Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 184287 dokumen yang sesuai dengan query
cover
Nur Afifa Kamal Azzahra Chaniago
"Pandemi COVID-19 memengaruhi kegiatan kapal dan penting untuk dievaluasi manajemen pelabuhannya. Tak hanya itu, adanya pandemi COVID 19 berdampak pada aksesibilitas, mobilitas, serta kinerja dari sebuah pelabuhan dalam melakukan proses pengerjaan pelabuhan. Pengaruh lainnya juga berdampak pada trend peningkatan angkutan barang serta pelayanan kapal. Untuk mengevaluasi kinerja pelayanan operasional pelabuhan yang terkhususkan terkait pelayanan kapal dibutuhkan metode untuk mengevaluasi kinerja pelayanan operasional pelabuhan dalam pelayanan kapal. Salah satu cakupan dalam proses mengevaluasi kinerja pelayanan operasional perlabuhan dalam pelayanan kapal, dibutuhkan juga beberapa indikator standar kinerja operasional pelayanan pelabuhan waktu pelabuhan seperti Waktu Tunggu Kapal (Waiting Time/WT), Waktu Pelayanan Pemanduan (Approach TimeI/AT), Waktu Kapal di Tambatan Berthing Time serta Tingkat Penggunaan Dermaga (Berth Occupacy Ratio/BOR) dan juga nilai Turn Around Time yang dapat memberikan infromasi terkait sebaran nilai Turn Aound Time pada kapal. Penelitian kali ini nantinya diperlukan untuk mengevaluasi serta mengetahui kinerja operasional pelayanan kapal di pelabuhan pada saat setelah pandemi (post pandemic) pandemi untuk mengevaluasi serta mengetahui kinerja operasional pelayanan kapal di pelabuhan setelah pandemi (post pandemic) berbasis big data AIS (Automatic Identification System) sehingga dapat membantu pihak pelabuhan seperti direktur pelabuhan hingga otoritas pelabuhan dalam melakukan perbaikan terhadap kinerja operasional pelayanan kapal di pelabuhan setelah pandemi (post pandemic).

The COVID-19 pandemic has affected ship activities and it is important to evaluate port management. Not only that, the existence of the COVID 19 pandemic has had an impact on the accessibility, mobility, and performance of a port in carrying out port construction processes. Other influences also have an impact on the trend of increasing freight transport and ship services. To evaluate the performance of port operational services specifically related to ship services, a method is needed to evaluate the performance of port operational services in ship services. One of the scopes in the process of evaluating the performance of port operational services in ship services, requires several standard indicators of port service operational performance at port time such as Ship Waiting Time (WT), Guided Service Time (Approach TimeI/AT), Ship Time at Berths. Berthing Time and Berth Occupancy Ratio (BOR) as well as Turn Around Time values which can provide information regarding the distribution of Turn Aound Time values on ships. This research is later needed to evaluate and find out the operational performance of ship services at ports after a pandemic (post-pandemic) pandemic to evaluate and find out the operational performance of ship services at ports after a pandemic (post-pandemic) based on big data AIS (Automatic Identification System) so that can assist port parties such as port directors to port authorities in making improvements to the operational performance of ship services at ports after a pandemic (post-pandemic)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aqil Taqiyyuddin
"Pertumbuhan pesat dalam transportasi maritim telah berdampak signifikan pada kualitas udara akibat emisi dari kapal. Skripsi ini berfokus pada pengembangan sistem pemantauan emisi kapal di Pelabuhan Tanjung Priok menggunakan data Automatic Identification System (AIS). Sistem ini bertujuan untuk memantau dan menganalisis emisi kapal untuk memberikan wawasan yang dapat ditindaklanjuti untuk mengurangi dampak lingkungan. Dengan mengintegrasikan berbagai teknik pemrosesan data, termasuk pre-processing data AIS, basis data, perhitungan waktu berlayar, kecepatan berlayar, dan emisi kapal menggunakan model STEAM, penelitian ini menawarkan pendekatan komprehensif untuk pemantauan emisi. Sistem ini menggunakan pemrograman Python dan kerangka kerja Django untuk membuat dasbor berbasis web yang interaktif, meningkatkan kemampuan pengambilan keputusan otoritas pelabuhan dan pemangku kepentingan. Hasil penelitian menunjukkan potensi sistem dalam memantau emisi secara efektif, mendorong operasi maritim yang berkelanjutan.  

The rapid growth in maritime transportation has significantly impacted air quality due to emissions from ships. This thesis focuses on developing a ship emission monitoring system at the Port of Tanjung Priok using Automatic Identification System (AIS) data. The system aims to monitor and analyze emissions from ships to provide actionable insights for reducing environmental impacts. By integrating various data processing techniques, including pre-processing AIS data, calculating sailing times, sailing speeds, and ship emissions using the STEAM model, this study offers a comprehensive approach to emission monitoring. The system utilizes Python programming and Django framework to create an interactive web-based dashboard, enhancing the decision-making capabilities of port authorities and stakeholders. The results demonstrate the system's potential in effectively monitoring emissions, promoting sustainable maritime operations."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ishmah Naqiyya
"Perkembangan teknologi informasi dan internet dalam berbagai sektor kehidupan menyebabkan terjadinya peningkatan pertumbuhan data di dunia. Pertumbuhan data yang berjumlah besar ini memunculkan istilah baru yaitu Big Data. Karakteristik yang membedakan Big Data dengan data konvensional biasa adalah bahwa Big Data memiliki karakteristik volume, velocity, variety, value, dan veracity. Kehadiran Big Data dimanfaatkan oleh berbagai pihak melalui Big Data Analytics, contohnya Pelaku Usaha untuk meningkatkan kegiatan usahanya dalam hal memberikan insight yang lebih luas dan dalam. Namun potensi yang diberikan oleh Big Data ini juga memiliki risiko penggunaan yaitu pelanggaran privasi dan data pribadi seseorang. Risiko ini tercermin dari kasus penyalahgunaan data pribadi Pengguna Facebook oleh Cambridge Analytica yang berkaitan dengan 87 juta data Pengguna. Oleh karena itu perlu diketahui ketentuan perlindungan privasi dan data pribadi di Indonesia dan yang diatur dalam General Data Protection Regulation (GDPR) dan diaplikasikan dalam Big Data Analytics, serta penyelesaian kasus Cambridge Analytica-Facebook. Penelitian ini menggunakan metode yuridis normatif yang bersumber dari studi kepustakaan. Dalam Penelitian ini ditemukan bahwa perlindungan privasi dan data pribadi di Indonesia masih bersifat parsial dan sektoral berbeda dengan GDPR yang telah mengatur secara khusus dalam satu ketentuan. Big Data Analytics juga memiliki beberapa implikasi dengan prinsip perlindungan privasi dan data pribadi yang berlaku. Indonesia disarankan untuk segera mengesahkan ketentuan perlindungan privasi dan data pribadi khusus yang sampai saat ini masih berupa rancangan undang-undang.

The development of information technology and the internet in various sectors of life has led to an increase in data growth in the world. This huge amount of data growth gave rise to a new term, Big Data. The characteristic that distinguishes Big Data from conventional data is that Big Data has the characteristic of volume, velocity, variety, value, and veracity. The presence of Big Data is utilized by various parties through Big Data Analytics, for example for Corporation to incurease their business activities in terms of providing broader and deeper insight. But this potential provided by Big Data also comes with risks, which is violation of one's privacy and personal data. One of the most scandalous case of abuse of personal data is Cambridge Analytica-Facebook relating to 87 millions user data. Therefor it is necessary to know the provisions of privacy and personal data protection in Indonesia and which are regulated in the General Data Protection (GDPR) and how it applied in Big Data Analytics, as well as the settlement of the Cambridge Analytica-Facebook case. This study uses normative juridical methods sourced from library studies. In this study, it was found that the protection of privacy and personal data in Indonesia is still partial and sectoral which is different from GDPR that has specifically regulated in one bill. Big Data Analytics also has several implications with applicable privacy and personal data protection principles. Indonesia is advised to immediately ratify the provisions on protection of privacy and personal data which is now is still in the form of a RUU."
Depok: Fakultas Hukum Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Febtriany
"Saat ini kompetisi di industri telekomunikasi semakin ketat. Perusahaan telekomunikasi yang dapat tetap menghasilkan banyak keuntungan yaitu perusahaan yang mampu menarik dan mempertahankan pelanggan di pasar yang sangat kompetitif dan semakin jenuh. Hal ini menyebabkan perubahan strategi banyak perusahaan telekomunikasi dari strategi 'growth '(ekspansi) menjadi 'value added services'. Oleh karena itu, program mempertahankan pelanggan ('customer retention') saat ini menjadi bagian penting dari strategi perusahaan telekomunikasi. Program tersebut diharapkan dapat menekan 'churn' 'rate 'atau tingkat perpindahan pelanggan ke layanan/produk yang disediakan oleh perusahaan kompetitor.
Program mempertahankan pelanggan ('customer retention') tersebut tentunya juga diimplementasikan oleh PT Telekomunikasi Indonesia, Tbk (Telkom) sebagai perusahaan telekomunikasi terbesar di Indonesia. Program tersebut diterapkan pada berbagai produk Telkom, salah satunya Indihome yang merupakan 'home services' berbasis 'subscriber' berupa layanan internet, telepon, dan TV interaktif. Melalui kajian ini, penulis akan menganalisa penyebab 'churn' pelanggan potensial produk Indihome tersebut, sehingga Telkom dapat meminimalisir angka 'churn' dengan melakukan program 'customer retention' melalui 'caring' yang tepat.
Mengingat ukuran 'database' pelanggan Indihome yang sangat besar, penulis akan menganalisis data pelanggan tersebut menggunakan metoda 'Big Data Analytics'. 'Big Data' merupakan salah satu metode pengelolaan data yang sangat besar dengan pemetaan dan 'processing' data. Melalui berbagai bentuk 'output', implementasi 'big data' pada perusahaan akan memberikan 'value' yang lebih baik dalam pengambilan keputusan berbasis data.

Nowadays, telecommunication industry is very competitive. Telecommunication companies that can make a lot of profit is the one who can attract and retain customers in this highly competitive and increasingly saturated market. This causes change of the strategy of telecommunication companies from growth strategy toward value added services. Therefore, customer retention program is becoming very important in telecommunication companies strategy. This program hopefully can reduce churn rate or loss of potential customers due to the shift of customers to other similar products.
Customer retention program also implemented by PT Telekomunikasi Indonesia, Tbk (Telkom) as the leading telecommunication company in Indonesia. Customer retention program implemented for many Telkom products, including Indihome, a home services based on subscriber which provide internet, phone, and interactive TV. Through this study, the authors will analyze the cause of churn potential customers Indihome product, so that Telkom can minimize the churn number by doing customer retention program through the efficient caring.
Given by huge customer database the author will analyze using Big Data analytics method. Big Data is one method in data management that contain huge data, by mapping and data processing. Through various forms of output, big data implementation on the organization will provide better value in data-based decision making.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Loshin, David, 1963-
"
ABSTRACT
Big Data Analytics" will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise.
"
Amsterdam: Morgan Kaufmann, 2013
658.472 LOS b
Buku Teks SO  Universitas Indonesia Library
cover
Krishnan, Krish
Burlington: Elsevier Science, 2013
005.745 KRI d
Buku Teks SO  Universitas Indonesia Library
cover
Panji Winata
"[ABSTRAK
PT. XYZ merupakan perusahaan telekomunikasi di Indonesia yang sedang
berusaha mentransformasikan bisnisnya menuju layanan broadband dan bisnis
digital. Banyak peluang bisnis di layanan broadband dan bisnis digital yang dapat
diidentifikasi dengan memproses dan menganalisis data dengan cepat, tepat, dan
menyeluruh. Saat ini PT. XYZ telah memiliki kemampuan dalam mengolah
beberapa sumber data yang terstruktur dengan ukuran data yang terbatas. Untuk
membuat perhitungan dan keputusan yang jitu, terutama di layanan broadband dan
bisnis digital, PT. XYZ dituntut juga untuk bisa memproses dan menganalisis data
yang memiliki karakteristik 3V (Velocity, Volume, Variety) atau dikenal dengan big
data. Penelitian ini bertujuan untuk merancang arsitektur sistem pemrosesan big
data di PT. XYZ. Kerangka arsitektur (framework) enteprise yang digunakan dalam
penelitian ini adalah TOGAF. Hasil yang diperoleh dari penelitian ini adalah
rancangan arsitektur sistem pemrosesan big data yang mampu mengolah data yang
memiliki karakteristik 3V, yaitu aliran data yang cepat, berukuran masiv, dan
beranekaragam (terstruktur maupun tidak terstruktur) dengan biaya lebih rendah
dari sistem pemrosesan data yang dimiliki PT. XYZ saat ini. Saran untuk penelitian
ini kedepannya adalah sistem pemrosesan big data di PT. XYZ dapat
diimplementasikan dengan baik jika mendapat dukungan penuh dari manajemen
perusahaan, dimulai dengan kasus bisnis yang spesifik (specific business case) yang
ingin disasar. Hasil yang maksimal dari kasus bisnis tersebut dapat dijadikan
landasan untuk investasi sistem pemrosesan big data yang lebih menyeluruh dalam
mendukung transformasi bisnis menuju layanan broadband dan bisnis digital.

ABSTRACT
PT. XYZ is a telecommunication company in Indonesia which is transforming it's business to broadband services & digital business. Many business opportunities in broadband services & digital business can be identified by processing and analyzing data quickly, accurately, and completely. Right now PT. XYZ has the capability in processing some structured data sources with limited data size. To make accurate calculations and decisions, especially in broadband services and digital business, PT. XYZ also required to be able to process and analyze the data that has the characteristics of 3V (Velocity, Volume, Variety) or known as big data. This research aims to design the architecture of big data processing system. The enterprise architecture framework used in this study is TOGAF. The results obtained from this study is the design of big data processing system architecture that is capable of processing data which has the characteristics of 3V (the fast data
flow, massive data size, and diverse structured or unstructured data sources) at a lower cost than the current data processing system in PT. XYZ. The suggestion about this study is the big data processing system can be implemented properly in PT. XYZ with the full support of the PT. XYZ management, started with a specific business use case that want targeted. The maximum results from the business use case can be used as a piloting for big data processing system investments more
thorough in supporting business transformation toward broadband services and digital business. ;PT. XYZ is a telecommunication company in Indonesia which is transforming it?s
business to broadband services & digital business. Many business opportunities in
broadband services & digital business can be identified by processing and analyzing
data quickly, accurately, and completely. Right now PT. XYZ has the capability in
processing some structured data sources with limited data size. To make accurate
calculations and decisions, especially in broadband services and digital business,
PT. XYZ also required to be able to process and analyze the data that has the
characteristics of 3V (Velocity, Volume, Variety) or known as big data. This
research aims to design the architecture of big data processing system. The
enterprise architecture framework used in this study is TOGAF. The results
obtained from this study is the design of big data processing system architecture
that is capable of processing data which has the characteristics of 3V (the fast data
flow, massive data size, and diverse structured or unstructured data sources) at a
lower cost than the current data processing system in PT. XYZ. The suggestion
about this study is the big data processing system can be implemented properly in
PT. XYZ with the full support of the PT. XYZ management, started with a specific
business use case that want targeted. The maximum results from the business use
case can be used as a piloting for big data processing system investments more
thorough in supporting business transformation toward broadband services and
digital business. , PT. XYZ is a telecommunication company in Indonesia which is transforming it’s
business to broadband services & digital business. Many business opportunities in
broadband services & digital business can be identified by processing and analyzing
data quickly, accurately, and completely. Right now PT. XYZ has the capability in
processing some structured data sources with limited data size. To make accurate
calculations and decisions, especially in broadband services and digital business,
PT. XYZ also required to be able to process and analyze the data that has the
characteristics of 3V (Velocity, Volume, Variety) or known as big data. This
research aims to design the architecture of big data processing system. The
enterprise architecture framework used in this study is TOGAF. The results
obtained from this study is the design of big data processing system architecture
that is capable of processing data which has the characteristics of 3V (the fast data
flow, massive data size, and diverse structured or unstructured data sources) at a
lower cost than the current data processing system in PT. XYZ. The suggestion
about this study is the big data processing system can be implemented properly in
PT. XYZ with the full support of the PT. XYZ management, started with a specific
business use case that want targeted. The maximum results from the business use
case can be used as a piloting for big data processing system investments more
thorough in supporting business transformation toward broadband services and
digital business. ]"
2015
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Mugi Ayomi
"ABSTRAK

Semakin strategisnya peran Direktorat Jenderal Bea dan Cukai (DJBC) Kementerian Keuangan Republik Indonesia dalam memfasilitasi perdagangan internasional membuat DJBC harus terus berinovasi dengan memanfaatkan teknologi mutakhir. DJBC dituntut untuk memberikan pelayanan yang efisien dan melakukan pengawasan yang efektif yang merujuk pada praktik-praktik terbaik dalam kepabeanan internasional. Implementasi Big Data pada DJBC bertujuan untuk mendapatkan manfaat dari data yang telah dikumpulkan agar dapat dianalisis untuk mendukung pengambilan keputusan. Konsep Smart Customs and Excise mengusung Big Data sebagai inti dari semua sistem dan proses bisnis pada DJBC, namun sampai dengan saat ini penerapan Big Data masih bersifat proof of concept. Penerapan teknologi baru tanpa adanya arah pengembangan yang jelas memiliki risiko kegagalan, untuk itu diperlukan evaluasi penerapan Big Data di DJBC. Pengukuran tingkat kematangan Big Data dapat digunakan sebagai langkah awal untuk menilai situasi yang sebenarnya dari sebuah organisasi, memperoleh dan memprioritaskan langkah-langkah perbaikan dan kemudian mengontrol setiap tahap pelaksanaannya. Hasil pengukuran kematangan Big Data dapat dijadikan sebagai acuan untuk merumuskan saran dan rekomendasi bagi DJBC untuk mencapai tingkat kematangan yang lebih tinggi. Pengukuran dilakukan menggunakan framework TDWI Big Data Maturity Model untuk mengevaluasi implementasi Big Data pada DJBC. Pengumpulan data dilakukan melalui wawancara pertanyaan tertutup, kemudian diolah menggunakan assessment tools. Hasil evaluasi menunjukkan bahwa tingkat kematangan Big Data pada DJBC ada pada tingkat 3 (Early Adoption) dari skala 1 - 5. Hasil penelitian memberikan rekomendasi pada tiap dimensi untuk dapat meningkatkan tingkat kematangan ke tingkat 4 (Corporate Adoption) dengan prioritas perubahan mulai dimensi organisasi, analitis, manajemen data, infrastruktur, dan tata kelola.


ABSTRACT


The more strategic role of the Directorate General of Customs and Excise (DGCE) of the Ministry of Finance of Republic of Indonesia in facilitating international trade has made DGCE to continue to innovate by utilizing the latest technology. DGCE is required to provide efficient services and conduct effective supervision that refers to international customs organization best practices. Implementation of Big Data on DGCE aims to get the benefits of the data that has been collected so that it can be analyzed to support decision making. The Smart Customs and Excise concept brings Big Data as the core of all systems and business processes in DGCE, but until now the implementation of Big Data is still proof of concept. Implementation of new technology without the direction of development that clearly defined has the risk of failure, therefore an evaluation is needed regarding the implementation of Big Data on DGCE. Measuring the maturity level of Big Data can be used as a first step to assess the actual situation of an organization, obtain and prioritize corrective steps and then control each stage of its implementation. The measurement results can be used as a reference to formulate suggestions and recommendations for DGCE to reach a higher maturity level. Measurements were made using the TDWI Big Data Maturity Model framework to evaluate the implementation of Big Data on DGCE. Data collection is done through closed question interviews, then processed using assessment tools. The evaluation results indicate that the maturity level of Big Data on DGCE is at phase 3 (Early Adoption) of scale 1 to 5. The results of the study provide recommendations on each dimension to be able to increase the maturity level to phase 4 (Corporate Adoption) with priority changes starting from the organizational dimension, analytics, data management, infrastructure, and governance.

"
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Diyanatul Husna
"ABSTRAK
Apache Hadoop merupakan framework open source yang mengimplementasikan MapReduce yang memiliki sifat scalable, reliable, dan fault tolerant. Scheduling merupakan proses penting dalam Hadoop MapReduce. Hal ini dikarenakan scheduler bertanggung jawab untuk mengalokasikan sumber daya untuk berbagai aplikasi yang berjalan berdasarkan kapasitas sumber daya, antrian, pekerjaan yang dijalankan, dan banyaknya pengguna. Pada penelitian ini dilakukan analisis terhadapap Capacity Scheduler dan Fair Scheduler. Pada saat Hadoop framework diberikan 1 pekerjaan dengan ukuran data set 1,03 GB dalam satu waktu. Waiting time yang dibutuhkan Capacity Scheduler dan Fair Scheduler adalah sama. Run time yang dibutuhkan Capacity Scheduler lebih cepat 6% dibandingkan Fair Scheduler pada single node. Sedangkan pada multi node Fair Scheduler lebih cepat 11% dibandingkan Capacity Scheduler. Pada saat Hadoop framework diberikan 3 pekerjaan secara bersamaan dengan ukuran data set (1,03 GB ) yang sama dalam satu waktu. Waiting time yang dibutuhkan Fair Scheduler lebih cepat dibandingkan Capacity Scheduler yaitu 87% lebih cepat pada single node dan 177% lebih cepat pada multi node. Run time yang dibutuhkan Capacity Scheduler lebih cepat dibandingkan Fair Scheduler yaitu 55% lebih cepat pada single node dan 212% lebih cepat pada multi node. Turnaround time yang dibutuhkan Fair Scheduler lebih cepat dibandingkan Capacity Scheduler yaitu 4% lebih cepat pada single node, sedangkan pada multi node Capacity Scheduler lebih cepat 58% dibandingkan Fair Scheduler. Pada saat Hadoop framework diberikan 3 pekerjaan secara bersamaan dengan ukuran data set yang berbeda dalam satu waktu yaitu data set 1 (456 MB), data set 2 (726 MB), dan data set 3 (1,03 GB) dijalankan secara bersamaan. Pada data set 3 (1,03 GB), waiting time yang dibutuhkan Fair Scheduler lebih cepat dibandingkan Capacity Scheduler yaitu 44% lebih cepat pada single node dan 1150% lebih cepat pada multi node. Run time yang dibutuhkan Capacity Scheduler lebih cepat dibandingkan Fair Scheduler yaitu 56% lebih cepat pada single node dan 38% lebih cepat pada multi node. Turnaround time yang dibutuhkan Capacity Scheduler lebih cepat dibandingkan Fair Scheduler yaitu 12% lebih cepat pada single node, sedangkan pada multi node Fair Scheduler lebih cepat 25,5% dibandingkan Capacity Scheduler

ABSTRACT
Apache Hadoop is an open source framework that implements MapReduce. It is scalable, reliable, and fault tolerant. Scheduling is an essential process in Hadoop MapReduce. It is because scheduling has responsibility to allocate resources for running applications based on resource capacity, queue, running tasks, and the number of user. This research will focus on analyzing Capacity Scheduler and Fair Scheduler. When hadoop framework is running single task. Capacity Scheduler and Fair Scheduler have the same waiting time. In data set 3 (1,03 GB), Capacity Scheduler needs faster run time than Fair Scheduler which is 6% faster in single node. While in multi node, Fair Scheduler is 11% faster than Capacity Scheduler. When hadoop framework is running 3 tasks simultaneously with the same data set (1,03 GB) at one time. Fair Scheduler needs faster waiting time than Capacity Scheduler which is 87% faster in single node and 177% faster in muliti node. Capacity Scheduler needs faster run time than Fair Scheduler which is 55% faster in single node and 212% faster in multi node. Fair Scheduler needs faster turnaround time than Capacity Scheduler which is 4% faster in single node, while in multi node Capacity Scheduler is 58% faster than Fair Scheduler. When hadoop framework is running 3 tasks simultaneously with different data set, which is data set 1 (456 MB), data set 2 (726 MB), and data set 3 (1,03 GB) in one time. In data set 3 (1,03 GB), Fair Scheduler needs faster waiting time than Capacity Scheduler which is 44% faster in single node and 1150% faster in muliti node. Capacity Scheduler needs faster run time than Fair Scheduler which is 56% faster in single node and 38% faster in multi node. Capacity Scheduler needs faster turnaround time than Fair Scheduler which is 12% faster in single node, while in multi node Fair Scheduler is 25,5% faster than Capacity Scheduler"
2016
T45854
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>