Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27765 dokumen yang sesuai dengan query
cover
Pal, Sankar K.
Jakarta: UI-Press, 1989
510 PAL f
Buku Teks SO  Universitas Indonesia Library
cover
Kandel, Abraham
Reading Mass.: Addison-Wesley, 1986
511.32 KAN f
Buku Teks SO  Universitas Indonesia Library
cover
Shinta Nataya Paramesti
"Identifikasi wajah berdasarkan ciri bibir berpengaruh pada keberhasilan pencarian citra wajah orang dikarenakan adanya variasi bentuk bibir yang dapat menjadi pembeda tiap individu. Untuk mempercepat pencarian pelaku kriminal, sebuah sistem aplikasi identifikasi wajah berdasarkan ciri bibir menjadi suatu kebutuhan. Sistem tersebut harus dapat mengekstrak ciri bibir dari sebuah citra digital menggunakan metode ekstraksi ciri yang akurat dan cepat.
Penelitian ini melakukan studi analisis kinerja metode eigenface dengan eigen fuzzy set (himpunan fuzzy eigen) untuk ekstraksi ciri bibir dalam sistem identifikasi wajah. Eigenface adalah metode ekstraksi ciri yang telah terbukti keberhasilannya dalam mengekstrak ciri wajah, sedangkan metode eigen fuzzy set dikembangkan berdasarkan teori himpunan fuzzy dan dapat digunakan untuk analisa citra. Metode deteksi bibir otomatis berdasarkan ciri warna juga dievaluasi efektifitasnya untuk perolehan citra dalam penelitian ini. Analisis dilakukan dengan metode analisis statistik desktiptif dan statistik inferensi. Uji coba dilakukan untuk dua skenario yang dibedakan berdasarkan citra bibir hasil segmentasi manual dan otomatis.
Hasil uji coba menunjukkan bahwa hasil deteksi otomatis hanya efektif mendeteksi bibir sebanyak 61.4% dan precision-recall perolehan wajah pada skenario 2 lebih rendah dari skenario 1. Metode eigen fuzzy set memiliki waktu komputasi lebih rendah dibandingkan metode eigenface. Sedangkan nilai precision-recall tertinggi dihasilkan oleh metode eigenface dengan rata-rata nilai 0.22%. Dari hasil ini disimpulkan bahwa metode ekstraksi ciri eigenface lebih efektif dibandingkan eigen fuzzy set. Sistem identifikasi wajah dengan metode eigenface untuk ekstraksi ciri kedepannya dapat dikembangkan menjadi sistem identifikasi wajah berbasis komponen wajah."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ridhani Faradina
"Salah satu perkembangan dari teknologi terbaru adalah pengenalan wajah. Pengenalan wajah pada dasarnya dilakukan berdasarkan asumsi bahwa setiap individu memiliki identitas unik. Tetapi pada kenyataannya, akan ada individu yang memiliki wajah mirip dengan individu lainnya. Penelitian ini dilakukan untuk mendeteksi individu-individu yang mirip tersebut. Metode machine learning yang digunakan adalah Support Vector Machine dan Fuzzy Kernel C-Means dengan dua jenis kernel. Metode pemilihan fitur Chi-Square juga akan digunakan untuk mereduksi dimensi data sehingga waktu yang dibutuhkan lebih cepat. Data yang digunakan adalah data foto wajah yang diambil dari Look-Alike Face Database. Hasil yang diperoleh memperlihatkan bahwa kedua metode machine learning tersebut mampu untuk melakukan pengenalan wajah pada identifikasi kemiripan, dengan akurasi tertinggi yang diperoleh SVM sebesar 94 dan FKCM sebesar 74.

One of the latest technology developments is face recognition. Face recognition is basically done on the assumption that each individual has a unique identity. But in reality, there will be individuals who have faces similar to other individuals. This research was conducted to identify look alike faces. The machine learning methods used are Support Vector Machine and Fuzzy Kernel C Means with two types of kernel. The Chi Square feature selection method was also used to reduce the dimension of the data in order to achive lower running time. The data used are face photos taken from Look Alike Face Database. The results show that both machine learning methods were able to perform face recognition on identification of look alike faces, with the highest accuracy obtained by SVM is 94 and FKCM is 74 ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahsan, Javed
"The purpose of this book is to present an up to date account of fuzzy ideals of a semiring. The book concentrates on theoretical aspects and consists of eleven chapters including three invited chapters. Among the invited chapters, two are devoted to applications of Semirings to automata theory, and one deals with some generalizations of semirings. "
Berlin: [Springer, ], 2012
e20398323
eBooks  Universitas Indonesia Library
cover
Romli Noor Ahmad
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1985
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Salah satu masalah yang dihadapi dalam Supply Chain Management adalah pencarian jalur. Jalur terbaik tidak hanya tergantung pada jarak, tetapi juga variabel lain, seperti: kualitas perusahaan yang terlibat, kualitas produk yang dikirimkan, dan nilai lain yang dipengaruhi oleh pengukuran kualitas. Umumnya, Ant Colony Optimization bisa mencari jalur terbaik yang hanya memiliki satu jalur objektif. Tapi akan sulit untuk diadopsi, karena dalam kasus nyata, jalur supply memiliki banyak jalur dan tujuan (khususnya pasokan minyak kelapa sawit berbasis bioenergi). Tujuan dari penelitian ini adalah untuk meningkatkan Ant Colony Optimization dalam menyelesaikan masalah jalur supply dengan menggunakan Fuzzy Ant Colony Optimization. Tujuan pengembangan Fuzzy Ant Colony Optimization dijelaskan disini, yaitu digunakan untuk mencari jalur supply terbaik.

Abstract
One of problem faced in supply chain management is path searching. The best path depend not only on distance, but also other variables, such as: the quality of involved companies, quality of delivered product, and other value resulted by quality measurement. Commonly, the ant colony optimization could search the best path that has only one objective path. But it would be difficult to be adopted, because in the real case, the supply path has multi path and objectives (especially in palm oil based bioenergy supply). The objective of this paper is to improve the ant colony optimization for solving multi objectives based supply path problem by using fuzzy ant colony optimization. The developed multi objectives fuzzy ant colony optimization design was explained here, that it was used to search the best supply path."
[Fakultas Ilmu Komputer Universitas Indonesia, Universitas Islam Negeri. Sains dan Teknologi], 2012
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Ichsani Mursidah
"ABSTRAK
Pendeteksian topik adalah proses untuk menemukan topik atau pokok pembahasan utama dalam suatu kumpulan dokumen. Untuk data yang besar, pendeteksian topik dengan manual sulit atau bahkan tidak mungkin dilakukan. Sehingga, dibutuhkan metode otomatis yang dikenal dengan istilah Topic Detection and Tracking (TDT). Pada penelitian ini metode TDT yang digunakan untuk masalah pendeteksian topik adalah fuzzy C-means (FCM). FCM bekerja cukup baik pada dimensi data yang rendah, tetapi gagal pada dimensi data yang tinggi. Pada metode fuzzy c-means umumnya dilakukan inisialisasi random yang menyebabkan data konvergen ke satu pusat (centre of gravity) sehingga topik-topik yang dihasilkan antara satu dengan yang lainnya sama. Untuk mengatasi masalah tersebut dibutuhkan inisialisasi yang tidak random, yaitu dengan menggunakan inisialisasi berbasis singular value decomposition (SVD). Hasil akurasi dari metode ini menunjukkan adanya peningkatan lebih baik dibandingkan dengan metode FCM dengan inisialisasi random. Dengan nilai akurasi terbaik untuk FA Cup adalah 0,923, untuk US Elections adalah 0,661 dan untuk Super Tuesday adalah 0,727.

ABSTRACT
Topic detection is the process of finding the main topic or topic in a document. For large data, manual topic detection is difficult or even impossible. Thus, it takes an automatic method known as Topic Detection and Tracking (TDT). In this research the TDT method used for topic detection problem is fuzzy C-means (FCM). FCM works reasonably well on low data dimensions, but fails on high data dimensions. In the method of fuzzy c-means is generally done random initialization that causes data convergent to one center (center of gravity) so that the topics generated from one another are equal. To solve this problem requires non-random initialization, ie by using a singular value decomposition (SVD) based initialization. The accuracy of this method shows a better improvement compared to the FCM method with random initialization. With the best accuracy value for the FA Cup is 0.923, for US Elections is 0.661 and for Super Tuesday is 0.727."
2017
T48587
UI - Tesis Membership  Universitas Indonesia Library
cover
New York: Academic Press, 1975
511.3 FUZ
Buku Teks SO  Universitas Indonesia Library
cover
Viertl, Reinhard
Boca Raton: CRC Press, 1996
519.54 VIE s
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>