Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 147325 dokumen yang sesuai dengan query
cover
Edwin Wirgho
"Sistem rantai suplai LNG di Indonesia menjadi bagian penting dan krusial dari seluruh bisnis proses LNG. Biaya rantai suplai mencakup sebagian besar dari harga jual LNG. Oleh karena itu, keberhasilan desain sistem rantai suplai akan mengurangi beban pihak pembeli dan pemberi subsidi. Tantangan yang ada saat ini adalah sistem distribusi yang belum merata ke seluruh wilayah di Indonesia, baik dalam bentuk LNG maupun listrik. Pada penelitian ini sistem rantai suplai akan difokuskan pada distribusi LNG ke Kawasan Indonesia bagian Timur, yaitu pada daerah kepulauan Maluku dan Papua. Penelitian dimulai dengan membandingkan demanddan supply dari listrik pada seluruh PLTMG di wilayah Indonesia bagian Timur dengan kondisi serta hasil produksi dari Kilang LNG, yaitu Tangguh dan Donggi-Senoro. Data yang diperlukan seperti kapasitas dan lokasi dari rute distribusi dalam sistem rantai suplai ke setiap pembangkit. Kemudian, peneliti membandingkan beberapa metode rantai suplai yang ada secara teoritis. Metode rantai suplai yang digunakan akan didefinisikan dalam variable optimasi berupa fungsi objektif dan fungsi batasan untuk memperoleh hasil maksimal. Output keluaran dari penelitian ini adalah rute serta biaya rantai suplai yang paling optimal dengan cara mendesain suatu sistem rantai suplai dengan software GAMS. Terakhir, hasil optimasi akan di analisa untuk membandingkan dengan teoritis.

LNG Supply Chain system has become one of the crucial parts in Indonesia's LNG business process. The overall costs of LNG products consist of the majority from the supply chain costs. Consequently, the successful of system design will decrease the burden for both first and third parties in the business. The optimal distribution system will provide an equivalent for all regions in Indonesia is the main challenge. This research will focus on the equality of electricity supply in the Eastern Region of Indonesia, Maluku, and Papua islands. Preliminary study begins with demand and supply side management will provide insights to balance between the LNG fields, Tangguh and Donggi-Senoro production allocation with the electricity power plants in Eastern Indonesia. The gap for data in the capacity and field facilities condition should be evaluated to help create the efficiency of supply chain systems. The second step is comparison between theoretical supply chain systems with the optimized system. The supply chain systems optimization output is the routing between regions and minimum costs for overall supply chain systems. In this research, we use the GAMS software to solve the optimization process. The final step is analysis for the optimized system for validation."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fachrian Hafizh
"Kementerian Energi dan Sumber Daya Mineral (KESDM) telah mengeluarkan Keputusan No:13K/13/MEM/2020 sebagai landasan penggunaan LNG sebagai bahan bakar pembangkit listrik di 52 lokasi di Indonesia. Di sisi lain, KESDM juga mengeluarkan Peraturan No:10/2020 yang menetapkan harga plant gate untuk pembangkit listrik sebesar $6/MMBTU. Namun, biaya logistik untuk mendistribusikan LNG dari liquefaction plant ke lokasi pembangkit juga mengeluarkan biaya yang tidak sedikit, mulai dari biaya pengapalan hingga biaya regasifikasi. Oleh karena itu, penelitian ini bertujuan untuk mendapatkan desain logistik yang optimal untuk distribusi LNG dengan melakukan optimasi biaya pengapalan dan biaya regasifikasi. Penelitian ini diawali dengan mencari data terkait spesifikasi dan harga beberapa jenis dan ukuran kapal dan unit regasifikasi LNG, serta data terkait kebutuhan LNG di lokasi kilang. Studi kasus yang digunakan dalam penelitian ini adalah 6 lokasi pembangkit dengan rentang ukuran 10 hingga 150 MW yang terletak di cluster Papua Utara dengan sumber LNG berasal dari 2 skenario. Pada skenario pertama, LNG dikirimkan dari Badak Liquefaction Plant, dan skenario kedua berasal dari Tangguh Liquedaction Plant, dengan 2 variasi asumsi Harga Minyak Mentah Indonesia atau Indonesian Crude Price (ICP) untuk setiap skenario, asumsi ICP tahun 2021, $45/ bbl, dan asumsi ICP pada tahun 2023, $95/bbl. Optimasi menggunakan metode MILP pada software AIMMS dengan solver CPLEX. Hasil yang diperoleh adalah, harga plant gate untuk LNG yang berasal dari Badak adalah $10.04/MMBTU ($2.26/MMBTU untuk biaya pengapalan dan $2.61/MMBTU untuk biaya regasifikasi) untuk asumsi ICP tahun 2021, atau yang disebut skenario B45 dan $15.83/ MMBTU ($2,30/MMBTU untuk biaya pengapalan dan $2,61/MMBTU untuk biaya regasifikasi) untuk asumsi ICP tahun 2023, atau yang disebut skenario B95. Sedangkan harga plant gate untuk LNG yang berasal dari Tangguh adalah $9.37/MMBTU ($1.72/MMBTU untuk biaya pengapalan dan $2.48/MMBTU untuk biaya regasifikasi) untuk asumsi ICP tahun 2021, atau yang disebut skenario T45 dan $15.15/MMBTU ($1.75/ MMBTU untuk biaya pengapalan dan $2,48/MMBTU untuk biaya regasifikasi) untuk asumsi ICP tahun 2023, atau yang disebut skenario T95. Oleh karena itu, berdasarkan optimalisasi yang telah dilakukan, dapat disimpulkan bahwa harga yang ditetapkan oleh Pemerintah akan sangat sulit diimplementasikan bahkan untuk skenario termurah yang didapatkan.

The Ministry of Energy and Mineral Resources (MEMR) has issued Decree No:13K/13/MEM/2020 as the basis for using LNG as fuel for power plants at 52 locations in Indonesia. On the other hand, MEMR also issued Regulation No:10/2020 which sets the plant gate price for power plants at $6/MMBTU. However, the logistics costs for distributing LNG from the source to power plant also incur significant costs, ranging from shipping costs to the cost of regasification. Therefore, this study aims to obtain optimal logistics design for LNG distribution by optimizing shipping costs and regasification costs. This research starts by looking for data related to specifications and prices for several types and sizes of ships and LNG regasification unit, as well as data related to LNG demand at the plant site. The case studies used in this research are 6 power plants with a size range from 10 to 150 MW located in North Papua cluster with sources coming from 2 scenario. First scenario is using Badak Liquefaction Plant as the source of LNG, and the second scenario is using Tangguh Liquefaction Plant as the source of LNG, with 2 variations of Indonesia Crude Price (ICP) assumption for each scenario, ICP assumption in 2021, $45/bbl, and ICP assumption in 2023, $95/bbl. Optimization uses MILP method on AIMMS software with CPLEX solver. The results obtained are, the Plant Gate LNG price for LNG originating from Badak is $10.04/MMBTU ($2.26/MMBTU for shipping cost and $2.61/MMBTU for regasification cost) for assumption of ICP in 2021, or what is called scenario B45 and $15.83/MMBTU ($2.30/MMBTU for shipping cost and $2.61/MMBTU for regasification cost) for assumption of ICP in 2023, or what is called scenario B95. Whereas the Plant Gate LNG price for LNG originating from Tangguh is $9.37/MMBTU ($1.72/MMBTU for shipping cost and $2.48/MMBTU for regasification cost) for assumption of ICP in 2021, or what is called scenario T45 and $15.15/MMBTU ($1.75/MMBTU for shipping cost and $2.48/MMBTU for regasification cost) for assumption of ICP in 2023, or what is called scenario T95. Therefore, based on the optimization have been carried out, it can be concluded that the price set by the Government will be very difficult to implement even for the cheapest scenario obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Nur Altaf
"Dunia sedang memiliki tantangan besar dalam menangani emisi gas rumah kaca (GRK). Dengan timbulnya emisi gas rumah kaca ini memiliki banyak dampak yang begitu besar terhadap perubahan iklim. Sektor transportasi khususnya industri pelayaran sendiri menyumbang sebesar 3% dari emisi gas rumah kaca pada tahun 2022 (Sinay, 2023). Sektor pembangkit listrik juga memiliki peranan besar dalam permasalahan emisi gas rumah kaca dikarenakan penggunaan bahan bakar fosil yang cukup besar untuk kebutuhan pembangkit listrik. Pembangunan infrastruktur dan konversi pembangkit listrik berbahan bakar gas menjadi salah satu usaha untuk menghasilkan energi yang bersih dalam rangka mencapai target Net zero Emmision. Untuk itu Pemerintah Indonesia berkomitmen berusaha meningkatkan penggunaan gas untuk kebutuhan domestik, melalui Keputusan Menteri Energi dan Sumber Daya Mineral Nomor 13K/13/MEM/2020 tentang Penugasan pelaksanaan penyediaan pasokan dan pembangunan infrastruktur Liquefied Natural Gas (LNG), serta konversi penggunaan bahan bakar minyak dengan LNG dalam penyediaan Tenaga Listrik. Komitmen tersebut didukung oleh program pemerintah tahun 2015 mengenai Pembangunan Pembangkit Listrik 35.000 MW di Indonesia. Dengan kondisi geografis tersebut proses transportasi LNG dari lokasi sumber LNG menuju pembangkit listrik menjadi tantangan tersendiri dikarenakan keterbatasan jaringan pipa gas di Indonesia. Tantangan tersebut dapat diatasi dengan adanya Small Scale LNG Carrier (SSLNG). Metode yang digunakan dalam penelitian ini adalah Capacitated Vehicle Routing Problem (CVRP) dan Linear Programming dengan fungsi objektif memperoleh sisa muatan distribusi paling minimum dari beberapa pilihan penggunaan jumlah kapal beserta variasi kecepatan. Analisa ekonomi juga dilakukan  berdasarkan kelayakan finansial. Hasil dari penelitian ini diperoleh masing-masing penggunaan model distribusi LNG untuk setiap kluster sebagai berikut, Kluster 1 yaitu Nusa Tenggara menggunakan model 1 dengan penggunaan 1 kapal  berkapasitas 15,600 CBM  dengan kecepatan 13 knot, Kluster 2 yaitu Maluku menggunakan model 1 dengan penggunaan 1 variasi kapal yaitu kapal berkapasitas 15,600 CBM dengan kecepatan kapal yang sama yaitu 13 knot, Kluster 3 yaitu Papua menggunakan model 2 dengan penggunaan 2 kapal yaitu 15,600 CBM dengan kecepatan 14 knot dan 10,000 CBM dengan kecepatan 11 knot. Berdasarkan hasil skenario pembuatan model distribusi LNG dengan perolehan rute dengan total sisa muatan paling minimum untuk Kluster 1 didapatkan total sisa muatan sebesar 4.23 CBM, untuk Kluster 2  didapatkan total sisa muatan sebesar 19.03 CBM dan Kluster 3 didapatkan total sisa muatan sebesar 121.52 CBM. Dari analisa ekonomi didapatkan untuk total CAPEX sebesar 421,700,883 US$. Untuk margin harga penjualan LNG setiap kluster sekurang kurangnya sebesar 1.5 USD/MMBTU pada kluster 1 dengan payback period dalam kurun waktu 8 tahun, 1 USD/MMBTU pada kluster 2 dengan payback period dalam kurun waktu 6 tahun dan 2 USD/MMBTU pada kluster 3 dengan payback period dalam kurun waktu 8 tahun.

The world is currently facing a significant challenge in addressing greenhouse gas (GHG) emissions. The emergence of these emissions has substantial impacts on climate change. The transportation sector, particularly the shipping industry, contributed 3% of global GHG emissions in 2022 (Sinay, 2023). The power generation sector also plays a significant role in GHG emissions due to the substantial use of fossil fuels for electricity generation. Developing infrastructure and converting fossil-fuel-based power plants to gas is one of the efforts to produce clean energy to achieve the Net Zero Emission target. Therefore, the Indonesian government is committed to increasing the use of gas for domestic needs through the Decree of the Minister of Energy and Mineral Resources Number 13K/13/MEM/2020 concerning the assignment for the provision of supply and development of Liquefied Natural Gas (LNG) infrastructure, and the conversion of oil fuel use to LNG in electricity supply. This commitment is supported by the 2015 government program regarding the construction of 35,000 MW of power plants in Indonesia. Given the geographical conditions, transporting LNG from its source to power plants presents its own challenges due to the limited gas pipeline network in Indonesia. These challenges can be addressed with the use of Small Scale LNG Carriers (SSLNG). The method used in this study is the Capacitated Vehicle Routing Problem (CVRP) combined with Linear Programming, with the objective function to minimize the remaining load distribution from several options of ship usage and speed variations. An economic analysis was also conducted based on financial feasibility. The results of this study obtained each LNG distribution model for each cluster as follows: Cluster 1, Nusa Tenggara, using model 1 with a 15,600 CBM capacity ship at a speed of 13 knots; Cluster 2, Maluku, using model 1 with a 15,600 CBM capacity ship at the same speed of 13 knots; Cluster 3, Papua, using model 2 with two ships of 15,600 CBM at 14 knots and 10,000 CBM at 11 knots. Based on the scenario of creating an LNG distribution model with the minimum remaining load route, Cluster 1 obtained a total remaining load of 4.23 CBM, Cluster 2 obtained a total remaining load of 19.03 CBM, and Cluster 3 obtained a total remaining load of 121.52 CBM. From the economic analysis, the total CAPEX was found to be 421,700,883 USD. For the LNG selling price margin, each cluster required at least 1.5 USD/MMBTU for Cluster 1 with a payback period of 8 years, 1 USD/MMBTU for Cluster 2 with a payback period of 6 years, and 2 USD/MMBTU for Cluster 3 with a payback period of 8 years."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zumroh Desty Angraini
"Kebutuhan tenaga listrik di Kepulauan Maluku diproyeksikan akan tumbuh rata- rata sekitar 5,5% pertahun dalam periode 10 tahun ke depan. Pemerintah dan PT PLN (Persero) telah mengantisipasi peningkatan kebutuhan listrik tersebut dengan membuat rencana pembangunan pembangkit listrik tenaga gas bumi agar tidak mengalami defisit energi listrik di beberapa daerahnya. Oleh karena itu, diperlukan penelitian lebih lanjut mengenai skema distribusi LNG untuk memenuhi kebutuhan gas tiap pembangkit listrik di Kepulauan Maluku. Pada penelitian ini dilakukan perancangan distribusi LNG dari kilang Tangguh Teluk Bintuni, Papua Barat menggunakan kapal pengangkut LNG menuju terminal penerima yang berada di Kepulauan Maluku. Optimasi distribusi LNG dilakukan dengan menggunakan metode K-Medoids untuk membentuk klaster sekaligus rute yang mungkin (feasible route) kemudian dilanjutkan dengan metode Capacitated Vehicle Routing Problem (CVRP) dengan meminimalkan biaya transportasi. Berdasarkan yang akan digunakan pada Hasil optimasi distribusi LNG yang sudah dilakukan terdapat satu kapal dengan ukuran 2500m3 yang akan melayani rute klaster pertama melewati 4 titik terminal penerima dengan total jarak sebesar 1099,7 km dengan total biaya transportasi sebesar $3.349.928. Sedangkan dua kapal dengan ukuran 1000 m3 dan 2500m3 melayani rute klaster kedua melewati 8 titik terminal penerima dengan total jarak sebesar 3522,7 km dan total biaya transportasi sebesar $10.636.526, serta dua kapal dengan ukuran 1000 m3 akan melayani rute klaster ketiga melewati 3 titik terminal penerim dengan total jarak sebesar 2141,6 km dan total biaya transportasi sebesar $6.439.600. Selanjutnya, hasil perhitungan keekonomian yang dilakukan menunjukan bahwa investasi dikategorikan layak secara finansial jika margin harga penjualan LNG sekurang-kurangnya sebesar $3 per MMBTU dengan discount rate tidak lebih besar dari 13% yang menghasilkan payback period 4 tahun, IRR 38% dan NPV positif sebesar US$ 5,711,318 diakhir tahun ke 20.

The demand of electricity in the Maluku Islands is projected to grow by an average of around 5.5% per year in the next 10 years. The government and PT PLN (Persero) have anticipated the increase in electricity demand by making plans to develop natural gas power plants in the archipelago so as not to have an electrical energy deficit in some areas. Therefore, further research is needed on the LNG distribution scheme to fulfill the gas needs of each power plant in the Maluku Islands. In this study, LNG distribution design was carried out from the Tangguh Refinery in Teluk Bintuni, West Papua by means of an LNG carrier ship to the receiving terminal in the Maluku Islands. The optimization of LNG distribution is carried out using the K-Medoids method to form clusters as well as feasible routes then followed by the Capacitated Vehicle Routing Problem (CVRP) method by minimizing transportation costs. Based on what will be used in the results of the LNG distribution optimization that has been carried out, there is one ship with a size of 2500m3 which will serve the first cluster route through 4 receiving terminal points with a total distance of 1099.7 km with a total transportation cost of $3,349,928. Meanwhile, two ships with a size of 1000 m3 and 2500m3 serve the second cluster route through 8 receiving terminal points with a total distance of 3522.7 km and a total transportation cost of $10,636,526, and two ships with a size of 1000 m3 will serve the third cluster route through 3 points. receiving terminal with a total distance of 2141.6 km and a total transportation cost of $6,439,600. Furthermore, the results of the economic calculations carried out show that the investment is categorized as financially feasible if the LNG sales price margin is at least $3 per MMBTU with a discount rate not greater than 13% resulting in a payback period of 4 years, an IRR of 38% and a positive NPV of US$ 5,711,318 at the end of year 20."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwi Esthi Ariningtias
"Seiring dengan penambahan jumlah populasi penduduk dan peningkatan ekonomian di suatu wilayah, kebutuhan energi akan mengalami kenaikan. Provinsi Kalimantan Timur akan mengalami kekurangan energi listrik di beberapa daerahnya sehingga diperlukan pembangunan beberapa pembangkit listrik untuk memenuhi kebutuhan listrik. Dalam memenuhi kebutuhan gas yang akan digunakan dalam pembangkit listrik, diperlukan sumber-sumber gas baik dari lapangan-lapangan marjinal atau lapangan gas stranded.
Proses penyediaan gas dari lapangan gas stranded memerlukan skenario logistik yang optimal agar didapatkan biaya suplai yang minimal. Biaya suplai dalam rantai small scale LNG dipengaruhi biaya liquefaction, transportasi, regasifikasi dan distribusi. Optimasi logistik diperlukan untuk mendapatkan biaya suplai ke LNG Terminal paling rendah. Perhitungan optimasi ini dilakukan dengan menggunakan Solver, program di dalam Microsoft Excel yang memasukkan fungsi objektif, variabel bebas dan constrain.
Berdasarkan analisa dari hasil optimasi diperoleh skenario logistic terbaik untuk suplai gas ke PLN dari LNG Terminal 1 yaitu dengan metode milk-run memakai 2 unit kapal berkapasitas 12,000 m3, 1 unit tangki penyimpanan di LNG Terminal berukuran 5,000 m3.dan memakai truk untuk distribusi gas sedangkan ke PLN dari LNG Terminal 2 yaitu dengan metode hub and spoke memakai 1 unit kapal 10,000 m3, 1 unit tangki penyimpanan di LNG Terminal berukuran 7,500 m3.dan memakai truk untuk distribusi gas.
Dan dari hasil penelitian diperoleh biaya pengiriman dari Gas Plant ke LNG Terminal paling rendah yaitu dengan suplai gas dari LNG Plant 1. Untuk LNG Terminal 1 biaya pengiriman paling rendah dengan metode milk-run sedangkan LNG Terminal 2 dengan metode hub and spoke. Harga jual gas minimum ke PLN yaitu 12.64 USD/ MMBTU (Sanggata), 12.24 USD/ MMBTU (Bontang), 11.26 USD/ MMBTU (Melak), 10.93 USD/ MMBTU (Kaltim) dan 11.2 USD/ MMBTU (Kota Bangun).

Energy needs in a region will increase along with the escalation of its number of population and the level of the economy. East Kalimantan province will experience a shortage of electricity in some regions therefore several new power plants should be built to fulfill the electricity demands. To meet the needs of gas for power generation, source of the gas can be from marginal fields or stranded gas fields.
The supply process of gas from these stranded gas fields needs optimum logistic scenario so that minimum supply cost can be obtained. The cost of supply in small scale LNG is affected by the cost of liquefaction, transportation (shipping), LNG Terminal (regasification, jetty, storage tank) and distribution. Logistics optimization is acquired to get the lowest cost of gas supply to LNG Terminal.
Analysis of the optimization is completed with Solver, a program in Microsoft Excel that needs objective functions, decision variables and constrains. Based on the optimization, the best logistic scenario are as follows: To supply gas for PLN from LNG Terminal 1, the milk-run method is needed, employing 2 units of 12,000 m3ship, one of 5,000 m3 LNG storage tank at LNG Terminal and used trucks for distribution gas to Sanggata and Bontang. While to supply gas for PLN from LNG Terminal 2,the hub and spoke method is required, employing a 10,000 m3 ship, a 7,500 m3 storage tank at LNG Terminal and trucks to distribute the gas through Melak, Kaltim and Kota Bangun.
The calculation results are as follow: the lowest gas supplying cost from Gas Plant to LNG Terminal is obtained using gas from LNG Plant 1. The lowest cost of supply to PLN is 12.64 USD / MMBTU (Sanggata), 12.24 USD / MMBTU (Bontang), 11.26 USD / MMBTU (Melak), 10.93 USD / MMBTU (Kaltim) and 11.2 USD / MMBTU (Kota Bangun).
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39007
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratna Dewi Verinasari
"Penelitian ini bertujuan untuk melakukan optimisasi pada sistem rantai suplai LNG agar didapatkan biaya suplai yang paling murah dari kilang LNG hingga sampai ke FSRU (Floating Storage Regasification Unit) dan juga jumlah LNG yang seharusnya dipasok oleh setiap kilang dengan menggunakan metode optimasi. Metode optimasi harus menentukan fungsi objektif, variabel keputusan dan juga constrain. Untuk mendapatkan biaya suplai yang murah maka akan menggunakan harga dari ex kilang dan harus mendapatkan biaya transportasi yang murah. Kapasitas kapal yang akan digunakan pada penelitian ini adalah 150.000 m3 dan kecepatan 18 knot.
Metode pengiriman yang digunakan pada penelitian ini adalah metode Hub and Spoke. Pada penelitian ini yang akan menjadi sumber yaitu Kilang Tangguh, Masela, Donggi Senoro dan Bontang dengan tujuannya FSRU yang terletak dipulau Jawa dan Sumatera. Yang sangat berpengaruh pada biaya suplai adalah jarak dari setiap kilang LNG menuju FSRU. Dan hasil yang didapatkan kilang Bontang menyuplai LNG ke FSRU Aceh 3,0 MTPA selama 20 tahun dengan biaya suplai tahun ke-1 6,3 $/MMBtu. Kilang Tangguh akan menggunakan 2 kapal untuk memasok LNG 2,1 MTPA ke FSRU Jawa Tengah dengan 35 biaya suplai ditahun ke-1 6,64 $/MMBtu dan 0,9 MTPA untuk FSRU Lampung dengan biaya suplai pada tahun ke-1 6,63 $/MMBtu. Kilang Masela akan menggunakan 3 kapal untuk memasok LNG ke FSRU Jawa Tengah 0,9 MTPA dengan biaya suplai pada tahun ke-4 9,50 $/MMBtu dan FSRU Jawa Barat 3 MTPA dengan biaya suplai pada tahun ke-4 yaitu 9,58 $/MMBtu. Kilang Donggi Senoro akan menggunakan 1 kapal untuk memasok LNG ke FSRU Lampung sebanyak 0,6 MTPA dengan biaya suplai pada tahun ke-1 yaitu sebesar 6,7 $/MMBtu.

This research aims to optimize the LNG supply chain system in order to get the lowest supply cost from the LNG plant to FSRU (Floating Storage Regasification Unit) and also the amount of LNG that is supposed to be supplied by each plant by using optimization methods. Optimization method must determine the objective function, decision variables and constrain. To get a low supply cost, low price of ex plant and transportation cost must be used. Vessels with capacity of 150,000 m3 and a speed of 18 knots will be used.
Shipping method used in this research is Hub and Spoke. In this study, the LNG source is Tangguh, Masela, Donggi Senoro and Bontang plant with the destination are FSRU located in Java and Sumatra. Supply cost is affected by distance of each LNG plant to the FSRU. From the results, it is obtained that Bontang LNG plant supply 3.0 MTPA to the FSRU Aceh for 20 years with supply cost in the first year $ 6.3 / MMBtu. Tangguh plant will use two ships to supply 2.1 MTPA LNG to Central Java FSRU with first year supply costs of $ 6.64 / MMBtu and 0.9 MTPA to Lampung FSRU with first year supply cost of $ 6.63 / MMBtu. Masela plant will use three ships to supply 0.9 MTPA LNG to the Central Java FSRU with the lowest costs in the 4th year of $ 9.50 / MMBtu and 3 MTPA to west Java FSRU 3 with the lowest supply cost in the 4th year of $ 9.58 / MMBtu. Donggi Senoro will use one ship to supply 0.6 MTPA LNG to Lampung FSRU with supply costs in the first year of $ 6.7 / MMBtu.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59902
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Azkia Rifqi Amarullah
"Adanya kesepakatan Paris 2015 mengenai emisi gas rumah kaca membuat gas bumi mulai banyak dipilih sebagai bahan baku untuk pembangkit listrik. Distribusi gas bumi sebagai sumber bahan bakar alternatif mengharuskan dalam bentuk cair (Liquefied Natural Gas) apabila jarak yang ditempuh cukup jauh. Selain itu, apabila LNG akan digunakan sebagai sumber bahan bakar pembangkit listrik, dibutuhkan proses regasifikasi terlebih dahulu Oleh karena itu value chain dari rantai pasok LNG menjadi yang terpanjang dibanding bahan bakar lain. Penelitian ini bertujuan untuk mendapatkan skema distribusi LNG yang optimal dengan melakukan optimisasi meminimalkan biaya distribusi dan biaya regasifikasi. Optimisasi dilakukan dengan cara mencari data investasi dan spesifikasi dari kapal LNG dan terminal regasifikasi, beserta permintaan LNG di lokasi pemenuhan rantai pasok. Optimisasi dilakukan dengan metode MILP menggunakan perangkat lunak GAMS dengan solver CPLEX. Hasil optimisasi memperlihatkan bahwa klaster Bangka-Belitung-Pontianak menggunakan jaringan distribusi hub-spoke dengan kapal LNG berukuran 1.500 m3 sebanyak satu buah, 2.500 m3 sebanyak satu buah, 10.000 m3 sebanyak empat buah, dan 12.000 m3 sebanyak dua buah serta kapasitas penyimpanan berukuran 2.000 m3, 3.000 m3, 3.500 m3, 15.000 m3 dan 17.000 m3. Biaya pengapalan pada klaster Bangka-Belitung-Pontianak berada pada rentang $1,06 - $3,23 per MMBtu dan biaya regasifikasi pada rentang $0,58 - $0,87 per MMBtu. Sedangkan untuk klaster Sulawesi menggunakan jaringan distribusi milk-run dengan ukuran kapal LNG 20.000 m3 sebanyak dua buah dan 23.000 m3 sebanyak dua buah serta kapasitas penyimpanan berukuran 1.000 m3, 2.000 m3, 3.000 m3, 4.500 m3, 8.500 m3, dan 10.000 m3. Biaya pengapalan pada klaster Sulawesi berada pada rentang $1,55 - $1,71 per MMBtu dan biaya regasifikasi pada rentang $1,18 - $1,66 per MMBtu. Perubahan sumber LNG pada masing-masing klaster tidak mengubah jaringan distribusi terpilih, namun tetap mengubah rute dan infrastruktur logistik sehingga mengubah pula biaya pengapalan dan biaya regasifikasi.

Paris agreement on greenhouse gas emissions has made natural gas chosen as a raw material for electricity generation. Natural gas distribution as an alternative fuel source requires in the form of liquid (Liquefied Natural Gas) if the distance traveled is far enough. Also, if LNG is to be used as a fuel source for power plants, a regasification process is needed. Therefore, the value chain of the LNG supply chain is the longest compared to other fuels. This study aims to obtain an optimal LNG distribution scheme by optimizing distribution costs and regasification costs. The optimization is carried out by finding investment data and specifications from the LNG ship and regasification terminal, along with LNG demand at the supply chain fulfillment location. Optimization using MILP method with GAMS software with the CPLEX solver. Optimization results show that Bangka-Belitung-Pontianak cluster uses hub-spoke distribution network with one 1,500 m3 LNG vessel, one 2,500 m3, four 10,000 m3, and two 12,000 m3 also storage capacity is 2,000 m3, 3,000 m3, 3,500 m3, 15,000 m3 and 17,000 m3. Shipping costs in Bangka-Belitung-Pontianak cluster are in the range of $1.06 - $3.23 per MMBtu and regasification costs in the range of $0.58 - $0.87 per MMBtu. As for the Sulawesi cluster, it uses milk-run distribution network with two 20,000 m3 LNG vessels and two 23,000 m3 LNG vessels also storage capacity is 1,000 m3, 2,000 m3, 3,000 m3, 4,500 m3, 8,500 m3, and 10,000 m3. Shipping costs in the Sulawesi cluster are in the range of $1.55 - $1.71 per MMBtu and regasification costs in the range of $1.18 - $1.66 per MMBtu. Changes in LNG sources in each cluster do not change the distribution network, but still change the route and logistics infrastructure so that it also changes shipping costs and regasification costs."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gunawan Setiadi
"Dalam rangka memenuhi kebutuhan listrik di Sulawesi Utara, Sulawesi Tengah dan Gorontalo, PT X dihadapkan pada tantangan dalam memenuhi kebutuhan listrik proyek pengembangan Kawasan Ekonomi Khusus (KEK) di Bitung dan Palu. Tidak terjangkaunya jaringan pipa gas yang bersumber di sekitar Kota Luwuk dan kecilnya kebutuhan gas menjadi kendala. Gas alam dalam bentuk cair (LNG) menjadi alternatif untuk pasokan gas ke pembangkit listrik di Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) dan Gorontalo (100 MW) menggunakan sumber LNG dari Bontang maupun Sengkang dengan kebutuhan gas total sebesar 26,41 MMSCFD. Optimasi Logistik LNG perlu dilakukan untuk mendapatkan biaya transportasi minimum. Dengan membandingkan lima kapal LNG yang akan digunakan yaitu kapal berkapasitas 10.000 m3 sampai dengan 22.500 m3 yang ada di pasaran. Metode penelitian menggunakan Solver Add-In yang ada pada Microsoft Excel dengan objective function meminimalkan biaya Distribusi LNG. Hasil optimasi berdasarkan tiga skenario dan dua sumber LNG terhadap jarak sumber LNG ke tujuan pengiriman dalam periode satu tahun didapatkan bahwa, metode transportasi LNG yang menghasilkan biaya distribusi minimum adalah menggunakan skenario Milk-Run dari sumber LNG Bontang dengan total biaya transportasi diperoleh sebesar USD 17.207.897 atau setara dengan 1,53 USD/MMBTU dengan satu buah kapal LNG berkapasitas 12.000 m3.

In the framework of fulfilling the electricity needs in North Sulawesi, Central Sulawesi and Gorontalo, PT X is faced with challenges in fulfilling the electricity needs of the Special Economic Zone (KEK) development project in Bitung and Palu. The inaccessibility of gas pipelines sourced in and around Luwuk City and the small gas requirement becomes an obstacle. Liquefied Natural Gas (LNG) becomes an alternative to supply gas to a power plant in Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) and Gorontalo (100 MW) using LNG sources from Bontang and Sengkang with total gas requirements of 26.41 MMSCFD. LNG Logistics Optimization is necessary to obtain minimum transportation costs. By comparing five LNG vessels that will be used, with a capacity of 10,000 m3 up to 22,500 m3 on the market. The research method uses a Solver Add-In in Microsoft Excel with an objective function minimizing the cost of LNG distribution. The optimization results based on three scenarios and two sources of LNG on the distance of the LNG source to the delivery destination in a one-year period found that the LNG transportation method that produces minimum distribution costs using the Milk-Run scenario from the Bontang LNG source with total transportation costs of USD 17,207,897 or equivalent with 1.53 USD/MMBTU with one 12,000 m3 LNG capacity vessel."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54361
UI - Tesis Membership  Universitas Indonesia Library
cover
Ainun Rahmania
"Penyimpanan Liquified Natural Gas (LNG) dapat terjadi Boil-off Gas (BOG) karena suhu lingkungan lebih tinggi dari suhu LNG sehingga berpengaruh terhadap kuantitas dan kualitas LNG. Banyaknya BOG yang terbentuk disepanjang rantai suplai, berubah terhadap waktu. Penelitian ini bertujuan mengetahui banyaknya BOG yang terbentuk dan perubahan kualitas LNG seperti wobbe index, methane number dan heating value yang terintegrasi disepanjang rantai suplai serta untuk mengetahui pengaruh jarak shipping.
Metode yang digunakan yaitu proses simulasi dengan sistem dinamik menggunakan software UniSim Design R390.1. Dari hasil yang didapat, Pada proses loading LNG, BOG yang terjadi sebanyak 2.966 m3 atau sekitar 2,7% dari total LNG yang dibawa. Pada shipping 4.118 m3 atau sekitar 4%. dan pada unloading LNG 2.545 m3, sekitar 2,63% dari sisa LNG setelah proses shipping. Semakin lama waktu shipping maka dapat meningkatkan nilai heating value dan Wobbe index serta menurunkan methane number.

Storage of Liquified Natural Gas (LNG) can occur Boil-off Gas (BOG) because the ambient temperature is higher than the temperature of LNG, it affects on the quantity and quality of LNG. The number of BOGs that are formed along the supply chain changes with time. This study aims to determine the amount of BOG formed and changes in LNG quality such as the Wobbe index, methane number and integrated heating value along the supply chain and also to determine the effect of shipping distance.
The method used is a dynamic system simulation process using UniSim Design R390.1 software. From the results obtained, in the LNG loading process, the BOG that occurred was 2,966 m3 or about 2.7% of the total LNG carried. At shipping 4,118 m3 or about 4%. and on LNG unloading of 2,545 m3, around 2.63% of the remaining LNG after the shipping process. The longer shipping time can increase the heating value and Wobbe index and reduce the methane number.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moh Riza Affiandi
"Latar belakang dari penelitian ini adalah di dalam dokumen RUPTL Rencana Usaha Penyediaan Tenaga Listrik PT X 2017-2026 telah direncanakan beberapa lokasi LNG storage berdasarkan kebutuhan LNG multi klaster pembangkit listrik berbahan bakar gas, namun demikian masih diperlukan pengujian optimisasi agar diperoleh skema logistik LNG yang handal dan efisien. Konsep pemikiran strategis dalam penyusunan tesis ini dibatasi pada optimisasi logistik LNG multi sumber LNG hingga storage yang berfungsi sebagai hub LNG di masing-masing klaster. Tujuan dari penelitian ini adalah untuk memperoleh biaya suplai LNG paling minimum.
Metoda penelitian yang digunakan yaitu model optimisasi Mixed-Integer Linear Programming MILP dengan menggunakan perangkat lunak optimisasi Lingo. Hasil perhitungan optimisasi menunjukan bahwa dari 11 jenis kapal dengan ukuran beragam terpilih 3 kapal untuk memenuhi kebutuhan LNG di 5 tempat selama 10 tahun. Kapal tersebut berukuran 140.000 m3 sebanyak 2 unit dan 150.000 m3 sebanyak 1 unit dan 125.820 m3 atau 126.277 m3 untuk disewa yang setiap tahunnya akan memiliki rute perjalanan yang berbeda-beda. Selain itu berdasarkan hasil optimasasi biaya transportasi LNG dari sumber ke titik demand berkisar dari 0,24 ndash; 0,5 USD/mmbtu.

The background of this analysis is based on the RUPTL Electricity Power Supply Business Plan document of PT X year 2017 2026 saying that there is a plan to have several LNG storage in several location to fulfill multi cluster of gas power plant demand, thus it still needs to be optimized to have the most reliable and efficient LNG logistic scheme. The concept of strategic thinking in this thesis is to optimize LNG logistic from multi source to several storage which will act as hub in each cluster. The objective of this study is to achieve the lowest cost of LNG supply chain.
Optimization method used in this research is mixed integer linear programing MILP model using Linggo software. The optimization results show that from 11 vessels with various sizes available selected 3 vessels to be purchased and 1 vessel to be rent to meet LNG demand in 5 places for 10 years. Those vessels are 2 unit 140.000 m3 and 1 unit 150.000 m3 for constructed and 125.820 m3 or 126.277 m3 for rent that will have different routing every year. Thus, based on the optimization the lowest the LNG transportation costs from source to all demands are in range from 0.24 to 0.5 USD mmbtu.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50612
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>