Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 35299 dokumen yang sesuai dengan query
cover
Raffly Pratama Iban Pameling
"Fraud adalah tindakan kejahatan yang terus terjadi hingga saat ini. Tidak ada lembaga perusahaan yang terbebas dari kemungkinan terjadinya fraud, termasuk juga industri asuransi. Berbagai cara sudah dilakukan untuk mencegah terjadinya fraud pada industri asuransi, seperti tersedianya daftar hitam hingga adanya tim pemeriksaan khusus di setiap perusahaan. Namun, kasus fraud asuransi tetap saja terjadi bahkan semakin berkembang/bervariasi karena perkembangan teknologi. Oleh karena itu, digunakanlah Artificial Intelligence (AI) dan machine learning sebagai decision support system untuk memprediksi potensi fraud asuransi. Masalah ini merupakan skenario klasifikasi biner dengan komposisi kelas antar-target yang tak seimbang (imbalance class) pada data tabular. Penelitian ini bertujuan untuk mengetahui kinerja model Neural Oblivious Decision Ensembles dalam mendeteksi fraud asuransi serta membandingkan kinerja tersebut dengan model XGBoost tanpa penanganan imbalance class, XGBoost dengan oversampling, dan XGBoost dengan pembobotan data sebagai penanganan standar pada masalah imbalance class. Penelitian ini menggunakan Auto Insurance Claims Data yang dipublikasikan oleh Bunty Shah di situs Kaggle pada tahun 2018. Hasil dari penelitian ini didapatkan bahwa rata-rata dari lima model Neural Oblivious Decision Ensembles (NODE) yang dilakukan pada penelitian memberikan nilai accuracy sebesar 75,53%, precision sebesar 74,24%, recall sebesar 75,53%, f1-score sebesar 74,43%, dan Area Under Curve sebesar 75,04% dan dapat mengungguli kinerja dari ketiga model lainnya.

Fraud is a crime that continues to occur today. No corporate institution is free from the possibility of fraud, including the insurance industry. Various methods have been taken to prevent fraud in the insurance industry, such as the availability of a blacklist to the existence of a special inspection team in each company. However, insurance fraud cases still occur even has more variation due to technological developments. Therefore, Artificial Intelligence (AI) and machine learning are used as decision support systems to predict potential insurance fraud. This research is an implementation of binary-classification scenario with imbalance class on tabular data. This research aims to determine the performance of the Neural Oblivious Decision Ensembles model in detecting insurance fraud and compare the performance with the XGBoost without imbalance class handling, XGBoost with oversampling, and XGBoost with weighted data as the standard handling of imbalance class problems. This research uses the Auto Insurance Claims Data published by Bunty Shah on the Kaggle website in 2018. The results of this research found that the average of the five Neural Oblivious Decision Ensembles (NODE) models gave an accuracy value of 75.53% , precision of 74.24%, recall of 75.53%, f1-score of 74.43%, and Area Under Curve of 75.04% and can outperform the performance of the other three models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bijak Rabbani
"Diabetik retinopati adalah komplikasi dari penyakit diabetes yang dapat mengakibatkan gangguan penglihatan bahkan kebutaan. Penyakit ini menjadi tidak dapat disembuhkan jika telah melewati fase tertentu, sehingga diagnosa sedini mungkin menjadi sangat penting. Namun, diagnosa oleh dokter mata memerlukan biaya dan waktu yang cukup besar. Oleh karena itu, telah dilakukan upaya untuk meningkatkan efisiensi kerja dokter mata dengan bantuan komputer. Deep learning merupakan sebuah metode yang banyak digunakan untuk menyelesaikan masalah ini. Salah satu arsitektur deep learning yang memiliki performa terbaik adalah residual network. Metode ini memiliki kelebihan dalam menghindari masalah degradasi akurasi, sehingga memungkinkan penggunaan jaringan yang dalam. Di sisi lain, metode persistent homology juga telah banyak berkembang dan diaplikasikan pada berbagai masalah. Metode ini berfokus pada informasi topologi yang terdapat pada data. Informasi topologi ini berbeda dengan representasi data yang didapatkan dari model residual network. Penelitian ini melakukan analisis terhadap penerapan persistent homology pada kerangka kerja residual network dalam permasalahan klasifikasi diabetik retinopati. Dalam studi ini, dilakukan eksperimen berkaitan dengan informasi topologi dan proses pengolahannya. Informasi topologi ini direpresentasikan dengan betti curve atau persistence image. Sementara itu, pada proses pengolahannya dilakukan ujicoba pada kanal citra, metode normalisasi, dan layer tambahan. Hasil eksperimen yang telah dilakukan adalah penerapan persistent homology pada kerangka kerja residual network dapat meningkatkan hasil klasifikasi penyakit diabetik retinopati. Selain itu, penggunaan betti curve dari kanal merah sebuah citra sebagai representasi informasi topologi memberikan hasil terbaik dengan skor kappa 0.829 pada data test.

Diabetic retinopathy is a complication of diabetes which can result in visual disturbance and even blindness. This disease becomes incurable after reaching certain phases, thus immidiate diagnosis is highly important. However, diagnosis by a professional ophthalmologist requires a great amount of time and cost. Therefore, efforts to increase the work efficiency of ophthalmologists using computer system has been done. Deep learning is a method that widely used to solve this particular problem. Residual network is one of deep learning architecture which has the best performance. The main advantage of residual network is its ability to prevent accuracy degradation, thus enabling the model to go deeper. On the other hand, persistent homology is also rapidly developing and applied in various fields. This method focus on the topological information of the data. This information are different with the data representation that extracted by neural network model. This study analyze the incorporation of persistent homology to residual networks framework for diabetic retinopati classification. In this study, experiments regarding about topological information and its process were carried out. The topological information is represented as betti curve or persistence image. Meanwhile, the experiments are analyzing the impact of image colour channel, normalization method, and additional layer. According to the experiments, application of persistent homology on residual network framework could improve the outcome of diabetic retinopathy classification. Moreover, the application of betti curve from the red channel as a representation of topological information has the best outcome with kappa score of 0.829."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Denanir Fadila Nasiri
"Legal reasoning merupakan metode yang digunakan untuk menerapkan aturan atau Undang-Undang terhadap fakta yang dimiliki dengan tujuan untuk memperoleh argumentasi hukum. Salah satu metode legal reasoning adalah dengan penalaran induktif, yaitu didasarkan pada kasus-kasus terdahulu. Mahkamah Agung di Indonesia melalui situs Direktori Putusan Pengadilan, yang menyediakan dokumen hasil proses pengadilan yang saat ini menampung jumlah dokumen yang sangat besar. Kumpulan dokumen tersebut dapat dimanfaatkan untuk melakukan aktivitas legal reasoning, seperti klasifikasi jenis tindak pidana (criminal offense). Pada penelitian ini, penulis mengusulkan metode deep learning untuk mengklasifikasikan jenis tindak pidana. Hal ini dapat berguna untuk memberikan efisiensi dan referensi kepada praktisi hukum maupun memudahkan masyarakat untuk memahami dasar hukum dari suatu kasus. Secara spesifik, salah satu rancangan model yang diusulkan adalah dengan penerapan model LEAM (Label Embedding Attentive Model) dengan penambahan sejumlah keyword pada label embedding. Model ini secara konsisten memberikan performa yang baik dalam eksperimen, termasuk pada imbalanced dataset dengan perolehan f1-score 68%.

Legal reasoning is a sequence of activities to identify law rules and obtain legal arguments. One of the method in legal reasoning is by using inductive reasoning, which analyzes previous decided cases. Indonesia’s Supreme Court stores the court decision documents online in a large sum. These collections can be utilized to perform legal reasoning, where in this research we focus on the classification of criminal offense. We performed pre-processing tasks including conversion of document to text and cleaning text. We then compared deep learning models, such as LSTM, BiLSTM, CNN+LSTM, and LEAM (Label Embedding Attentive Model). Instead of using only the label name in LEAM, we also carried out experiments by adding related keywords for each label. The LEAM model with additional keywords obtained the best result in an imbalanced dataset with 68% macro average f1-score."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Putu Bagus Raka Kesawa
"Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat.

Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alrafiful Rahman
"COVID-19 merupakan penyakit pernapasan seperti pneumonia yang mengakibatkan kematian pada jutaan orang setiap harinya. Januari 2020, "Organisasi Kesehatan Dunia" WHO menyatakan COVID-19 sebagai wabah penyakit virus yang menjadi perhatian internasional sebagai darurat kesehatan masyarakat yang menjadi perhatian internasional, dikenal sebagai pandemi dunia. Dilaporkan dari 205 negara di seluruh dunia, pada 1 April 2020, penularan virus COVID-19 sekitar ada lebih dari 900000 kasus COVID-19 yang dikonfirmasi dan hampir 50000 kematian. Berdasarkan laporan WHO, angka kematian 2-3% orang karena virus. Sangat penting untuk melakukan tes diagnostik sejak dini stadium berdasarkan kriteria sebagai gejala klinis, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR), sehingga dapat segera mengisolasi orang yang terinfeksi. Mendiagnosis penyakit virus COVID-19 dengan pencitraan yang lebih efektif menggunakan citra CT dada. Model DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, dan VGG19 untuk memeriksa keakuratannya dalam pengenalan gambar. Untuk menganalisis kinerja model, 1888 sampel dari gambar CT paru-paru dikumpulkan dari situs resmi Kaggle. Model penggabungan (concatenate) pada arsitektur CNN yang telah terlatih seperti penggabungan (concatenate) antara ResNet152V2 dengan VGG19 memiliki accuracy sebesar 99,65%, sensitivity sebesar 99,66%, precision sebesar 99,66%, recall sebesar 99,66%, specificity sebesar 99,64%, dan skor F-measure sebesar 99,66%; gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 99,64%, precision sebesar 99,64%, recall sebesar 99,64%, specificity sebesar 99,66%, dan F-measure sebesar 99,64%; serta gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,001 maupun gabungan InceptionV3 dan Xception saat batchsize 32 dan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 100%, precision sebesar 99,28%, recall sebesar 100%, specificity sebesar 99,31%, dan F-measure sebesar 99,64%.

COVID-19 is a respiratory disease like pneumonia that kills millions of people every day. January 2020, the WHO "World Health Organization" declared COVID-19 as a viral outbreak of international concern as a public health emergency of international concern, known as a world pandemic. Reported from 205 countries around the world, as of April 1, 2020, the transmission of the COVID-19 virus was around more than 900000 confirmed cases of COVID-19 and nearly 50000 deaths. Based on the WHO report, the death rate of 2-3% of people is due to the virus. To isolate the infected person immediately, it is very important to carry out a diagnostic test early based on the criteria as a clinical symptom, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR). Diagnosing COVID-19 viral disease with more effective imaging using chest CT images. DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, and VGG19 models for accuracy in image recognition. To analyze the model's performance, 1888 samples of CT images of the lungs were collected from the official Kaggle website. The concatenate model on the CNN architecture that has occurred, such as the concatenate between ResNet152V2 and VGG19, has an accuracy of 99.65%, sensitivity of 99.66%, the precision of 99.66%, recall of 99.66%, specificity by 99.64%, and the F-measure score of 99.66%; the combination of DenseNet201 and MobileNet was obtained when batch size 32 and 64 with a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 99.64%, the precision of 99.64%, recall of 99.64%, specificity of 99.66 %, and F-measure of 99.64%; and the combination of DenseNet201 and MobileNet obtained at batch size 32 and 64 with a learning rate of 0.001 or a combination of InceptionV3 and Xception at batch size 32 and a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 100%, precision of 99.28%, recall of 100%, specificity of 99.31%, and F-measure of 99.64%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Thomas Hadi Wijaya
"Penelitian ini berfokus pada pengaplikasian teknologi deep learning, secara khusus menggunakan Residual Network (ResNet101) dalam prediksi perencanaan dosis untuk pasien kanker paru-paru. Tiga variasi input data diproses untuk dilatih dan diuji menggunakan ResNet, dan kemudian dievaluasi untuk menentukan variasi input yang paling akurat. Tujuan utama penelitian ini adalah memahami mekanisme kerja deep learning dalam prediksi perencanaan dosis, mengevaluasi akurasi prediksi menggunakan ResNet, dan menganalisis kinerja model pada masing-masing variasi input data. Metodologi yang digunakan melibatkan penggunaan model input dan output untuk menghasilkan kurva distribusi-volume dosis (DVH) prediksi dan aktual. DVH merupakan kurva yang digunakan untuk mengukur seberapa besar dosis yang diterima dalam persentase volume pada organ tertentu. Evaluasi dilakukan menggunakan metode Mean Absolute Error (MAE) dari persentase volume prediksi dan referensi masing-masing pasien pada rentang dosis yang ditentukan yaitu 0-60 Gy dengan lebar bin sebesar 0,25 Gy. Hasil evaluasi menunjukkan bahwa variasi data input A memberikan nilai MAE sebesar 11,24% ± 10,58%, variasi data input B memberikan MAE sebesar 12,79% ± 11,27%, dan variasi data input C memberikan MAE sebesar 12,22% ± 12,13%. Hasil tersebut memperlihatkan bahwa variasi data input A memiliki tingkat akurasi terbaik dengan nilai error dan standar deviasi terendah. Evaluasi juga melibatkan penggunaan train-val loss untuk masing-masing model yang dilatih. Temuan ini menunjukkan bahwa penggunaan citra CT sebagai channel 1, gabungan ROI tanpa ROI target sebagai channel 2, dan ROI target sebagai channel 3 memberikan prediksi perencanaan dosis yang paling akurat untuk pasien kanker paru-paru.

This study focuses on the application of deep learning technology, specifically using Residual Network (ResNet101), to predict dosage planning for lung cancer patients. Three variations of input data were processed for training and testing using ResNet, and then evaluated to determine the most accurate input variation. The primary objectives of this research are to understand the mechanism of deep learning in dosage planning prediction, evaluate prediction accuracy using ResNet, and analyze model performance for each input data variation. The methodology involved using input and output models to generate predicted and actual dose-volume histogram (DVH) curves. DVH is a curve used to measure the dose received as a volume percentage in a specific organ. Evaluation was conducted using the Mean Absolute Error (MAE) method from the volume percentage prediction and reference for each patient within a dose range of 0-60 Gy with a bin width of 0,25 Gy. The evaluation results showed that input data variation A yielded an MAE of 11,24% ± 10,58%, input data variation B yielded an MAE of 12,79% ± 11,27%, and input data variation C yielded an MAE of 12,22% ± 12,13%. These results indicate that input data variation A had the best accuracy with the lowest error and standard deviation. Evaluation also included using train-val loss for each trained model. These findings suggest that using CT images as channel 1, a combination of ROIs excluding the target ROI as channel 2, and the target ROI as channel 3 provides the most accurate dosage planning prediction for lung cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Guna Mandhasiya
"Ilmu Data adalah irisan dari matematika dan statistika, komputer, serta keahlian domain. Dalam beberapa tahun terakhir inovasi pada bidang ilmu data berkembang sangat pesat, seperti Artificial Intelligence (AI) yang telah banyak membantu kehidupan manusia. Deep Learning (DL) sebagai bagian dari AI merupakan pengembangan dari salah satu model machine learning yaitu neural network. Dengan banyaknya jumlah lapisan neural network, model deep learning mampu melakukan proses ekstrasi fitur dan klasifikasi dalam satu arsitektur. Model ini telah terbukti mengungguli teknik state-of-the-art machine learning di beberapa bidang seperti pengenalan pola, suara, citra, dan klasifikasi teks. Model deep learning telah melampaui pendekatan berbasis AI dalam berbagai tugas klasifikasi teks, termasuk analisis sentimen. Data teks dapat berasal dari berbagai sumber, seperti sumber dari media sosial. Analisis sentimen atau opinion mining merupakan salah satu studi komputasi yang menganalisis opini dan emosi yang diekspresikan pada teks. Pada penelitian ini analisis peforma machine learning dilakukan pada metode deep learning berbasis representasi data BERT dengan metode CNN dan LSTM serta metode hybrid deep learning CNN-LSTM dan LSTM-CNN. Implementasi model menggunakan data komentar youtube pada video politik dengan topik terkait Pilpres 2024, kemudian evaluasi peforma dilakukan menggunakan confusion metric berupa akurasi, presisi, dan recall.

Data Science is the intersection of mathematics and statistics, computing, and a domain of expertise. In recent years innovation in the field of data science has developed very rapidly, such as Artificial Intelligence (AI) which helped a lot in human life. Deep Learning (DL) as part of AI is the development of one of the machine learning models, namely neural network. With the large number of neural network layers, deep learning models are capable of performing feature extraction and classification processes in a single architecture. This model has proven to outperform state-of-the-art machine learning techniques in areas such as pattern recognition, speech, imagery, and text classification. Deep learning models have gone beyond AI-based approaches in a variety of text classification task, including sentiment analysis. Text data can come from various sources, such as source from social media. Sentiment analysis or opinion mining is a computational study that analyze opinions and emotions expressed in text. In this research, machine learning performance analysis is carried out on a deep learning method based on BERT data representation with the CNN and LSTM and hybrid deep learning CNN-LSTM and LSTM-CNN method. The implementation of the model uses YouTube commentary data on political videos related to the 2024 Indonesia presidential election, then performance analysis is carried out using confusion metrics in the form of accuracy, precision, and recall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dio Fajrie Fadlullah
"Skripsi ini membahas mengenai pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) yang dirancang dengan menerapkan Regularization pada model MLP(Multilayer Perceptron) untuk penilaian esai Bahasa Jepang. Sistem dirancang dengan menggunakan bahasa pemrograman Python. Penilaian otomatis oleh sistem dilakukan dengan cara membandingkan jawaban 43 mahasiswa dan kunci jawaban dari dosen yang telah diproses sebelumnya sedemikian rupa hingga berbentuk token. Jawaban mahasiswa dan dosen akan diproses menggunakan model MLP sehingga menghasilkan vector jawaban yang akhirnya akan dibandingkan menggunakan Manhattan Distance. Dari variasi model pada beberapa skenario yang diuji, model yang memiliki performa terbaik dari segi akurasi dan kekonsistenan tingkat akurasi terjadi pada model MLP yang menggunakan L1 Regularization dengan learning rate optimizer sebesar 0,00001 dan lambda 0,001. Model mendapatkan rata-rata nilai perbedaan antara nilai sistem dengan nilai asli sebesar 22,40% dan standar deviasi 11,54.

This thesis discusses the development of an Automated Essay Scoring System (SIMPLE-O) designed by applying Regularization to the MLP (Multilayer Perceptron) model for Japanese Language essay scoring. System is developed using the Python programming language. Automatic assessment by the system is carried out by comparing the answers of 43 students and the answer keys from lecturers who have been processed previously in such a way that they are in the form of tokens. Student and lecturer answers will be processed using the MLP model, resulting in an answer vector that will eventually be compared using Manhattan Distance. From the model variations on some of the scenarios tested, model that has the best performance in terms of accuracy and consistency occurs in MLP models that use L1 Regularization with a optimizer learning rate of 0.00001 and lambda of 0.001. The model obtains an average value of the difference between the system value and the original value of 22.40% and a standard deviation of 11.54."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>