Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14497 dokumen yang sesuai dengan query
cover
"This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource."
Switzerland: Springer Cham, 2019
e20503029
eBooks  Universitas Indonesia Library
cover
"This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is becoming more urgent. Currently available frameworks and methodologies are limited in terms of efficiency and querying compatibility between data sources due to the differences in information storage structures. For this research, the authors designed and programmed a framework based on the fundamentals of language integrated query to query existing data sources without the process of data restructuring. A web portal for the framework was also built to enable users to query protein data from the Protein Data Bank (PDB) and implement it on Microsoft Azure, a cloud computing environment known for its reliability, vast computing resources and cost-effectiveness."
Switzerland: Springer Nature, 2019
e20509153
eBooks  Universitas Indonesia Library
cover
Hwang, Kai
"The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems"
Hoboken: John Wiley & Sons, 2017
004.678 2 HWA b
Buku Teks  Universitas Indonesia Library
cover
"The volume on Data Management, Analytics and Innovations presents the latest high-quality technical contributions and research results in the areas of data management and smart computing, big data management, artificial intelligence and data analytics along with advances in network technologies. It deals with the state-of-the-art topics and provides challenges and solutions for future development. Original, unpublished research work highlighting specific research domains from all viewpoints are contributed from scientists throughout the globe. This volume is mainly designed for professional audience, composed of researchers and practitioners in academia and industry."
Singapore: Springer Singapore, 2019
e20502590
eBooks  Universitas Indonesia Library
cover
Krishnan, Krish
Burlington: Elsevier Science, 2013
005.745 KRI d
Buku Teks  Universitas Indonesia Library
cover
Ishmah Naqiyya
"Perkembangan teknologi informasi dan internet dalam berbagai sektor kehidupan menyebabkan terjadinya peningkatan pertumbuhan data di dunia. Pertumbuhan data yang berjumlah besar ini memunculkan istilah baru yaitu Big Data. Karakteristik yang membedakan Big Data dengan data konvensional biasa adalah bahwa Big Data memiliki karakteristik volume, velocity, variety, value, dan veracity. Kehadiran Big Data dimanfaatkan oleh berbagai pihak melalui Big Data Analytics, contohnya Pelaku Usaha untuk meningkatkan kegiatan usahanya dalam hal memberikan insight yang lebih luas dan dalam. Namun potensi yang diberikan oleh Big Data ini juga memiliki risiko penggunaan yaitu pelanggaran privasi dan data pribadi seseorang. Risiko ini tercermin dari kasus penyalahgunaan data pribadi Pengguna Facebook oleh Cambridge Analytica yang berkaitan dengan 87 juta data Pengguna. Oleh karena itu perlu diketahui ketentuan perlindungan privasi dan data pribadi di Indonesia dan yang diatur dalam General Data Protection Regulation (GDPR) dan diaplikasikan dalam Big Data Analytics, serta penyelesaian kasus Cambridge Analytica-Facebook. Penelitian ini menggunakan metode yuridis normatif yang bersumber dari studi kepustakaan. Dalam Penelitian ini ditemukan bahwa perlindungan privasi dan data pribadi di Indonesia masih bersifat parsial dan sektoral berbeda dengan GDPR yang telah mengatur secara khusus dalam satu ketentuan. Big Data Analytics juga memiliki beberapa implikasi dengan prinsip perlindungan privasi dan data pribadi yang berlaku. Indonesia disarankan untuk segera mengesahkan ketentuan perlindungan privasi dan data pribadi khusus yang sampai saat ini masih berupa rancangan undang-undang.

The development of information technology and the internet in various sectors of life has led to an increase in data growth in the world. This huge amount of data growth gave rise to a new term, Big Data. The characteristic that distinguishes Big Data from conventional data is that Big Data has the characteristic of volume, velocity, variety, value, and veracity. The presence of Big Data is utilized by various parties through Big Data Analytics, for example for Corporation to incurease their business activities in terms of providing broader and deeper insight. But this potential provided by Big Data also comes with risks, which is violation of one's privacy and personal data. One of the most scandalous case of abuse of personal data is Cambridge Analytica-Facebook relating to 87 millions user data. Therefor it is necessary to know the provisions of privacy and personal data protection in Indonesia and which are regulated in the General Data Protection (GDPR) and how it applied in Big Data Analytics, as well as the settlement of the Cambridge Analytica-Facebook case. This study uses normative juridical methods sourced from library studies. In this study, it was found that the protection of privacy and personal data in Indonesia is still partial and sectoral which is different from GDPR that has specifically regulated in one bill. Big Data Analytics also has several implications with applicable privacy and personal data protection principles. Indonesia is advised to immediately ratify the provisions on protection of privacy and personal data which is now is still in the form of a RUU."
Depok: Fakultas Hukum Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Febtriany
"Saat ini kompetisi di industri telekomunikasi semakin ketat. Perusahaan telekomunikasi yang dapat tetap menghasilkan banyak keuntungan yaitu perusahaan yang mampu menarik dan mempertahankan pelanggan di pasar yang sangat kompetitif dan semakin jenuh. Hal ini menyebabkan perubahan strategi banyak perusahaan telekomunikasi dari strategi 'growth '(ekspansi) menjadi 'value added services'. Oleh karena itu, program mempertahankan pelanggan ('customer retention') saat ini menjadi bagian penting dari strategi perusahaan telekomunikasi. Program tersebut diharapkan dapat menekan 'churn' 'rate 'atau tingkat perpindahan pelanggan ke layanan/produk yang disediakan oleh perusahaan kompetitor.
Program mempertahankan pelanggan ('customer retention') tersebut tentunya juga diimplementasikan oleh PT Telekomunikasi Indonesia, Tbk (Telkom) sebagai perusahaan telekomunikasi terbesar di Indonesia. Program tersebut diterapkan pada berbagai produk Telkom, salah satunya Indihome yang merupakan 'home services' berbasis 'subscriber' berupa layanan internet, telepon, dan TV interaktif. Melalui kajian ini, penulis akan menganalisa penyebab 'churn' pelanggan potensial produk Indihome tersebut, sehingga Telkom dapat meminimalisir angka 'churn' dengan melakukan program 'customer retention' melalui 'caring' yang tepat.
Mengingat ukuran 'database' pelanggan Indihome yang sangat besar, penulis akan menganalisis data pelanggan tersebut menggunakan metoda 'Big Data Analytics'. 'Big Data' merupakan salah satu metode pengelolaan data yang sangat besar dengan pemetaan dan 'processing' data. Melalui berbagai bentuk 'output', implementasi 'big data' pada perusahaan akan memberikan 'value' yang lebih baik dalam pengambilan keputusan berbasis data.

Nowadays, telecommunication industry is very competitive. Telecommunication companies that can make a lot of profit is the one who can attract and retain customers in this highly competitive and increasingly saturated market. This causes change of the strategy of telecommunication companies from growth strategy toward value added services. Therefore, customer retention program is becoming very important in telecommunication companies strategy. This program hopefully can reduce churn rate or loss of potential customers due to the shift of customers to other similar products.
Customer retention program also implemented by PT Telekomunikasi Indonesia, Tbk (Telkom) as the leading telecommunication company in Indonesia. Customer retention program implemented for many Telkom products, including Indihome, a home services based on subscriber which provide internet, phone, and interactive TV. Through this study, the authors will analyze the cause of churn potential customers Indihome product, so that Telkom can minimize the churn number by doing customer retention program through the efficient caring.
Given by huge customer database the author will analyze using Big Data analytics method. Big Data is one method in data management that contain huge data, by mapping and data processing. Through various forms of output, big data implementation on the organization will provide better value in data-based decision making.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Atal Malviya
"In today’s fast growing digital world, the web, mobile, social networks and other digital platforms are producing enormous amounts of data that hold intelligence and valuable information. Correctly used it has the power to create sustainable value in different forms for businesses. The commonly used term for this data is Big Data, which includes structured, unstructured and hybrid structured data. However, Big Data is of limited value unless insightful information can be extracted from the sources of data.
The solution is Big Data analytics, and how managers and executives can capture value from this vast resource of information and insights. This book develops a simple framework and a non-technical approach to help the reader understand, digest and analyze data, and produce meaningful analytics to make informed decisions. It will support value creation within businesses, from customer care to product innovation, from sales and marketing to operational performance.
The authors provide multiple case studies on global industries and business units, chapter summaries and discussion questions for the reader to consider and explore. Big Data for Managers also presents small cases and challenges for the reader to work on – making this a thorough and practical guide for students and managers."
New York: Routledge, 2019
e20529009
eBooks  Universitas Indonesia Library
cover
Loshin, David, 1963-
"
ABSTRACT
Big Data Analytics" will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise.
"
Amsterdam: Morgan Kaufmann, 2013
658.472 LOS b
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>