Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 55678 dokumen yang sesuai dengan query
cover
Yose Bernard Yehezkiel
"Penggunaan serbuk gergaji sebagai limbah industri yang dianggap sebagai bahan yang tidak bernilai untuk dijadikan sebagai bahan aditif katoda NMC 811. Serbuk gergaji dapat dibentuk menjadi grafit melalui proses karbonisasi yang dilakukan pada suhu 600oC. Grafit kemudian dibentuk menjadi grafit oksida dengan menggunakan metode Hummer yang termodifikasi. Tujuan mendapatkan grafit oksida adalah untuk menjadi bahan aditif untuk katoda NMC 811. Kemudian Grafit oksida yang sudah terbentuk dilakukan karakterisasi menggunakan SEM-EDS, XRD, dan FTIR. Hasil SEM-EDS menunjukkan grafit sudah terbentuk dengan didoominasi oleh karbon sebesar 62,32%. Hasil FTIR menunjukkan sudah terdapat gugus fungsi C=O dan C=C, namun tidak terbentuk gugus O=H yang menunjukkan grafit sudah terbentuk Grafit sudah terbentuk Grafit oksida kemudian dibentuk menjadi slurry dengan mencampurkan dengan beberapa material aktif. Setelah itu, dilakukan coating menggunakan doctor blade. Fabrikasi sel baterai dengan menggunakan coin cell CR2032. Setelah itu, dilakukan uji CV dan EIS. Pada pengujian CV dan EIS terlihat bahwa grafit oksida memiliki pengaruh terhadap efek dan kinerja baterai NMC 811. Hasil EIS menunjukkan proses difusi ion dan transfer elektron berjalan dengan baik. Hasil CV menunjukkan kristalinitas menjadi lebih baik yang membuat electron dapat berpindah denga baik pada saat proses charge dan discharge.

The use of sawdust as an industrial waste is considered a material of no value to be used as a cathode additive for NMC 811. Sawdust can be formed into graphite through a carbonization process carried out at a temperature of 600oC. The graphite is formed into graphite oxide using a modified Hummer method. The purpose of obtaining graphite oxide is to become an additive for the NMC 811 cathode. Then the graphite oxide that has been formed is characterized using SEM-EDS, XRD, and FTIR. The SEM-EDS results show that graphite has been formed dominated by 62.32% carbon. FTIR results show that there are functional groups C=O and C=C, but no O=H groups are formed which indicates graphite has been formed Graphite has been formed Graphite oxide is then formed into a slurry by mixing it with several active materials. After that, coating was carried out using a doctor's blade. Battery cell fabrication using a CR2032 coin cell. After that, CV and EIS tests were carried out. In the CV and EIS tests, it can be seen that graphite oxide has an influence on the effect and performance of the NMC 811 battery. The EIS results show that the ion diffusion and electron transfer processes are going well. CV results show better crystallinity which allows electrons to move properly during the charge and discharge processes."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bagas Wibisono
"Telah dilakukan sintesis dan karakterisasi grafit oksida dari sabut kelapa dengan menggunakan metode Hummer termodifikasi dan diaplikasikan sebagai aditif pada NMC 811 komersil. Penambahan grafit oksida sebanyak 5 wt.% pada NMC 811 dilakukan dengan menggunakan metode solid state. Hasil pengujian NMC 811/grafit oksida dengan mikroskop elektron (SEM) memperlihatkan bahwa butiran grafit oksida telah melapisi NMC 811 secara merata. Fabrikasi sel baterai diawali dengan pembuatan slurry menggunakan NMP 811 yang sudah ditambahkan aditif, Super-P, dan PVDF dengan perbandingan 8:1:1. Slurry yang terbentuk dituangkan pada lembaran Al dan dilakukan proses coating dengan doctor blade dengan ketebalan 15 μm. Hasil coating dipotong dan dilakukan fabrikasi menggunakan coin cell tipe CR2032. Pengujian baterai dilakukan menggunakan cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). Hasil uji EIS menunjukkan bahwa nilai koefisien difusi ion NMC 811/grafit oksida masih dibawah NMC 811 komersil namun lebih baik dibandingkan NMC 811/grafen oksida komersial dengan nilai masing-masing secara berturut-turut 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, dan 2.49x10-13 cm2/s. Hasil uji performa baterai dengan CV menunjukkan sampel NMC 811/grafen oksida memiliki kestabilan reaksi oksidasi dan reduksi yang paling baik dengan ΔE sebesar 0.1 V, kemudian diikuti oleh NMC 811/grafit oksida dengan ΔE sebesar 0.49 V serta NMC 811 komersil dengan ΔE sebesar 0.95V. Hasil dari pengujian yang telah dilakukan menunjukkan bahwa sabut kelapa dapat diolah menjadi grafit oksida dan dapat digunakan untuk meningkatkan kestabilan NMC 811

Synthesis and characterization of graphite oxide from coconut coir via modified Hummer method have been carried out and applied as an additive to commercial NMC 811. The addition of 5 wt.% graphite oxide to NMC 811 was carried out via the solid-state reaction. Examination of NMC 811/graphite oxide using electron microscope (SEM) showed that the graphite oxide had coated NMC 811 homogeneously. Battery cell fabrication begins with the manufacture of slurry NMP 811/graphite oxide, Super-P, and PVDF with a ratio of 8:1:1. The slurry was coated onto Al sheets using a doctor's blade method with a thickness of 15 μm. The obtained result was cut and fabricated using a CR2032 coin cell. The performance of battery was tested using cyclic voltammetry (CV) dan electrochemical impedance spectroscopy (EIS). The EIS test results showed that the ion diffusion coefficient of NMC 811/graphite oxide was still below the commercial NMC 811 but better than that of NMC 811/graphene oxide with the values of 4.31x10-13 cm2/s, 6.27x10-13 cm2/s, and 2.49x10-13 cm2/s, respectively. Battery performance test using CV showed that the NMC 811/graphene oxide sample had the best oxidation and reduction reaction stability with ΔE of 0.1 V, followed by NMC 811/graphite oxide with ΔE of 0.49 V and commercial NMC 811 with ΔE of 0.95 V. These results indicate that coconut coir can be processed into graphite oxide and can be used to increase the stability of NMC 811."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Ismoyojati
"Li4Ti5O12 merupakan salah satu material yang menjanjikan untuk bahan anoda baterai litium ion. Li4Ti5O12 adalah material yang bersifat zero strain, dimana material tidak mengalami ekspansi volum pada saat prose charge/discharge. Namun, Li4Ti5O12 memiliki kapasitas teoritis yang relatif rendah (175 mAh/g). Hal ini membuat perlu dilakukannya modifikasi terhadap material Li4Ti5O12 untuk meningkatkan performa elektrokimianya. Salah satu cara yang dapat dilakukan adalah dengan menggabungkan material Li4Ti5O12 dengan timah (Sn), yang mana memiliki kapastitas teoretis yang sangat tinggi (994 mAh/g). Namun, Sn memiliki permasalahan ekspansi volum yang sangat besar dan juga pulverization pada saat siklus charge/discharge. Oleh karena itu, digunakan grafit untuk mencegah terjadinya ekspansi volum yang berlebihan dari Sn. Grafit memiliki efek stress-relieving pada Sn, sehingga dapat menghambat ekspansi volumnya pada saat siklus charge/discharge.
Pada penelitian ini, dilakukan sintesis komposit LTO/Sn-grafit dengan metode solid state. Untuk mengetahui pengaruh kadar Sn pada komposit tersebut, dilakukan variasi kadar Sn sebesar 5% wt.; 10% wt.; dan 15% wt. Dari penelitian ini, didapatkan hasil bahwa sampel dengan kadar Sn 10% wt. memiliki kapasitas discharge dan nilai potensial kerja terbaik. Sampel dengan kadar Sn 5% wt. memiliki kemampuan retensi paling baik. Sampel dengan kadar Sn 15% wt. memiliki nilai hambatan terkecil.

Li4Ti5O12 is one of promising materials for lithium ion battery anode material. Li4Ti5O12 is a zero strain material, where the material does not undergo volume expansion during the charge/discharge process. However, Li4Ti5O12 has a relatively low theoretical capacity (175 mAh/g). Modifying Li4Ti5O12 material is necessary to improve its electrochemical performance. Method that can be done is by combining Li4Ti5O12 with tin (Sn), which has a very high theoretical capacity (994 mAh/g). However, Sn has very large volume expansion problems as well as pulverization phenomena during its charge/discharge cycle. Therefore, graphite is used to prevent the excessive volume expansion of Sn. Graphite has the effect of stress-relieving on Sn, so it can inhibit its volume expansion during the charge/discharge cycle.
In this study, composite synthesis of LTO/Sn-graphite was carried out by solid state method. To determine the effect of Sn content on these composites, Sn variations were carried out at 5% wt., 10% wt., and 15% wt. The results of this study shown that sample with 10% wt. Sn content has the best discharge capacity and working potential value. Sample with 5% wt. Sn content has the best retention capability. Sample with 10% wt. Sn content has the least resistance value.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Salaam
"Litium Titanat (Li4Ti5O12) memiliki beberapa kelebihan : sifat zero strain, charge-discharge yang panjang, tidak menimbulkan SEI (Solid Electrolyte Interphase). Namun Litium Titanat (LTO) memiliki kapasitas yang rendah (10-9 S cmn-1), dimana diatasi melalui pembuatan komposit dengan material lain. Grafit memiliki kapasitas spesifik yang besar, 372 mAh/g. Penambahan ZnO dapat meningkatkan kapasitas dan konduktivitas.
Penelitian ini berfokus mengetahui pengaruh penambahan ZnO variasi 3%, 5%, dan 7% dengan konsentrasi grafit tetap sebesar 5% sintesis solid state dengan sampel pembanding neat LTO dan LTO/Grafit disertai penambahan serbuk LiOH sebesar 6%. XRD menunjukkan adanya Li4Ti5O12 yang terbentuk, dengan ukuran kristalit terbesar pada LTO/Grafit-ZnO 3%. Hasil EIS menunjukkan LTO/Grafit-ZnO 5% memiliki konduktivitas terbaik.
Hasil CV menunjukkan Eo terbesar pada 3%, dan uji CV menghasilkan kapasitas spesifik yang lebih besar dari pengujian CD akibat C rate yang lebih besar, dengan kapasitas spesifik tertinggi CV pada LTO/Grafit-ZnO 3%, dan kapasitas terbesar CD pada LTO/Grafit-ZnO 5%, tidak terlalu jauh dengan kapasitas LTO/Grafit-ZnO 3%.
Perhitungan retensi menunjukkan LTO/Grafit-ZnO 3% memiliki rate capability baik sehingga tahan lama. Ketiga sampel memiliki efisiensi coulomb tinggi, sehingga tidak ada energi yang hilang selama charge-discharge. Meninjau hasil penelitian, dibutuhkan penelitian lebih lanjut untuk menghasilkan hasil yang optimal dalam meningkatkan konduktivitas serta kapasitas.

Lithium Titanate (L4Ti5O12) has several advantages, zero strain, good charge-discharge stability, and does not form SEI (Solid Electrolyte Interphase). However, LTO has low specific capacity (10-9 S cmn-1), and to improve that is to make a composite with another materials. Graphite has high specific capacity, 372 mAh/g, and the addition of ZnO would enhanced the capacity and conductivity.
This research focused on examined the effect of ZnO by various concentration 3%, 5% and 7% with a fixed concentration of graphite 5% by using solid state method and make a comparison between the neat LTO along with LTO/Graphite with the addition of excess LiOH 6% for LTO. XRD shows the presence of Li4Ti5O12 on each samples with the biggest crystallite size found in LTO/Graphite-ZnO 3%.
EIS shows LTO/Graphite-ZnO 5% has the best conductivity, and CV shows that LTO/Graphite-ZnO 3% has the biggest specific capacity. CD shows LTO/Graphite-ZnO 5% has the biggest capacity, with a little deviation form LTO/Graphite-ZnO 3%.
Retention indicate the LTO/Graphite-ZnO 3% has good rate capability, and all the samples have good coulumbic efficiency, indicates no energy lost during charge-discharge. Reveiweing the results, further research is need to obtained the best results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisha Betalia
"LTO atau Li4Ti5O12 litium titanat merupakan suatu senyawa yang digunakan sebagai komponen anoda dalam baterai Li-ion. Anoda LTO digunakan karena memiliki sifat zero strain dan juga tidak menghasilkan SEI Solid Electrolyte Interphase yang dimana menyebabkan rendahnya performa baterai. Namun, LTO juga memiliki masalah yaitu kapasitasnya yang rendah. Untuk mengatasi masalah ini, LTO perlu dikombinasikan dengan material lain yang memiliki kapasitas tinggi seperti karbon aktif dan Sn. Selain itu, dengan membuat LTO menjadi bentuk nanorod pun juga akan meningkatkan performa baterai. LTO nanorod disintesis dengan metode hidrotermal di dalam larutan NaOH 4 M. Kemudian LTO nanorod yang telah disintesis dicampur dengan Sn yang bervariasi, yaitu 5, 10, dan 15 wt , serta 5 wt karbon aktif. Komposit LTO nanorod/Sn-CA tersebut kemudian dikarakterisasi menggunakan XRD, SEM-EDS, dan BET. Performa baterai juga diuji menggunakan pengujian EIS, CV, dan CD. Hasil penelitian menunjukkan bahwa kapasitas tertinggi didapatkan oleh LTO nanorod/15 Sn-CA yaitu sebesar 127,24 mAh/g. Dari penelitian ini dapat disimpulkan bahwa LTO nanorod/15 Sn-CA dapat digunakan sebagai alternatif untuk komponen anoda.

LTO or Li4Ti5O12 lithium titanate is a compound that is used as an anode component in lithium ion battery. LTO anode is used because it has zero strain properties and doesn rsquo t produce SEI solid electrolyte interphase which cause low battery performance. However, LTO also has a problem, which is its low capacity. To overcome this problem, the LTO needs to be combined with other materials that have high capacity, which, in this case, are active carbon AC and Sn. Making the LTO to be nano sized can also improve the performance of the battery, thus we tried to synthesize LTO in nanorods form. LTO nanorods is synthesized by hydrothermal in NaOH 4 M solution. The LTO nanorods is mixed with various Sn 5wt , 10wt , and 15wt and 5wt activated carbon. LTO nanorods Sn AC composite was characterized using XRD, SEM EDS, and BET and the battery performance was analyzed by EIS, CV, and CD. The results showed that the highest capacity was obtained at LTO nanorods AC 15wt Sn with 127.24 mAh g. This result shows that LTO nanorods AC 15wt Sn could be used as an alternative for anode component."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Febby Fitratama
"

Baterai Lithium-Ion merupakan salah satu media yang efektif untuk meyimpan energi. Baterai ini pun terus diteliti lebih lanjut untuk meningkatkan efisiensi dan kekuatan baterai. Pada saat ini. Anoda LTO merupakan material yang sedang dikembangkan sebagai pengganti anoda grafit. LTO atau litium titanat memiliki beberapa kelebihan seperti sifat zero strain yaitu tidak terjadi perubahan volume atau perubahan volume yang sangat rendah saat charge dan discharge. Sintesis LTO dilakukan dengan menggunakan metode solid state dengan proses mekanokimia dan sintering pada suhu 850o C selama 6 jam. Kadar Zn yang ditambahkan sebesar 3 wt%, 7wt% dan 11 wt%. dan grafit sebesar 3 wt%. Penambahan doping Zn pada LTO meningkatkan konduktifitas elektronik dan kapasitas spesifik dari baterai. Komposit LTO-Grafit/Zn dilakukan karakterisasi menggunakan XRD dan SEM-EDS. Uji performa baterai dilakukan menggunakan pengujian EIS, CV dan CD. Hasil pengujian EIS didapatkan nilai konduktifitas tertinggi pada komposit LTO-grafit/Zn 3%. Kapasitas spesifik tertinggi hasil uji CV didapatkan LTO-grafit/Zn 11% sebesar 154.3 mAH/g. Kapasitas chage discharge tertinggi didapatkan LTO-grafit/Zn 11% pada current rates 0.5 C sampai 15C


Lithium-Ion batteries are one of the effective media for storing energy. This battery continues to be investigated further to increase the efficiency and power of the battery. At this time. LTO anode is a material that is being developed as a substitute for graphite anode. LTO or lithium titanate has several advantages, such as the zero strain characteristic, that is, there is no change in volume or volume changes that are very low during charge and discharge. The LTO synthesis was carried out using a solid state method with a mechanochemical process and sintering at a temperature of 850o C for 6 hours. Zn content added is 3 wt%, 7wt% and 11 wt%. and graphite at 3 wt%. Addition of Zn doping to LTO increases the electronic conductivity and specific capacity of the battery. LTO-Graphite/Zn composites were characterized using XRD and SEM-EDS. Battery performance test is carried out using EIS, CV and CD testing. The EIS test results obtained the highest conductivity value on 3% LTO-graphite / Zn composites. The highest specific capacity CV test results obtained LTO-graphite/Zn 11% of 154.3 mAH / g. The highest chage discharge capacity is obtained by LTO-graphite/Zn 11% in the current rates of 0.5 C to 15C.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widya Aryani M
"Pertumbuhan pasar baterai litium-ion menunjukkan trend yang signifikan. Pertumbuhan tersebut memicu akumulasi limbah baterai bekas yang dihasilkan serta menciptakan tantangan dalam pengelolaan limbah. Oleh karena itu dibutuhkan daur ulang baterai bekas yang efisien dan berkelanjutan. Penelitian ini mengeksplorasi penggunaan deep eutectic solvent (DES) berdasarkan asam polikarboksilat untuk memulihkan logam-logam penting, seperti litium (Li), kobalt (Co), nikel (Ni), dan mangan (Mn) dari baterai litium-ion bekas. Dalam penelitian ini digunakan variasi suhu (30oC, 55oC, 80oC), variasi rasio LIB/DES (1g/50ml, 1,5g/50ml, 2g/50ml, dan 2,5g/50ml) dan variasi DES (ChCl:Asam suksinat, ChCL:Asam maleat, dan ChCl:Asam malonat). Pemulihan optimal dicapai dengan menggunakan DES ChCl:Asam maleat, menghasilkan 99,18% Li, 65,36% Co, 94,97% Ni, dan 67,88% Mn pada rasio S/L 1g/50ml pada suhu 80°C dengan pengadukan konstan. Pemodelan kinetik mengungkapkan bahwa kinetika Jander paling baik menggambarkan mekanisme pelindian, menunjukkan proses yang dikendalikan oleh difusi. Perhitungan energi aktivasi pada DES ChCl:Asam maleat menghasilkan Li 38,57 kJ/mol, Co 63,09 kJ/mol, Ni 64,87 kJ/mol, dan Mn 52,64 kJ/mol.

The growth of the lithium-ion battery market is showing a significant trend. This growth triggers the accumulation of used battery waste generated and creates challenges in waste management. Therefore, there is a need for efficient and sustainable recycling of used batteries. This research explores the use of deep eutectic solvent (DES) based on polycarboxylic acid to recover important metals, such as lithium (Li), cobalt (Co), nickel (Ni), and manganese (Mn) from spent lithium-ion batteries. In this study, temperature variation (30oC, 55oC, 80oC), LIB/DES ratio variation (1g/50ml, 1.5g/50ml, 2g/50ml, and 2.5g/50ml) and DES variation (ChCl:Succinic acid, ChCL:Maleic acid, and ChCl:Malonic acid) were used. Optimal recovery was achieved using ChCl:Maleic acid DES, yielding 99.18% Li, 65.36% Co, 94.97% Ni, and 67.88% Mn at an S/L ratio of 1g/50ml at 80°C with constant stirring. Kinetic modeling revealed that Jander kinetics best described the leaching mechanism, suggesting a diffusion-controlled process. Activation energy calculations on DES ChCl:Maleic acid yielded Li 38.57 kJ/mol, Co 63.09 kJ/mol, Ni 64.87 kJ/mol, and Mn 52.64 kJ/mol."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fiona Angellinnov
"Nickel manganese cobalt (NMC) merupakan salah satu material yang banyak digunakan sebagai katoda baterai ion litium. NMC merupakan perpaduan dari nikel, mangan, dan kobalt dengan rasio tertentu. Dibandingkan jenis lain, NMC 811 (LiNi0,8Mn0,1Co0,1O2) memiliki kapasitas yang tinggi, harga murah, lebih aman karena tidak beracun dan lebih ramah lingkungan. Meskipun demikian, tingginya kadar nikel pada NMC 811 akan berdampak pada penurunan kapasitas, rate capability yang buruk, dan ketidakstabilan termal dan struktur. Salah satu cara untuk menanggulangi hal tersebut yaitu dengan mengoptimalkan metode preparasi, melakukan doping dan coating pada permukaan NMC. Pada penelitian ini digunakan metode solution-combustion synthesis untuk mensintesis NMC 811 dan NMC 811 doping Sn (LiNi0,8Mn0,1Co0,1-xSnxO2 dengan x = 0,01, 0,03, 0,05). Selain itu, juga dilakukan coating dengan karbon aktif dari arang sekam padi dengan variasi 1, 3, 5 wt.% untuk memperoleh LiNi0,8Mn0,1Co0,1O2/C dan LiNi0,8Mn0,1Co0,1-xSnxO2/C. Karakterisasi bahan dilakukan dengan menggunakan infra merah (Fourier transform infrared, FTIR) untuk mengetahui gugus fungsi, difraksi sinar-X (X-ray diffraction, XRD) untuk melihat struktur kristal, mikroskop electron (field emission scanning electron microscopy, FE-SEM) yang dilengkapi energy dispersive X-ray spectroscopy (EDX) untuk melihat topografi permukaan dan komposisinya, dan Brunauer Emmett Teller (BET) untuk melihat luas permukaan dan pori yang terbentuk. Uji performa baterai dengan katoda material aktif dilakukan menggunakan electrochemical impedance spectroscopy(EIS). Hasil penelitian memperlihatkan bahwa variasi Sn paling baik diberikan oleh x=0,03 (LiNi0,8Mn0,1Co0,07Sn0,03O2) dengan konduktivitas sebesar 2,4626 x 10-5 S/cm. Variasi karbon terbaik diberikan oleh konsentrasi 5 wt.% (LiNi0,8Mn0,1Co0,1/C) dengan konduktivitas 31,9024 x 10-5 S/cm. Dibandingkan dengan NMC 811 tanpa modifikasi yang menunjukkan konduktivtas sebesar 1,5951 x 10-5, modifikasi dengan Sn dan karbon aktif memberikan hasil yang lebih baik.

Nickel manganese cobalt (NMC) is a widely used active material for lithium-ion battery cathode. NMC is a combination of nickel, manganese, and cobalt with a certain ratio. NMC 811 has high capacity, low cost, less toxic and more environmentally friendly compared to the other NMC type. However, its high nickel content leads to capacity decay, poor rate capability, thermal and structural instability. Many efforts have been explored by many investigators to eliminate the drawbacks by optimizing the preparation method, using dopant, and surface coating. In this work, solution-combustion synthesis was used to synthesize NMC 811 and Sn-doped NMC 811 (LiNi0.8Mn0.1Co0.1-xSnxO2 with x = 0.01, 0.03, 0.05). Coating with activated carbon derived from rice husk was also performed with variation 1, 3, 5 wt.%) to obtain LiNi0.8Mn0.1Co0.1O2/C and LiNi0.8Mn0.1Co0.1-xSnxO2/C. Characterization was performed using Fourier transform infrared (FTIR) for the functional groups, X-ray diffraction (XRD) for crystal structure, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (FE-SEM/EDX) for surface topography and composition, and Brunauer Emmett Teller (BET) for surface area and pores formation. Performance of the active material as lithium-ion battery cathode was examined using electrochemical impedance spectroscopy (EIS). The results showed that the best performance from Sn doping was obtained from x=0.03 (LiNi0.8Mn0.1Co0.07Sn0.03O2) with the conductivity of 2.4626 x 10-5 S/cm. Meanwhile, coating with activated carbon 5 wt.% (LiNi0.8Mn0.1Co0.1O2/C) provided the highest conductivity of 31.9024 x 10-5 S/cm compared to the other variations. These results are better than the conductivity of NMC 811 with no modification (1.5951 x 10-5 S/cm)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gde Ngurah Renaldi Shantika
"Perkembangan luas baterai lithium-ion (LIB) telah menarik banyak minat dari banyak peneliti. Peningkatan khusus penelitian baterai ini dapat dilihat dari LIB yang mulai digunakan dalam sistem grid yang disebut battery energy storage system (BESS). Proyek tesis ini bertujuan untuk menentukan jenis LIB apa yang cocok untuk digunakan dalam sistem jaringan yang berbeda. Untuk memilih jenis LIB mana yang cocok untuk sistem, efisiensi siklus dan mekanisme degradasi LIB harus dipelajari. Saat ini, jenis LIB yang digunakan untuk BESS adalah Lithium Iron Phosphate (LFP) dan Lithium Nickel Manganese Cobalt (NMC).
Terlepas dari kemampuan LFP dan NMC, mekanisme degradasi mereka masih merupakan bagian penting dari batasan BESS. Selain itu, degradasi LFP dan NMC dipengaruhi oleh suhu dan laju arus sehingga peningkatan kedua parameter akan menghasilkan degradasi yang lebih tinggi. Variasi suhu dan laju arus membuktikan bahwa LFP memiliki stabilitas yang unggul dibandingkan NMC, meskipun memiliki kapasitas lebih rendah dari NMC. Oleh karena itu, dapat disimpulkan bahwa LFP lebih cocok untuk sistem bersiklus tinggi, sementara NMC lebih cocok untuk sistem yang memiliki penyimpanan kapasitas tinggi sebagai perhatian utama mereka.

The vast development of lithium-ion batteries (LIB) has gained a lot of interest from many researchers. The particular improvement of LIB research is that LIB is starting to be used in a grid system called battery energy storage system (BESS). This thesis project aims to determine what type of LIB is suitable to be used in different grid systems. To choose which type of LIB that is suitable for the system, the cycling efficiency and the degradation mechanism of the LIB must be studied. Currently, the types of LIB used for BESS are Lithium Iron Phosphate (LFP) and Lithium Nickel Manganese Cobalt (NMC).
Despite the capability of LFP and NMC, their degradation mechanism is still an essential part of the limitation of the BESS. Additionally, the degradation of LFP and NMC are affected by temperature and current rate (C-rate) such that increasing both parameters will result in higher degradation. The variation of temperature and C-rate proves that LFP has superior stability compared to NMC, despite having lower capacity than NMC. Therefore, it can be concluded that LFP is more suitable for a high cycling system while NMC is more suitable for system which has high capacity storage as their primary concern.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Permata Sari
"Telah dilakukan peningkatan konduktivitas listrik LiFePO4 dengan metode penambahan material logam nano Cu dan CNTs. Metode ini menjadi pilihan yang menarik karena mudah dan murah dalam proses pembuatannya. Proses sintesis dilakukan dengan mencampur serbuk LiFePO4 (komersil) dengan variasi presentase berat nano tembaga (komersil) 0, 1, 3, 5, 7 wt. % dan 5 wt. % nano karbon (komersil) kemudian di proses vacuum mixing dan film applicator. Pengujian XRD, SEM dan EDX dilakukan pada serbuk yang diterima untuk mengkonfirmasi fasa, ukuran butir serta ada tidaknya impurities. Hasil XRD dan EDX pada serbuk nano Cu menunjukkan bahwa telah terjadi oksidasi dan terbentuk menjadi CuO dan Cu2O, serta ditemukan adanya impurities elemen S sebesar 8.5 wt. %.
Komposisi fasa yang dihasilkan dari proses penambahan didapat dari menganalisis pola difraksi XRD menunjukkan bahwa fasa yang terbentuk adalah LiFePO4 namun ditemukan adanya impurities berupa Cu4O3 pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C, dan 10 wt. % PVDF. Konduktivitas listrik diuji material katoda LiFePO4 dengan EIS, dan hasil uji menunjukkan bahwa konduktivitas listrik LiFePO4 meningkat seiiring dengan penambahan nano Cu namun tidak terlalu signifikan (dalam satu orde), hal ini dikarenakan efek oksidasi pada Cu. Pada variasi penambahan nano C dan nano Cu terjadi peningkatan sebesar 3 orde dengan nilai konduktivitas sebesar 8.4 x 10-5 S/cm pada variasi penambahan 80 wt. % LiFePO4, 5 wt. % Cu, 5 wt. % C.
Penambahan nano karbon pada LiFePO4 lebih efektif dalam peningkatan konduktivitas dibandingkan dengan penambahan nano Cu dikarenakan efek oksidasi pada Cu yang tidak dapat dihindari. Morfologi material katoda dan distribusi nano Cu dan nano karbon dianalisis menggunakan SEM/EDX, menunjukkan material yang dicampur pada variasi penambahan nano Cu cukup homogen, struktur butir spherical, sedangkan pada variasi penambahan nano Cu dan nano karbon struktur butir polyhedral dengan ukuran butir berada pada rentang 100- 500 nm. Struktur butir ini mempengaruhi hasil cole plot dimana pada variasi penambahan Cu terbentuk semicircle sedangkan pada penambahan nano C tidak.

Improved of Electrical conductivity of LiFePO4 with the method of adding Cu Nano metal material and CNTs has been done. This method is an attractive option because it is easy and inexpensive in the manufacturing process. Synthesis process is done by mixing the powder LiFePO4 (commercial) with a variation of the percentage by weight of Nano copper (commercial) 0, 1, 3, 5, 7 wt. % and 5 wt. % CNTs (commercial) and then process in vacuum mixing and film applicator. Testing XRD, SEM and EDX performed on the powder to confirm the phase, grain size and the presence or absence of impurities. Results of XRD and EDX on Nano Cu powder showed that there had been oxidation and formed into CuO and Cu2O, and discovered the existence of impurities elements S of 8.5 wt. %.
Phase composition as the result from adding process obtained with analyzing the XRD diffraction pattern showed that the phase formed is LiFePO4 yet found any impurities in the form of Cu4O3 on variations LiFePO4 addition of 80 wt. %, 5 wt. % Cu, 5 wt. % C, and 10 wt. % PVDF. The electrical conductivity of LiFePO4 cathode material was tested by EIS, and the results showed that the electrical conductivity of LiFePO4 increased with the addition of Nano-Cu but not too significant (still on the same order), this is because the effects of oxidation on Cu. On the addition of Nano C and Nano Cu variation there is an increase of 3 order with conductivity value 8.4 x 10-5 S / cm at variations LiFePO4 addition of 80 wt.%, 5 wt.% Cu, 5 wt.% C.
The addition of CNTs is more effective in LiFePO4 conductivity increase, compared to the addition of Nano-Cu due to the effects of oxidation on Cu are unavoidable. Cathode material morphology and distribution of CNTs and Nano Cu analyzed using SEM / EDX, showed mixed material on the variation of the addition of Nano Cu quite homogenous, spherical grain structure, while the variation of the addition of Nano Cu and CNTs structures polyhedral grains with a grain size in the range 100-500 nm. This affects the grain structure results in a variation of Cole plot where the addition of Cu is formed semicircle, while the addition of Nano C is not.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43699
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>