Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 24573 dokumen yang sesuai dengan query
cover
London: The Institution of Electrical Engineers, 1995
629.89 NEU (1)
Buku Teks  Universitas Indonesia Library
cover
M. Ary Heryanto
"Quadrotor adalah wahana yang memiliki empat buah rotor sebagai penggerak. Untuk dapat bergerak sempurna maka quadrotor harus dilengkapi dengan Sistem kendali yang mampu mangatur dan memberikan sinyal kendali berupa kecepatan motor keseluruh rotor.Disertasi ini membahas tentang kendali autonomous untuk quadrotor menggunakan Neural Network Direct Inverse Control NN-DIC . Tujuan dari penelitian ini adalah untuk menyelidiki kinerja Quadrotor menggunakan kontrol NN-DIC. Untuk mewujudkan penelitian ini, langkah pertama adalah untuk membangun sebuah platform Quadrotor. Karena ide dasar dari DIC adalah untuk menghilangkan efek dinamika plant dengan kendali inverse, maka langkah selanjutnya adalah membangun sebuah model NN-DIC menggunakan data penerbangan yang sebenarnya. Metode pelatihan backpropagation dipilih karena strukturnya sederhana namun mampu memberikan error yang kecil.Melalui beberapa simulasi, model kendali NN-DIC telah mampu menstabilkan quadrotor dengan performa yang sangat baik dalam mengikuti trajectory pada kondisi hover, perubahan altitude maupun manuver. Perfoma yang baik ini ditunjukan dengan nilai MSE yang kecil, yaitu 0.042 pada saat hover untuk kendali attitude, 0.340 pada saat perubahan altitude untuk kendali attitude-altitude dan terakhir nilai MSE sebesar 1.966 saat maneuver untuk kendali autonomous.

The quadrotor is an Unmanned Aerial Vehicle UAV which is included in the category of rotary wing with four rotors located at its four corners. In order to move perfectly the quadrotor must be equipped with a control system capable of controlling and providing control signals of motor speed throughout the rotors.This dissertation discusses about autonomous control for quadrotor using Neural Network Direct Inverse Control NN DIC . The purpose of this study was to investigate Quadrotor performance using NN DIC controls. To realize this research, the first step is build a Quadrotor platform. Since the basic idea of DIC is to eliminate the dynamics effect of the plant with inverse control, the next step is build an NN DIC model using actual flight data. Backpropagation training method is chosen because the structure is simple but has a small error result.Some simulations have been done, the NN DIC control model has been able to stabilize the quadrotor with excellent performance in following trajectory under hover conditions, altitude changes and maneuvers. The excellent performance is indicated from a small MSE score of 0.042 during hover on attitude control, 0.340 with altitude change on attitude altitude control and MSE of 1.966 when maneuvered on autonomous control."
Depok: Fakultas Teknik Universitas Indonesia , 2017
D2273
UI - Disertasi Membership  Universitas Indonesia Library
cover
London: MIT Press, 1990
629.89 NEU (1)
Buku Teks  Universitas Indonesia Library
cover
Jodian Fariza Aji
"

Banjir merupakan bencana alam yang sering terjadi di Indonesia, menimbulkan kerusakan dan mengakibatkan kerugian ekonomi. Hingga saat ini pun, ibukota negara, Jakarta, tak lepas dari banjir akibat luapan dari Sungai Ciliwung. Untuk itu, diperlukan langkah preventif seperti peringatan dini banjir untuk mengurangi kerugian akibat banjir. Namun, sistem peringatan dini banjir yang saat ini dimiliki oleh Balai Besar Wilayah Sungai Ciliwung-Cisadane masih memiliki beberapa kekurangan, seperti model hidrologi yang tidak cocok untuk prediksi jangka pendek dan akurasinya yang belum optimal dan waktu yang belum efisien untuk tahap simulasi berikutnya. Untuk mengatasi kekurangan tersebut, pendekatan machine learning dikembangkan untuk mendapatkan model prediksi tinggi muka air dengan tingkat galat yang rendah dan waktu komputasi yang efisien. Model prediksi banjir diwakilkan oleh tinggi muka air berdasarkan limpasan air hujan dan limpasan dari aliran air ruas hulunya melalui 4 ruas Sungai Ciliwung. Dilakukan perbandingan dua metode berbasis neural network, yaitu Adaptive Neuro-Fuzzy Inference System (ANFIS) dan Recurrent Neural Network-Long Short Term Memory (RNN-LSTM). Model yang unggul secara umum adalah RNN-LSTM dengan tingkat galat yang lebih rendah dan waktu komputasi yang lebih cepat. Pada RMSE dan MAPE, RNN-LSTM unggul pada 3 dari 4 ruas. Waktu komputasi RNN-LSTM selalu lebih cepat dibandingkan dengan ANFIS. Sedangkan dilihat dari R2, baik ANFIS maupun RNN-LSTM memiliki kemampuan yang cukup baik kecuali untuk RNN-LSTM pada ruas ketiga. Sehingga secara keseluruhan RNN-LSTM lebih unggul dalam memprediksi tinggi muka air Sungai Ciliwung dilihat dari tingkat galatnya yang lebih rendah dan efisiensi waktunya. RNN-LSTM juga lebih unggul dalam memprediksi tinggi muka air yang fluktuasi dan standar deviasinya lebih besar.


Floods are natural disasters that often occur in Indonesia, causing damage and economic losses. Until now, the nation's capital, Jakarta, has not been free from flooding due to the overflow of the Ciliwung River. Therefore, preventive action like early warning of floods is needed, to reduce losses due to flooding. However, the flood early warning system currently done by the Ciliwung-Cisadane River Center still has several drawbacks, such as hydrological models that are not suitable for short-term predictions in which resulting their accuracy is not optimal and efficient computing time is needed. To overcome these deficiencies, a machine learning approach is developed to obtain a water level prediction model with a low error and efficient computing time. The model is predicting water level based on rainwater and upstream segment of the river runoff through the 4 segments of the river. Two neural network-based methods, Adaptive Neuro-Fuzzy Inference System (ANFIS) and Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) are compared. Generally, the RNN-LSTM outperformed with a lower error rate and faster computation time. On the RMSE and MAPE, RNN-LSTM excels on 3 out of 4 segments. Based on computing time, RNN-LSTM is always faster than ANFIS. Meanwhile, seen from the R2, both ANFIS and RNN-LSTM have decent capabilities except for RNN-LSTM on the third segment. Hence, the RNN-LSTM is superior in predicting the water level of the river based on its lower error and time efficiency. RNN-LSTM is also superior in predicting water level fluctuations with a larger standard deviation.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2001
S39102
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ronny Wicaksono
"The feed forward neural network (FFANN) model has been the most popular form of artificial neural network model used for forecasting, particularly in economics and finance. In this paper, we elucidate the application of FFANN as a means of modeling financial data. We particularly focus on the model building of FFANN as time series model and use inflation rates in Indonesia as a case study. A comparison is drawn between FFANN model and the best existing models based on traditional econometrics time series approach. The best models are selected on forecasting ability by using the MSE, particularly on the dynamic forecast. The results show that FFANN models outperform the traditional econometric time series model."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18415
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggoro Gagah Nugroho
"Plat nomor merupakan suatu jenis identifikasi kendaraan bermotor. Setiap kendaraan bermotor yang beroperasi dijalanan diwajibkan untuk melengkapi kendaraannya dengan plat nomor atau Tanda Nomor Kendaraan Bermotor (TNKB) yang sesuai dengan kode wilayah, nomor registrasi dan masa berlaku. Plat nomor di Indonesia terdapat 3 warna yang dipakai yaitu hitam, merah dan kuning dengan masing masing warna untuk fungsi yang berbeda. Dengan jumlah kendaraan di Indonesia, sistem pengenalan plat nomor dibuat secara otomatis bisa di implementasikan untuk memudahkan berbagai hal dalam pendataan plat nomor diantaranya pengecekan plat nomor ketika di area parkir, menemukan kendaraan yang dicuri ataupun mobil yang melanggar lampu merah. Pada penelitian ini terdapat 2 metode yang sering digunakan untuk pengenalan plat nomor otomatis yaitu KNN (K-Nearest Neighbour) dan NN (Neural Network). Setelah dilakukan pengujian menggunakan 3 analisis uji yang sudah dilakukan oleh penulis, akurasi metode neural network berhasil mencapai 88,8% sedangkan pada K-Nearest Neighbor akurasinya mencapai 72,2%. Metode NN lebih baik daripada KNN pada pengujian kali ini disebabkan adanya modifikasi pada variable yang dapat membuat akurasi NN lebih baik daripada KNN. Sedangkan pada metode KNN tidak dapat merubah akurasi yang telah didapatkan.

Number plate is a type of motor vehicle identification. Every motorized vehicle operating on the road is required to complete the vehicle with a license plate or Motor Vehicle Number (TNKB) that matches the area code, registration number and validity period. Number plates in Indonesia there are 3 colors used, namely black, red and yellow with each color for different functions. With the number of vehicles in Indonesia, the number plate recognition system is made automatically can be implemented to facilitate various things in number plate registration including checking license plates when in the parking area, finding stolen vehicles or cars that violate red lights. In this study there are 2 methods that are often used for automatic number plate recognition, namely K-Nearest Neighbor and NN (Neural Network). After testing using 3 test analyzes carried out by the author, the accuracy of the neural network method reached 88.8% while the K-Nearest Neighbor accuracy was 72.2%. The NN method is better than KNN in this test due to a modification in the variable that can make the accuracy of NN better than KNN. While the KNN method cannot change the accuracy that has been obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bharindra Kamanditya
"Kemajuan teknologi mengiringi kemajuan Pesawat Tanpa Awak yang membuat peneliti terus mengembangkannya. Quadcopter merupakan Pesawat Tanpa Awak yang saat ini telah banyak digunakan untuk berbagai tujuan. Bentuknya yang ringkas serta beratnya yang ringan dengan empat buah baling-baling motor membuat quadcopter memiliki keunggulan dalam kemampuan dalam melakukan maneuver di udara. Tujuan dari penelitian skripsi ini adalah diajukannya sebuah ide menciptakam pengendali Jaringan Saraf Kendali Inverse Langsung NN ndash;DIC ndash; Neural Network Direct Inverse Control dengan algoritma Elman Recurrent untuk quadcopter, dan membandingkannya dengan pengendali berbasis algoritma Back Propagation Neural Network biasa. Dalam skripsi ini dikemukakan hasil simulasi dari identifikasi quadcopter dengan memodelkan secara black box, serta hasil dari dua jenis pengendali Inverse untuk quadcopter yaitu Elman Recurrent Neural Network Direct Inverse Control dan Back Propagation Neural Network Direct Inverse Control.

Technological advances accompany the progress of Unmanned Aircraft that keeps researchers on the rise. Quadcopter is an Unmanned Aircraft that is now widely used for various purposes. Its compact shape and light weight with four motor propellers make the quadcopter has an advantage in the ability to maneuver in the air. The purpose of this thesis research is to propose an idea to create a controller of the Direct Inverse Control Neural Network NN ndash DIC with Elman Recurrent algorithm for quadcopter, and compare it with an ordinary Back Propagation Neural Netwok algorithm. In this thesis, the shown simulation results are those of quadcopter plant based on black box modeling identification, and the result of two types of Inverse controllers for quadcopter, Elman Recurrent Neural Netwok Direct Inverse Control and Back Propagation Neural Network Direct Inverse Control."
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wiryanata Sunardi
"Quadcopter atau Quadrotor adalah sebuah jenis helikopter tanpa awak yang memiliki empat rotor yang terpasang dengan propeller. Pada quadcopter memiliki 2 buah rotor yang berputar searah jarum jam dan 2 buah rotor yang berputar berlawanan arah jarum jam. Pada sebuah quadcopter memiliki keseimbangan yang tidak stabil secara aerodinamis sehingga memerlukan komputer untuk mengkonversi perintah input menjadi perintah yang dapat mengganti kecepatan rotasi dari propeller sehingga menghasilkan gerakan yang diinginkan. Seiring dengan perkembangan teknologi, khususnya Artificial Intelligence dan Machine Learning, teknologi telah menjadi bagian penting serta berpengaruh secara signifikan dalam kehidupan manusia. Pengaplikassian Artificcial Intelligence seperti Neural Network juga tidak luput pengaplikasiannya di bidang Quadcopter Unmanned Aerial Vehicles (UAV). Dalam hal ini Neural Network digunakan sebagai basis dari metode pengendalian yang hendak diaplikasikan pada Quadcopter Unmanned Aerial Vehicles (UAV) yang disebut sebagai Pengendali Neural Network. Metode pengendalian Neural Network merupakan metode pengendalian yang memiliki model matematika yang disusun oleh Artificial Neural Network (ANN) dimana pengendali Neural Network terdiri dari dua buah komponen dasar yakni komponen inverse dan komponen identifikasi. Jenis pengendali yang digunakan untuk menstabilisasi manuver pada pergerakan Quadcopter UAV kemudian diuji dan diverifikasi melalui simulasi yang dilakukan dengan bahasa pemrograman MATLAB serta dilakukan perbandingan dengan pengendali Single Neuron Adaptive PID sebagai pembanding dalam hal performa pengendali.

A quadcopter, or quadrotor, is an unmanned helicopter with four rotors equipped with propellers. In a quadcopter, two rotors spin clockwise, and two rotors spin counterclockwise. A quadcopter has an aerodynamically unstable balance, which requires a computer to convert input commands into instructions that can change the rotation speed of the propellers to produce the desired movements. With the advancement of technology, especially Artificial Intelligence and Machine Learning, technology has become an integral and influential part of human life. Artificial Intelligence, such as Neural Networks, is also applied in the field of Quadcopter Autonomous Aerial Vehicles (UAV). In this context, Neural Networks are used as the basis for control methods to be applied to Quadcopter Unmanned Aerial Vehicles (UAV), referred to as Neural Network Controllers. The Neural Network Controller method is a control method with a mathematical model constructed by an Artificial Neural Network (ANN) consisting of two primary components: the inverse component and the identification component. The type of controller used to stabilize the maneuvers in the movement of the Quadcopter UAV is then tested and verified through simulations conducted in the MATLAB programming language and compared with Single Neuron Adaptive PID (SNAPID) controllers regarding controller performance."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fausett, Laurene
Englewood Cliffs, NJ : Prentice-Hall, 1994
006.3 FOU f
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>