Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 33610 dokumen yang sesuai dengan query
cover
Muhammad Nasim
"Furfural merupakan salah satu senyawa berharga yang memiliki berbagai kegunaan pada industri. Furfural sendiri dapat diperoleh dari biomassa lignoselulosa melalui konversi dari struktur hemiselulosa dan selulosa. Pada proses produksi furfural terdapat permasalahan terkait perolehan senyawa furfural, efeknya terhadap lingkungan serta masih adanya limbah belum dimanfaatkan secara optimal. Selulosa sendiri merupakan salah satu limbah yang dihasilkan pada produksi furfural dari biomassa. Selulosa merupakan salah satu bahan potensial yang dapat dikonversi menjadi furfural melalui metode pirolisis. Pada penelitian ini dilakukan peninjauan terkait proses pirolisis katalitik dengan metode impregnasi pada selulosa menggunakan asam borat untuk memproduksi senyawa furfural. Impregnasi asam borat pada sampel dilakukan untuk meningkatkan perolehan senyawa furfural dengan variasi rasio unsur boron sebesar 0,1 hingga 0,5 terhadap umpan selulosa dengan variasi suhu pirolisis sebesar 450 oC hingga 550 oC. Senyawa fufural yang terkandung pada produk bio-oil diuji menggunakan alat gas chromatography and mass spectrum (GC-MS) untuk menentukan kandungan senyawa furfural yang dihasilkan. Berdasarkan penelitian yang dilakukan, diperoleh pengaruh peran dari impregnasi asam borat dalam peningkatan dan perolehan maksimal produk furfural. Kehadiran asam borat serta peningkatan suhu pirolisis yang digunakan dapat meningkatkan selektifitas senyawa furfural pada proses pirolisis. Kondisi terbaik produksi furfural didapatkan pada kondisi suhu pirolisis sebesar 500oC dan penggunaan impregnan asam borat dengan rasio boron 0.5, dimana didapatkan perolehan senyawa furfural dengan analisis GC-MS sebesar 44,62% area.

Furfural is one of the valuable compounds that has various industrial uses. Furfural itself can be obtained from lignocellulosic biomass through the conversion of hemicellulose and cellulose structures. In the furfural production process there are problems related to the acquisition of furfural compounds, their effect on the environment and the presence of waste that has not been used optimally. Cellulose itself is one of the wastes generated in the production of furfural from biomass. Cellulose is one of the potential materials that can be converted into furfural through the pyrolysis method. In this research, a review was carried out regarding the catalytic pyrolysis process with the impregnation method on cellulose using boric acid to produce furfural compounds. Impregnation of boric acid on the samples was carried out to increase the recovery of furfural compounds with variations in the elemental boron ratio of 0.1 to 0.5 to cellulose feed with variations in pyrolysis temperature of 450 oC to 550 oC. Fufural compounds are contained in bio-oil products and tested using a gas chromatography and mass spectrum (GC-MS) to determine the content of the resulting furfural compounds. Based on the research conducted, the influence of the role of boric acid impregnation in increasing and maximizing furfural product was obtained. The presence of boric acid and the increased pyrolysis temperature used can increase the selectivity of furfural compounds in the pyrolysis process. The best conditions for furfural production were obtained at a pyrolysis temperature of 500 oC and the use of boric acid impregnant with a boron ratio of 0.5, where the recovery of furfural compounds by GC-MS analysis was 44.62% area."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Nasim
"Residu serai wangi merupakan salah satu limbah melimpah yang berpotensi untuk dikonversi menjadi produk yang lebih bermanfaat melalui proses pirolisis. Permasalahan pada konversi biomassa adalah terkait mekanisme reaksi yang terjadi. Mekanisme yang terjadi dalam suatu reaktor pirolisis terkadang tidak merata sehingga dibutuhkan waktu yang lebih lama untuk memastikan seluruh partikel biomassa terpirolisis. Hal tersebut dikarenakan proses pirolisis tersendiri merupakan proses yang sangat sensitif terhadap suhu dan tekanan operasinya. Oleh karena itu, pada penelitian ini akan dilakukan peninjauan terkait proses pirolisis katalitik melalui dengan metode impregnasi biomassa menggunakan katalis asam untuk memproduksi senyawa furfural. Proses impregnasi dilakukan pada biomassa serai wangi menggunakan asam borat dengan variasi rasio katalis terhadap umpan, sedangkan proses pirolisis dilangsungkan dengan variasi suhu untuk menganalisis konversi yang terjadi serta perolehan furfural pada proses tersebut. Percobaan dikakukan untuk memperoleh produk furfural tertinggi yang dihasilkan pada uap hasil priolisis. Dengan analisis GC-MS, diperoleh hasil yang mengindikasikan adanya peran dari impregnasi asam borat dalam peningkatan dan perolehan maksimal produk furfural. Kondisi optimal produksi furfural didapatkan pada kondisi suhu pirolisis sebesar 550oC dan penggunaan katalis asam borat dengan rasio 0.1, dimana didapatkan perolehan senyawa furfural dengan analisis GCMS sebesar 19,17 % area.

Citronella residue is one of the abundant wastes that has the potential to be converted into more useful products through the pyrolysis process. The problem with biomass conversion is related to the reaction mechanism that occurs. The mechanism that occurs in a pyrolysis reactor is sometimes uneven, so it takes a longer time to ensure that all biomass particles are pyrolyzed. This is because the pyrolysis process itself is a process that is very sensitive to temperature and operating pressure. Therefore, in this study, a review will be conducted regarding the catalytic pyrolysis process through the biomass impregnation method using an acid catalyst to produce furfural compounds. The impregnation process was carried out on citronella biomass using boric acid with various ratios of catalyst to feed, while the pyrolysis process was carried out with variations in temperature to analyze the conversion that occurred and the furfural produced in the process. The experiment was carried out to obtain the highest furfural product produced in the pyrolysis vapor. By GC-MS analysis, obtained results indicating the role of boric acid impregnation in the increase and maximum production of furfural products. Optimal conditions for furfural production were obtained at a pyrolysis temperature of 550oC and the use of a boric acid catalyst with a ratio of 0.1, where the content of furfural found form GCMS analysis was 19.17 % area."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Angela Lesmono
"Penelitian mengenai teknologi konversi biomassa untuk memperoleh senyawa kimia yang bernilai terus dilakukan, salah satunya dengan proses pirolisis. Proses pirolisis sangat sensitif terhadap suhu dan tekanan operasinya. Mekanisme reaksi yang terjadi dalam suatu reaktor pirolisis juga terkadang tidak merata sehingga dibutuhkan waktu yang lebih lama untuk memastikan seluruh partikel biomassa terpirolisis. Oleh karena itu, pada penelitian ini dilakukan peninjauan penyusutan massa yang terjadi selama proses pirolisis untuk bahan baku sebanyak 2.5 gram. Dari hasil penelitian, diperoleh bahwa proses pirolisis mencapai konversi maksimal pada setelah 35 menit. Percobaan dilakukan pada berbagai variasi suhu reaksi pirolisis serta kondisi katalitik dan non-katalitik untuk memperoleh produk furfural tertinggi yang dihasilkan pada uap hasil pirolisis. Dengan analisis GC-MS, diperoleh hasil bahwa peran katalis asam ZSM-5 dapat meningkatkan produk furfural yang dihasilkan dan produk furfural maksimal diperoleh pada kondisi pirolisis 500 C sebanyak 1.11 miligram per gram bahan baku jerami padi serta meningkat menjadi 1.48 miligram per gram bahan baku jerami padi pada kondisi pirolisis katalitikPenelitian mengenai teknologi konversi biomassa untuk memperoleh senyawa kimia yang bernilai terus dilakukan, salah satunya dengan proses pirolisis. Proses pirolisis sangat sensitif terhadap suhu dan tekanan operasinya. Mekanisme reaksi yang terjadi dalam suatu reaktor pirolisis juga terkadang tidak merata sehingga dibutuhkan waktu yang lebih lama untuk memastikan seluruh partikel biomassa terpirolisis. Oleh karena itu, pada penelitian ini dilakukan peninjauan penyusutan massa yang terjadi selama proses pirolisis untuk bahan baku sebanyak 2.5 gram. Dari hasil penelitian, diperoleh bahwa proses pirolisis mencapai konversi maksimal pada setelah 35 menit. Percobaan dilakukan pada berbagai variasi suhu reaksi pirolisis serta kondisi katalitik dan non-katalitik untuk memperoleh produk furfural tertinggi yang dihasilkan pada uap hasil pirolisis. Dengan analisis GC-MS, diperoleh hasil bahwa peran katalis asam ZSM-5 dapat meningkatkan produk furfural yang dihasilkan dan produk furfural maksimal diperoleh pada kondisi pirolisis 500 C sebanyak 1.11 miligram per gram bahan baku jerami padi serta meningkat menjadi 1.48 miligram per gram bahan baku jerami padi pada kondisi pirolisis katalitik

Research on biomass conversion technology to obtain valuable chemical compounds continues to be carried out, one of which is the pyrolysis process. The pyrolysis process is very sensitive to the temperature and pressure of its operation. The reaction mechanism that occurs in a pyrolysis reactor is also sometimes uneven so it takes longer to ensure all biomass particles are pyrolyzed. Therefore, this study reviews of the mass shrinkage that occurred during the pyrolysis process for raw materials was 2.5 grams. From the results of the study, it was obtained that the pyrolysis process reached its maximum conversion after 35 minutes. Experiments were carried out on variations of pyrolysis reaction temperatures as well as catalytic and non-catalytic conditions to obtain the highest furfural products produced in the pyrolysis vapors. Using GC-MS analysis, the results show the role of acid behavior in ZSM-5 catalyst can increase furfural products and maximum furfural products obtained under pyrolysis conditions of 1.11 milligrams per gram of raw material for rice straw and increase to 1.48 milligrams per gram under catalytic pyrolysis condition."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jessica
"Jumlah limbah biomassa yang melimpah dan belum termanfaatkan secara optimal menjadi alasan utama untuk dilakukan pirolisis menghasilkan senyawa furfural yang bernilai tinggi. Jerami padi dan tandan kosong kelapa sawit memiliki potensi yang besar dari segi jumlah dan komposisi, dimana kedua limbah ini mengandung >50% kandungan selulosa dan hemiselulosa. Pada penelitian ini, pirolisis campuran jerami padi dan tandan kosong kelapa sawit dilakukan untuk meneliti efek campuran terhadap produksi furfural. Hal ini dilakukan untuk mencapai suatu teknik pengolahan limbah yang lebih efisien, dimana tidak diperlukan adanya pemisahan jenis biomassa terlebih dahulu sebelum dipirolisis. Penelitian ini melakukan analisis produk senyawa furfural dengan kondisi operasi laju alir gas inert 85-90 mL/menit, variasi suhu 450-550°C, variasi rasio biomassa bermassa total 2,5 gram. Hasil yang didapatkan menunjukkan bahwa pirolisis campuran menghasilkan konversi, jumlah produk, serta energi aktivasi yang tidak berbeda secara signifikan (<15%) jika dibandingkan dengan pirolisis biomassa murni. Selain itu, didapatkan pula bahwa pirolisis biomassa selesai pada menit ke-35. Pirolisis yang menghasilkan produk tertinggi didapatkan pada suhu 500°C.

High availability of biomass waste that is not yet utilized can be pyrolyzed into the valuable furfural. Rice straw and oil palm empty fruit bunch have huge potential due to their amount and composition, in which both biomasses contain more than 50% of cellulose and hemicellulose. This work aims to investigate the effects of pyrolizing biomasses mixture to produce furfural, therefore creating a more flexible process of waste treatment using pyrolysis without waste segregation. This research is done to analyse the furfural produced by pyrolysis with inert gas flowrate between 85-90 mL/minute, variation of biomasses mass rasio up to a total of 2.5 gram, and variation of operating temperature from 450-550°C. The results show that co-pyrolysis of biomass mixture does not affect the conversion, furfural mass, and activation energy significantly (<15%), compared to individual biomass pyrolysis. Furthermore, the research shows that pyrolysis does not undergo significant mass reduction after 35 minutes. The optimum temperature for the production of furfural is 500°C."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Davina Athira Xanthi
"Sekam padi merupakan limbah yang dihasilkan dari penggilingan padi, namun kurangnya pemanfaatan dan tingginya kandungan lignin pada sekam padi membuatnya berpotensi besar untuk dimanfaatkan menjadi elektroda superkapasitor. Elektroda superkapasitor dapat menyimpan energi dalam bentuk muatan listrik yang dipisahkan oleh bahan dielektrik, serta memiliki nilai energi spesifik dan daya spesifik yang tinggi. Dalam penelitian ini, sekam padi akan diubah menjadi biochar melalui proses pirolisis dengan adanya impregnasi asam borat dan logam Fe. Pemilihan asam borat dan logam Fe dilakukan karena keduanya dapat meningkatkan karakteristik biochar, seperti perluasan permukaan dan pembentukan pori yang dapat meningkatkan kinerja superkapasitor. Penelitian ini mencakup variasi waktu aktivasi dan jumlah bahan impregnasi pada biomassa untuk memahami pengaruhnya terhadap karakteristik biochar yang dihasilkan. Kandungan asam borat dan logam Fe divariasikan sebanyak 0%, 10%, dan 15%, sementara waktu aktivasi divariasikan antara 90 menit dan 120 menit. Selain itu, dilakukan variasi konsentrasi elektrolit KOH untuk memahami pengaruhnya terhadap kinerja superkapasitor. Konsentrasi elektrolit KOH divariasikan menjadi 4 M, 5 M, dan 6 M. Hasil penelitian terbaik dari uji Cyclic Voltammetry diperoleh pada sampel AS10%-A120-6M. Ini menunjukkan bahwa waktu aktivasi selama 120 menit dan konsentrasi elektrolit sebesar 6 M dapat mempengaruhi nilai kapasitansi tertinggi yang dicapai, yaitu 198,5 F/g pada scan rate 10 mV/s. Nilai band gap energy untuk H3BO3 10% adalah 1,35 eV dan untuk Fe 10% adalah 1,55 eV. Nilai ini berada dalam rentang yang sesuai untuk superkapasitor sehingga dapat meningkatkan performa kapasitansi dengan konfigurasi asimetris.

Rice husks are waste produced from rice milling, but the lack of utilization and high lignin content in rice husks make it have great potential to be used as supercapacitor electrodes. Supercapacitor electrodes can store energy in the form of electric charges separated by a dielectric material, and have high specific energy and specific power values. In this research, rice husks will be converted into biochar through a pyrolysis process with impregnation of boric acid and Fe metal. Boric acid and Fe metal were chosen because both can improve biochar characteristics, such as surface expansion and pore formation which can improve supercapacitor performance. This research includes variations in activation time and the amount of impregnating material in the biomass to understand its effect on the characteristics of the biochar produced. The content of boric acid and Fe metal was varied by 0%, 10%, and 15%, while the activation time was varied between 90 minutes and 120 minutes. In addition, variations in KOH electrolyte concentration were carried out to understand its effect on supercapacitor performance. The KOH electrolyte concentration was varied to 4 M, 5 M, and 6 M. The best research results from the Cyclic Voltammetry test were obtained on the AS10%-A120-6M sample. This shows that an activation time of 120 minutes and an electrolyte concentration of 6 M can influence the highest capacitance value achieved, namely 198.5 F/g at a scan rate of 10 mV/s. The band gap energy value for 10% H3BO3 is 1.35 eV and for 10% Fe is 1.55 eV. This value is in the appropriate range for supercapacitors so that they can improve capacitance performance with asymmetric configurations."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Calvin Benedict Satria1
"The main elements of biomass consisting of cellulose, hemicellulose, and lignin are useful as the main material for the production of renewable energy. The main element of this biomass has been converted through the pyrolysis process for the production of various bioproducts from gas, liquid and solid fuels. The pyrolysis process heats the biomass from 300-500℃ in the absence of oxygen. However, the complexity of pyrolysis makes it difficult to determine the best operating conditions for a particular biomass to produce maximum product yields. Therefore, a model called Artificial Neural Network (ANN) has been determined to relate the relationship between bioproducts and the main constituents of biomass. ANN has been tested and reliable to estimate a value because the model can learn independently based on initial data. The correlation has estimated the mass percentage yield of the biomass pyrolysis process; Therefore, this study will provide a deeper understanding of thermal decomposition and kinetic analysis, especially on cellulose, hemicellulose, and lignin in the pyrolysis process using the ANN approach with thermogravimetric analysis data. Kinetic parameters were obtained using three iso-conversional methods, namely Friedman (FR), Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO) assuming a first-order reaction (n=1). Then, the findings of this study state that by analyzing the two ANN models using two transfer functions of logsig-tansig (LT) and tansig-tansig (TT), the error value is lower than the results of the analysis using one transfer function. The activation energies of cellulose, hemicellulose, and lignin produced in this study were 171.92, 150.31, 142.78 kJ/mol, respectively. Finally, the pre-exponential factor values ​​of the cellulose, hemicellulose, and lignin produced were 1.51×1010, 1.02×1010, and 6.53×1015 s-1, respectively.

Unsur utama biomassa yang terdiri dari selulosa, hemiselulosa, dan lignin berguna sebagai bahan utama produksi energi terbarukan. Unsur utama biomassa ini telah diubah melalui proses pirolisis untuk produksi berbagai bioproduk dari bahan bakar gas, cair dan padat. Proses pirolisis memanaskan biomassa dari 300-500℃ tanpa adanya oksigen. Namun, kompleksitas pirolisis membuat sulit untuk menentukan kondisi operasi terbaik untuk biomassa tertentu untuk menghasilkan hasil produk yang maksimal. Oleh karena itu, model yang disebut Jaringan Syaraf Tiruan (JST) telah ditentukan untuk menghubungkan hubungan antara bioproduk dan konstituen utama biomassa. JST telah teruji dan reliabel untuk mengestimasi suatu nilai karena model dapat belajar secara mandiri berdasarkan data awal. Korelasi telah mengestimasi persentase massa hasil proses pirolisis biomassa; Oleh karena itu, penelitian ini akan memberikan pemahaman yang lebih mendalam tentang dekomposisi termal dan analisis kinetik terutama pada selulosa, hemiselulosa, dan lignin pada proses pirolisis menggunakan pendekatan JST dengan data analisis termogravimetri. Parameter kinetik diperoleh dengan menggunakan tiga metode iso-konversi, yaitu Friedman (FR), Kissinger-Akahira-Sunose (KAS), dan Flynn-Wall-Ozawa (FWO) dengan asumsi reaksi orde satu (n=1). Kemudian, temuan penelitian ini menyatakan bahwa dengan menganalisis kedua model JST menggunakan dua fungsi transfer logsig-tansig (LT) dan tansig-tansig (TT), nilai errornya lebih kecil dibandingkan dengan hasil analisis menggunakan satu fungsi transfer. Energi aktivasi selulosa, hemiselulosa, dan lignin yang dihasilkan pada penelitian ini masing-masing adalah 171,92, 150,31, 142,78 kJ/mol. Akhirnya, nilai faktor pra-eksponensial dari selulosa, hemiselulosa, dan lignin yang dihasilkan masing-masing adalah 1,51×1010, 1,02×1010, dan 6,53×1015 s-1."
Depok: Fakultas Teknik, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joshua Jesse Karubaba
"Penelitian ini bertujuan untuk mengeksplorasi kemungkinan menciptakan nilai tambah yang sangat besar pada sumber daya sabut kelapa yang selama ini dianggap sebagai limbah. Salah satu nilai tambah yang dapat dihasilkan dari sabut kelapa adalah bio-oil yang kaya akan senyawa aromatik. Senyawa kaya aromatik dalam bio-oil telah berhasil diproduksi melalui proses pirolisis katalitik dengan bantuan katalis ZSM-5 terimpregnasi logam Nikel dan Seng. Pirolisis adalah perengkahan termal non-oksigen dari bahan organik.
Produk pirolisis atau dikenal sebagai bio-oil digunakan sebagai bahan bakar alternatif. Namun, seiring perkembangan zaman bio-oil dapat digunakan sebagai bahan baku dalam proses pembuatan banyak produk petrokimia karena memiliki senyawa aromatik. Aromatik adalah zat kimia berbentuk cincin yang dapat ditemukan dalam biomassa yang kaya lignoselulosa. Aromatik bio-oil diperoleh dari proses pirolisis katalitik limbah sabut kelapa dengan menggunakan bantuan katalis untuk memaksimalkan komposisi senyawa aromatik. Sabut kelapa dipotong dan digiling dalam persiapan-awal ke ukuran yang diinginkan. Katalis yang diimpregnasi Zn/ZSM-5 dan Ni/ZSM-5 yang telah dikarakterisasi oleh XRD (X-Ray Diffraction) digunakan untuk memaksimalkan yield dari senyawa aromatik, juga luas permukaan spesifik katalis menggunakan analisis Branauer Emmet Teller (BET).
Proses pirolisis katalitik berlangsung di reaktor silinder unggun diam yang dilengkapi dengan tungku sebagai sumber panas. Produk yang keluar dari reaktor dikondensasi dengan menggunakan air dingin dan aseton. FTIR (Fourier Transform Infrared) dan GCMS (Gas Chromatography-Mass Spectrometer) berfungsi sebagai instrumen analitik untuk mengidentifikasi keberadaan dan kuantitas kelompok aromatik dalam bio-oil. BTX (Benzena, Toluena dan Xilena) sebagai senyawa aromatik dalam bio-oil telah diidentifikasi melalui analisis FTIR. Nikel dengan 5% berat loading adalah komponen aktif utama dalam katalis ZSM-5 yang diimpregnasi karena kinerjanya dalam menghasilkan yield tertinggi dari bio-oil aromatik sebesar 38,90%, pada suhu reaksi 450°C. Senyawa kaya aromatik dari bio-oil sebagai hasil penelitian ini dapat dianggap sebagai penemuan baru dalam menciptakan nilai tambah yang sangat besar pada sumber daya alam asli Indonesia, yang memiliki risiko minimal terhadap manusia dan lingkungan, dan dapat didaur ulang tanpa polusi.


This study is aimed to explore the possibility of creating enormous added value on coconut fiber resources which was so far considered as wastes. One of the added value of coconut fiber that can be created is bio-oil which rich in aromatic compounds. The rich-aromatic compounds within bio-oil has been produced successfully by the catalytic pyrolysis process which supported by impregnated ZSM-5 catalyst of Nickel and Zinc. Pyrolysis is a non-oxygen thermal cracking of organic materials.
Pyrolysis product or known as bio-oil is used as an alternative fuel. However, as the era progresses bio-oil can be used as raw materials in manufacturing process of many petrochemical products because it has aromatic compounds. Aromatic is a shaped-ring chemical substance that can be found in lignocellulosic-rich biomass. Aromatic bio-oil is obtained from catalytic pyrolysis process of waste coconut fiber with the aid of using catalysts to maximize the composition of aromatic compounds. Coconut fiber is cut and grind in pre-treatment to the desirable size. Impregnated catalysts Zn/ZSM-5 and Ni/ZSM-5 that have been characterized by XRD (X-Ray Diffraction) are used to maximize the yield of aromatic compounds, and also specific surface area using Branauer Emmet Teller (BET) analysis.
The catalytic pyrolysis process takes place in a fixed bed turbular reactor equipped with a furnace as a heat source. The product coming out of the reactor is condensed by using cold water and aceton. FTIR (Fourier Transform Infrared) and GCMS (Gas Chromatography-Mass Spectrometer) serve as analytical instruments in order to identify the presence and the quantity of aromatic group in bio-oil. BTX (Benzene, Toluene and Xylene) as aromatic compounds within bio-oil has been identified through the FTIR analysis. Nickel of 5% weight loading is the main active component within impregnated ZSM-5 catalysts due to its performance in producing the highest yield of aromatic bio-oil as of 38.90%, at the reaction temperature of 450°C. The aromatic-rich compounds of bio-oil as results of this study could be considered as a new invention of creating enormous added value on Indonesia original natural resources, which has a minimal risk to humans and the environment, and can be recycled without pollution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Effendy Sutanto
"Kebutuhan furfural di dalam negeri terus meningkat jumlahnya. Furfural banyak digunakan sebagai pelarut dalam industri minyak bumi, pembuatan pelumas, nilon, furfuril alkohol, tetrahidrofuran, industri farmasi herbisida, dan aplikasi pada pewangi. Sampai saat ini kebutuhan furfural di dalam negeri diperoleh melalui impor terutama dari China yang merupakan produsen furfural terbesar di dunia yaitu sekitar 72% produksi furfural dunia. Hal inilah yang mendasari pertimbangan didirikannya pabrik furfural di Indonesia. Dalam perancangan pabrik furfural ini, digunakan bahan baku berupa tandan kosong kelapa sawit karena kandungan hemiselulosa yang cukup tinggi yaitu ± 30%, dan juga ketersediaannya yang melimpah di Indonesia yang mencapai 36,85 juta ton pada tahun 2014. Dengan batasan masalah payback period dibawah 5 tahun, dan nilai IRR di atas nilai MARR yaitu 14%, dilakukan simulasi menggunakan software Superpro Designer Academic License. Hasil simulasi menunjukkan kelayakan pabrik dicapai pada kapasitas produksi furfural 790,31 ton/tahun, dengan nilai ROI 21,64% dan NPV US$ 3.978.000.

The domestic necessity of furfural increases day by day. Furfural is mostly used for solvent in petroleum industry, the manufacture of lubricants, nylon, furfuryl alcohol, tetrahydrofuran, herbicide pharmacy industry, and application on fragrance. So far, the domestic necessity of furfural is acquired by import, especially from China, which is the largest furfural manufacturer that is to say approximately 72% furfural production of the world. This fact underlies a consideration establishing furfural plant in Indonesia. In this scheme of furfural plant, it uses raw material that is called oil palm empty fruit bunches. Oil palm empty fruit bunches is chosen because of containing high level of hemicellulose, which is about 30%, and its abundant availability in Indonesia, which reaches 36,85 million ton in 2014 as well. Simulation is conducted by using Superpro Designer Academic License Software with scope of research payback period under 5 years and IRR value above MARR (14%). This simulation has shown that the eligibility of plant reaches with 790,31 tons/year furfural capacity production, and ROI value 21,64% and NPV US$ 3.978.000.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58689
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzi
"Produksi kelapa sawit yang semakin meningkat akan menghasilkan limbah yang banyak seperti Tandan Kosong Kelapa Sawit (TKKS). Furfural dapat dihasilkan dari bahan baku TKKS dengan metode hidrolisis asam. Reaktor hidrolisis asam digunakan untuk menghasilkan furfural. Suhu, tekanan, dan level dalam reaktor menjadi variabel yang perlu dikendalikan untuk menghasilkan kualitas produk yang baik. Sistem pengendalian yang optimum diperlukan untuk menjaga kestabilan pada saat proses produksi furfural. Proses produksi furfural yang diamati adalah pada pilot plant furfural di Departemen Teknik Kimia Universitas Indonesia dengan kapasitas produksi 100 L per hari. Sebelum memproduksi furfural, dilakukan terlebih dahulu simulasi menggunakan simulator Aspen Plus pada keadaan steady-state. Kemudian mengubah ke keadaan dinamik ketika sudah berjalan dengan lancar dengan simulator Aspen Plus Dynamics. Pada penelitian ini ditujukan untuk mendapatkan model proses produksi furfural pada pilot plant furfural dengan menggunakan simulator proses, mendapatkan model First Order Plus Dead Time (FOPDT) yang terbaik untuk pengendalian reaktor hidrolisis asam proses produksi furfural pada pilot plant furfural, dan mendapatkan parameter penyetelan pengendalian yang optimum untuk pengendalian reaktor hidrolisis asam proses produksi furfural pada pilot plant furfural. Pengendali Proporsional-Integral (PI) adalah jenis pengendali yang digunakan. Model FOPDT yang terbaik untuk seluruh variabel adalah Model Solver dengan nilai Kp sebesar 3,711,  sebesar 98,457, dan  sebesar 3,641 untuk variabel suhu; nilai Kp sebesar -0,023,  sebesar 11,681, dan  sebesar 0,494 untuk variabel tekanan; nilai Kp sebesar -0,121,  sebesar 1954,788, dan  sebesar 32,958 untuk variabel level. Metode penyetelan yang terbaik untuk seluruh variabel adalah closed loop Ziegler-Nichols dengan nilai Kc sebesar 18,14 dan Ti sebesar 0,1 untuk variabel suhu; nilai Kc sebesar 309,71 dan Ti sebesar 0,2 untuk variabel tekanan; nilai Kc sebesar 3219,33 dan Ti sebesar 0,2 untuk variabel level.

The increasing production of palm oil will produce a lot of waste, such as Oil Palm Empty Fruit Bunches (OPEFB). Furfural can be produced from OPEFB raw materials by acid hydrolysis method. An acid hydrolysis reactor is used to produce furfural. Temperature, pressure, and level in the reactor are variables that need to be controlled to produce good product quality. An optimum control system is needed to maintain stability during the furfural production process. The furfural production process observed was in a furfural pilot plant at the Department of Chemical Engineering, University of Indonesia with a production capacity of 100 L per day. Before producing furfural, a simulation was carried out using the Aspen Plus simulator at steady-state conditions. Then change to the dynamic state when it is running smoothly with the Aspen Plus Dynamics simulator. This research aims to obtain a model of the furfural production process in a furfural pilot plant using a process simulator, to obtain the best First Order Plus Dead Time (FOPDT) model for controlling acid hydrolysis reactors in the furfural production process in a furfural pilot plant, and to obtain the optimal control parameter settings. optimum for controlling acid hydrolysis reactor furfural production process in furfural pilot plant. Proportional-Integral (PI) controller is the type of controller used. The best FOPDT model for all variables is the Solver Model with Kp values of 3.711,  of 98.457, and  of 3.641 for the temperature variable; the Kp value is -0.023,  is 11.681, and  is 0.494 for the pressure variable; the Kp value is -0.121,  is 1954.788, and  is 32.958 for the level variable. The best tuning method for all variables is closed loop Ziegler-Nichols with a Kc value of 18.14 and a Ti value of 0.1 for the temperature variable; the value of Kc is 309.71 and Ti is 0.2 for the pressure variable; the Kc value is 3219.33 and Ti is 0.2 for the level variable."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Amanda Tanoyo
"Sebagian besar komoditas di bidang pertanian menghasilkan biomassa yang dapat dimanfaatkan sebagai sumber bahan baku industri petrokimia. Salah satu biomassa yang melimpah di Indonesia adalah jerami padi. Jerami mengandung lignoselulosa yang cukup tinggi sehingga bisa dimanfaatkan sebagai bahan dasar pembuatan asam adipat. Asam adipat merupakan bahan dasar petrokimia yang sering digunakan dalam pembuatan nilon-6,6.
Tujuan dari penelitian ini adalah memproduksi asam adipat dari bahan dasar jerami dengan memvariasikan komposisi katalis yang digunakan. Metode penelitian yang digunakan adalah metode pirolisis dan catalytic cracking. Biomassa diberi pre-treatment berupa pengeringan dan pencacahan, kemudian dimasukkan ke dalam reaktor pirolisis.
Berdasarkan hasil karakterisasi GC-MS, produk cair hasil pirolisis mengandung senyawa fenol(27,3%), siklopentena(14,34%), furan(15,48%), dan keton(10,01%). Sampel bio-oil diinjeksikan ke dalam reaktor katalitik dan akan bereaksi dengan katalis B2O3 dan Al2O3 membentuk senyawa asam adipat. Metode ini menghasilkan asam adipat dengan konsentrasi mencapai 33,72% dengan komposisi katalis yang terdiri dari 15% B2O3 dan 85% Al2O3.

Most commodities in agriculture produce biomass that can be used as raw material for petrochemical industry. One of the biomass is abundant in Indonesia is rice straw. Straw contains lignocellulose high enough so that it can be used as a basis for making adipic acid. Adipic acid is a petrochemical base materials are often used in the manufacture of nylon-6,6.
The aim of this study was to optimize the production of adipic acid from straw based material by varying the catalyst used. The type and composition of the catalyst can affect the value of the conversion and yield of product, making it important to know the right combination in order to produce adipic acid with maximum yield. This research used pyrolysis dan catalytic cracking method to produce adipic acid. Biomass pretreatment given in the form of drying and size reduction, then inserted into the pyrolysis reactor.
Based on the results of GC-MS characterization, liquid products of pyrolysis contains phenolic compounds (27.3%), cyclopentene (14.34%), furan (15.48%), and ketones (10.01%). Bio-oil sample is injected into a catalytic reactor and reacts with B2O3 and Al2O3 catalyst to form adipic acid compounds. This method produces adipic acid with concentration reached 33.72% with 15% B2O3 and 85% Al2O3 catalyst composition.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63684
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>