notify the user. With the application of drowsiness detection system made in this study, it is expected to detect the level of drowsiness of the driver thereby reducing the risk of accidents due to drowsiness.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Praseyawidi Indrawan
"Identitas diri seseorang dalam jejaring sosial menjadi hal penting terutama ketika ingin mengenali siapa sebenarnya orang tersebut. Pencarian identitas diri dapat dengan mudah dilakukan melalui pencarian dalam situs search engine ataupun situs jejaring sosial yang ada pada komputer atau laptop. Metode ini sepertinya bukan merupakan hal yang efektif dan praktis seiring berkembangnya perangkat mobile dalam masyarakat seperti smartphone dan tablet. Untuk itu, dirancang sebuah sistem pengenalan wajah pada perangkat mobile. Sistem ini dirancang dalam bentuk aplikasi yang dikembangkan pada perangkat mobile Android.
Penggunaan Android Face Detector API akan bertindak sebagai pustaka dalam proses deteksi wajah pada perangkat mobile sebelum melakukan proses offloading ke layanan komputasi awan. Hasil implementasi berupa modul deteksi wajah pada perangkat mobile dan modul pengenalan wajah (offloading) yang memanfaatkan layanan komputasi awan dengan bantuan komunikasi Representational State Transfer (REST). Hasil pengujian sistem pada perangkat mobile menunjukkan bahwa total waktu pengenalan wajah sebesar 7,45 detik dengan waktu deteksi wajah (onloading) 0,45 detik dan waktu proses offloading 7 detik.

The identity of a person in social networking becomes very important especially when we want to identify a person. Search for detailed-identity can be easily conducted through searching using the search engine sites or existing social networking website using computer or laptop. This method is not effective and practical when we consider the development of mobile device technology in the community such as smartphone and tablet. Therefore, designed a face recognition system on mobile devices. The system is designed in the form of an application developed on Android mobile devices.
The use of Android Face Detector API will act as libraries in the process of face detection before performing the offloading stage. This paper describes the implementation of the facial detection module on mobile device and face recognition module (offloading) using cloud computing service with REST communication. The result of testing on mobile device indicates that total computation time for face recognition system reached 7,45 seconds with the onloading process 0,45 seconds and the offloading process 7 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42172
UI - Skripsi Open  Universitas Indonesia Library
cover
Sepritahara
"Sistem pengenalan wajah manusia merupakan salah satu bidang yang cukup berkembang dewasa ini, dimana aplikasi dapat diterapkan dalam bidang keamanan (security system) seperti ijin akses masuk ruangan, pengawasan lokasi (surveillance), maupun pencarian identitas individu pada database kepolisian. Tujuan Penulisan laporan tugas akhir ini adalah untuk membangun sebuah perangkat lunak pengenalan citra wajah manusia menggunakan metode Hidden
Markov Models (HMM) dengan input database Pain Ekspression Subset dan database Hasil Foto Sendiri dengan memanfaatkan aplikasi GUI. Hasil pengujian sistem menunjukkan bahwa sistem pengenalan wajah (face recognition) membandingkan percobaan pengenalan sesuai dengan codebook (32, 64,128, 256) dan iterasi (5, 10). Sistem pengenalan wajah manusia menggunakan metode Hidden Markov Models (HMM) mencapai tingkat akurasi pengenalan sebesar
84,28%, dengan database 70 gambar yang terdiri dari 10 individu dengan masing-masing individu memiliki 7 variasi ekspresi yang berbeda.

ABSTRACT
Human face recognition system is one area that is developing now, where applications can be applied in the field of security (security system) such as permit access into the room, monitoring locations (surveillance), or search for individual identity in the police database. Purpose of this final report is to build a software image of human face recognition using Hidden Markov Models method (HMM) with input Pain Ekspression Subset database and Image itself database applications of GUI. Test results show that the system of face recognition systems
trial comparing the introduction according to the codebook (32, 64.128, 256) and iteration (5, 10). Human face recognition system using Hidden Markov Models (HMM) reached the level of recognition accuracy of 84,28%, with 70 database that consists of 10 individuals with each individual has 7 variations of expressions."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1373
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>