Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2507 dokumen yang sesuai dengan query
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risna Diandarma
"ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).

ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1)."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
"

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
"Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal.

Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afida Nurul Hilma
"ABSTRAK
Count data tidak selalu bersifat ekuidispersi. Sehingga, distribusi Poisson tidak dapat digunakan untuk memodelkan count data tersebut. Beberapa distribusi alternatif dari distribusi Poisson telah dikenalkan untuk memodelkan data overdispersi. Namun, distribusi tersebut memiliki kompleksitas yang lebih tinggi dalam jumlah parameter distribusi. Perlu dilakukan modifikasi pada distribusi Poisson agar distribusi yang terbentuk bisa merepresentasikan data overdispersi. Salah satu caranya yaitu dengan melakukan pencampuran distribusi antara distribusi Poisson dengan distribusi Lindley. Distribusi yang terbentuk yaitu distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley belum dapat mengatasi data underdispersi. Selain itu terdapat data asli yang tidak memiliki observasi bernilai nol. Dengan demikian, untuk mendapatkan distribusi yang lebih fleksibel agar lebih cocok dengan count data tersebut, perlu dilakukan modifikasi pada distribusi Poisson-Lindley dengan menerapkan metode zero-truncated. Distribusi baru yang terbentuk yaitu distribusi Zero-truncated Poisson-Lindley. Distribusi baru tersebut dapat mengatasi data yang tidak memiliki observasi bernilai nol dalam kondisi overdispersi maupun underdispersi. Dalam skripsi ini, didapat karakteristik dari distribusi Zero truncated Poisson-Lindley dan penaksiran parameter distribusi menggunakan metode maximum likelihood.

ABSTRACT
Not every count data has equal-dispersion. As a result, Poisson distribution is no longer appropriate to be used for count data modelling. Several distributions have been introduced to be used as an alternative to Poisson distribution on handling the over-dispersion in data. In general, the alternative distributions have higher complexity in the number of parameters. Modification needs to be done in Poisson distribution so that the distribution can represent the condition of the over-dispersion in data. By doing mixing Poisson and Lindley distribution, a new distribution called Poisson-Lindley is developed. However, Poisson-Lindley distribution cannot handle data that exhibits under-dispersion. On the other hand, there is real data that has no zero-count. Therefore, in order to obtain a more flexible distribution to fit count data that has no zero count, a modification needs to be done in Poisson Lindley distribution by applying a zero truncated method in Poisson-Lindley distribution. The newly formed distribution is named Zero-truncated Poisson Lindley distribution. It can handle the condition when the data has no zero-count both in over-dispersion and under-dispersion. In this paper, characteristics of Zero truncated Poisson Lindley distribution are obtained and estimate distribution parameters using the maximum likelihood method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nishfu Laili Barokah
"Over-dispersi dan under-dispersi adalah beberapa masalah umum ketika pemodelan dihitung data. Karena kondisi seperti itu, distribusi Poisson tidak lagi cocok untuk data cacah pemodelan, karena melanggar asumsi kesetaraan (mean equal variance). Di studi sebelumnya, beberapa distribusi telah diperkenalkan sebagai alternatif untuk Distribusi poisson, untuk menangani kondisi dispersi. Namun, distribusinya bisa hanya menangani overdispersion atau underdispersion. Oleh karena itu, distribusi baru adalah dikembangkan untuk menangani data dengan dispersi kurang dan penyebaran berlebihan. Distribusi ini adalah disebut distribusi Conway Maxwell Poisson (COM-Poisson). COM-Poisson distribusi pertama kali diperkenalkan oleh Conway dan Maxwell pada tahun 1962, sebagai solusi untuk sistem antrian dengan tarif layanan yang tergantung pada negara. Modifikasi Poisson ini distribusi memiliki dua parameter, λ dan parameter tambahan v, yang disebut dispersi parameter. Karena parameter tambahan, distribusi ini dapat digunakan di dispersi berlebihan (jika v <1), equidispersion (jika v = 1), dan dispersi kurang (jika v> 1). Melalui contoh data nyata, tesis ini akan menggunakan distribusi COM-Poisson untuk pemodelan data dengan kondisi penyebaran berlebihan dan kurang penyebaran.

Over-dispersion and under-dispersion are some common problems compiling calculated data modeling. Because of such conditions, the Poisson distribution is no longer suitable for modeling data, because of the testing of the equality equation (mean equal variance). In previous studios, several distributions have been introduced as alternatives to Poisson distribution, to support the terms of dispersion. However, its distribution can only overcome overdispersion or underdispersion. Therefore, new distributions have been developed to support data with less dispersion and excessive distribution. This distribution is called the Conway Maxwell Poisson (COM-Poisson) distribution. COM-Poisson distribution was first introduced by Conway and Maxwell in 1962, as a solution for queuing systems with service rates that depend on the country. This Poisson modification distribution has two parameters, λ and an additional parameter v, which is called parameter dispersion. Because of the additional parameters, this distribution can be used in excessive dispersion (if v <1), equation (if v = 1), and less dispersion (if v> 1). Through real data examples, this thesis will use the COM-Poisson distribution for data modeling with the use of redundant and less-spread distributions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firly Tamara
"[ABSTRAK
Pada sistem tenaga listrik memiliki bagian yang saling berkaitan antara satu dengan yang lainnya yaitu sistem pembangkitan, sistem transmisi dan sistem distribusi. Untuk menyalurkan listrik ke konsumen dari sistem distribusi digunakan transformator. Apabila transformator terkena gangguan, maka konsumen dapat langsung merasakan dampaknya. Gangguan-gangguan ini dapat merusak transformator. Sehingga memprediksikan waktu kegagalan transformator sangat penting untuk dilakukan. Terdapat beberapa cara untuk memprediksikan waktu kegagalan transformator yaitu dengan menggunakan distribusi weibull dan distribusi eksponensial. Dengan membuat program aplikasi berbasis Microsoft Excel untuk kedua distribusi ini, dapat langsung memprediksikan waktu kegagalan transformator. Hasil dari program ini adalah kapan transformator akan mengalami waktu kegagalan. Apabila kedua distribusi ini dapat digunakan, program ini dapat menentukan distribusi yang paling akurat untuk digunakan. Sehingga waktu kegagalan yang didapat akan lebih akurat.

ABSTRACT
On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate., On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate.
]
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julio Majesty Rasjid
"Analisis mengenai data waktu tunggu memiliki peran penting dalam berbagai bidang disiplin ilmu. Pada umumnya data waktu tunggu memiliki pola penyebaran yang menceng. Distribusi Weibull merupakan salah satu distribusi yang sering digunakan untuk memodelkan data waktu tunggu. Namun, distribusi Weibull tidak sesuai digunakan untuk memodelkan data dengan fungsi hazard non-monoton, salah satunya bentuk upside-down bathtub. Menurut Sharma et al. (2015), invers dari beberapa distribusi probabilitas dapat memodelkan data dengan fungsi hazard berbentuk upside-down bathtub, salah satunya adalah distribusi invers Weibull. Pada penelitian ini, dibahas distribusi Alpha Power Invers Weibull (APIW) yang merupakan generalisasi dari distribusi invers Weibull. Distribusi ini dibentuk dengan menggunakan metode Alpha Power Transformation. Modifikasi dilakukan dengan penambahan parameter shape pada distribusi invers Weibull dengan tujuan untuk meningkatkan fleksibilitasnya. Beberapa karakteristik distribusi Alpha Power Invers Weibull yang dibahas meliputi fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard, dan momen ke-r. Fungsi kepadatan peluang dari distribusi APIW berbentuk menceng kiri dan unimodal. Lebih lanjut, fungsi hazard dari distribusi APIW berbentuk upside-down bathtub. Penaksiran parameter distribusi dilakukan dengan menggunakan metode maksimum likelihood. Terakhir, diberikan data waktu hingga pasien penderita kanker lambung meninggal yang dimodelkan dengan distribusi invers Weibull dan distribusi Alpha Power Invers Weibull sebagai ilustrasi. Hasil pemodelan menunjukkan bahwa distribusi Alpha Power Invers Weibull lebih baik dalam memodelkan data waktu hingga pasien penderita kanker lambung meninggal dibandingkan dengan distribusi invers Weibull.

Lifetime data analysis has an essential role in various fields of science. In general, lifetime data have a skewed distribution pattern. The Weibull distribution is one of the frequently used distributions for modelling lifetime data. However, the Weibull distribution is not suitable for modelling data with non-monotonous hazard functions, one of which is an upside-down bathtub shape. According to Sharma et al. (2015), the inverse version of several probability distributions can model the data with an upside-down bathtub shape, one of which is the inverse Weibull distribution. This study explained the Alpha Power Inverse Weibull (APIW) distribution as a generalized version of the inverse Weibull distribution. This distribution is constructed by using the Alpha Power Transformation method. The modification is done by adding a shape parameter to the inverse Weibull distribution to increase flexibility. The characteristics of Alpha Power Inverse Weibull distribution discussed include probability density function, distribution function, survival function, hazard function, and the r-th moment. The probability density function of APIW distribution is left-skewed and unimodal. In addition, the hazard function of APIW distribution has an upside-down bathtub shape. The distribution parameter estimation is done by using the maximum likelihood method. Finally, for illustration purposes, the data about the time until gastric cancer patients die are modelled with the inverse Weibull distribution, and the Alpha Power Inverse Weibull distribution is given. The modelling result shows that the Alpha Power Inverse Weibull distribution is better at modelling the time until gastric cancer patients die data than the inverse Weibull distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tania Marsa Karina
"ABSTRAK
Count data biasanya merupakan hasil dari suatu count process pada waktu yang kontinu. Salah satu distribusi yang sering digunakan untuk memodelkan count data adalah Poisson count model yang interarival times-nya berdistribusi eksponensial. Namun demikian, Poisson hanya valid untuk data yang memilliki sifat equidispersion. Menerapkan Poisson count model terhadap data yang tidak memenuhi asumsi equidispersion data yang overdispersed maupun underdispersed dapat mengakibatkan kesalahan spesifikasi distribusi dari data. Sebuah count model dikembangkan pada penelitian ini dengan memperluas interarrival times yang digunakan, yaitu Weibull sebagai generalisasi dari eksponensial. Weibull interarrival times dapat mengatasi overdispersion dengan parameter shape 0.

ABSTRACT
Count data are usually the outcomes of an underlying count process in continuous time. One of the distributions often used to fit count data is Poisson count model. However, Poisson count model is only valid if the data satisfy equidispersion assumption. Applying Poisson count model to the significantly non equidispersed data overdispersed or underdispersed could lead to misspesification of the distribution of the data. A count model would be derived in this thesis by expanding the interarrival times used, that is Weibull interarrival times as the generalization of exponential. Weibull interarrival times could handle overdispersed data with shape parameter 0."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
William Arifin
"Distribusi probabilitas berperan penting dalam proses analisa data. Terdapat banyak jenis distribusi yang telah ditemukan, salah satunya adalah distribusi Weibull. Distribusi Weibull diperkenalkan oleh fisikawan Swedia Waloddi Weibull pada tahun 1939. Seiring berjalannya waktu, banyak generalisasi distribusi Weibull telah dicoba oleh para peneliti. Distribusi Alpha Logarithmic Transformed Weibull (ALTW) adalah salah satu generalisasi dari distribusi Weibull dengan tiga parameter. Distribusi ALTW mengandung beberapa distribusi lifetime, yaitu distribusi Weibull, Eksponensial, dan Logaritmik. Metode Maximum Likelihood Estimator adalah salah satu metode yang sering digunakan untuk mengestimasi parameter distribusi. Namun, karena distribusi ALTW memiliki banyak parameter, diperlukan bantuan metode numerik untuk mendapatkan estimasi parameternya. Metode numerik yang akan digunakan dalam penelitian ini adalah metode Newton-Raphson dan metode Gradien Konjugat. Hasil estimasi parameter dari kedua metode numerik akan dibandingkan untuk mencari estimasi terbaik. Terakhir, distribusi ALTW akan diaplikasikan pada data survival.

The probability distribution plays a crucial role in analyzing data. There are many types of distributions that have been discovered, one of which is the Weibull distribution. The Weibull distribution was introduced by the Swedish physicist Waloddi Weibull in 1939. Over time, many generalizations of the Weibull distribution have been attempted by researchers. The Alpha Logarithmic Transformed Weibull (ALTW) distribution is one such generalization of the Weibull distribution with three parameters. The ALTW distribution encompasses several lifetime distributions, namely the Weibull, Exponential, and Logarithmic distributions. The Maximum Likelihood Estimator method is one commonly used technique for estimating distribution parameters. However, due to the multiple parameters of the ALTW distribution, numerical methods are required to obtain parameter estimates. The numerical methods to be used in this study are the Newton-Raphson method and the Conjugate Gradient method. The parameter estimates obtained from both numerical methods will be compared to find the best estimation. Finally, the ALTW distribution will be applied to a survival data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>