Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11338 dokumen yang sesuai dengan query
cover
Brunak, Soren
Singapore: World Scientific, 1990
006.3 BRU n
Buku Teks  Universitas Indonesia Library
cover
Bondan Priyambodo
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38437
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chester, Michael
New Jersey: Prentice-Hall, 1993
006.3 CHE n
Buku Teks  Universitas Indonesia Library
cover
"The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
"
Berlin: Springer-Verlag, 2012
e20406731
eBooks  Universitas Indonesia Library
cover
Sius Wibisono
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1993
S26906
UI - Skripsi Membership  Universitas Indonesia Library
cover
New York: IEEE Press, 1992
R 006.3 NEU
Buku Referensi  Universitas Indonesia Library
cover
Fausett, Laurene
Englewood Cliffs, NJ : Prentice-Hall, 1994
006.3 FOU f
Buku Teks  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radhimas Djan
"ABSTRACT
A conversational agent is a software that can communicate with humans by using natural language. Earlier approaches to build conversation agents were rule-based. With the rise of deep learning, the neural network models have been used to automatically infer the conversations used by the agents. This method allows skipping the cumbersome feature engineering process in the training and results in the application of conversational agents to the various field. There is one major problem in the neural network called catastrophic forgetting, a condition where the neural network will forget knowledge learned in the previous training phase and a new knowledge will be acquired. This problem can be mitigated by using a continuous learning model to sustain the old knowledge while keep learning new knowledge. In this project, we propose the application of neural conversational model on Dota 2, an online game with the continuous update, bug fixes, and new features. The continuous update feature has led to players struggling to stay informed of changes in the game features and characters. We propose the usage of a conversational agent with a continuous learning model to learn the everchanging patch notes while still maintaining previous patches knowledge. Our project has shown that elastic weight consolidation is not suitable for a dataset with text properties and would be better to be applied in other types of datasets which has been conducted in previous studies.

ABSTRACT
Conversational agent, adalah perangkat lunak yang digunakan untuk berkomunikasi dengan user menggunakan natural language. Pembuatan conversational agent sebelumnya menggunakan rule-based. Dengan munculnya Deep learning, model menggunakan neural network untuk menyimpulkan pembicaraan di dalam percakapan secara otomatis. Metode ini memungkinkan untuk melewati proses feature engineering di masa pelatihan dan menghasilkan conversational agent dalam banyak bidang. Namun ada satu masalah besar menggunakan neural network yaitu model akan melupakan pengetahuan yang sudah dipelajari dalam masa pelatihan sebelumnya dan pengetahuan baru akan didapatkan. Masalah ini bias di mitigasi dengan menggunakan continuous learning model untuk mempertahankan pengetahuan lama sambal mempelajari pengetahuan baru. Di dalam proyek ini, kami mengusulkan penerapan model percakapan neural network pada Dota 2, game online yang memiliki pembaruan berkelanjutan seperti memberbaiki bug dan fitur baru. Fitur pembaruan berkelanjutan telah meyebabkan pemain berupaya untuk tetap mendapatkan informasi tentang perubahan fitur dan karakter. Kami mengusulkan penggunaan conversational agent dengan continuous learning agar model dapat mempelajari perubahan yang terjadi di dalam permainan tersebut dan mempertahankan pengetahuan sebelumnya. Project ini telah menunjukkan bahwa elastic weight consolidation tidak cocok untuk dataset dengan property teks dan akan lebih baik untuk diterapkan pada jenis dataset lain yang telah dilakukan dalam studi sebelumnya"
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wiryanata Sunardi
"Quadcopter atau Quadrotor adalah sebuah jenis helikopter tanpa awak yang memiliki empat rotor yang terpasang dengan propeller. Pada quadcopter memiliki 2 buah rotor yang berputar searah jarum jam dan 2 buah rotor yang berputar berlawanan arah jarum jam. Pada sebuah quadcopter memiliki keseimbangan yang tidak stabil secara aerodinamis sehingga memerlukan komputer untuk mengkonversi perintah input menjadi perintah yang dapat mengganti kecepatan rotasi dari propeller sehingga menghasilkan gerakan yang diinginkan. Seiring dengan perkembangan teknologi, khususnya Artificial Intelligence dan Machine Learning, teknologi telah menjadi bagian penting serta berpengaruh secara signifikan dalam kehidupan manusia. Pengaplikassian Artificcial Intelligence seperti Neural Network juga tidak luput pengaplikasiannya di bidang Quadcopter Unmanned Aerial Vehicles (UAV). Dalam hal ini Neural Network digunakan sebagai basis dari metode pengendalian yang hendak diaplikasikan pada Quadcopter Unmanned Aerial Vehicles (UAV) yang disebut sebagai Pengendali Neural Network. Metode pengendalian Neural Network merupakan metode pengendalian yang memiliki model matematika yang disusun oleh Artificial Neural Network (ANN) dimana pengendali Neural Network terdiri dari dua buah komponen dasar yakni komponen inverse dan komponen identifikasi. Jenis pengendali yang digunakan untuk menstabilisasi manuver pada pergerakan Quadcopter UAV kemudian diuji dan diverifikasi melalui simulasi yang dilakukan dengan bahasa pemrograman MATLAB serta dilakukan perbandingan dengan pengendali Single Neuron Adaptive PID sebagai pembanding dalam hal performa pengendali.

A quadcopter, or quadrotor, is an unmanned helicopter with four rotors equipped with propellers. In a quadcopter, two rotors spin clockwise, and two rotors spin counterclockwise. A quadcopter has an aerodynamically unstable balance, which requires a computer to convert input commands into instructions that can change the rotation speed of the propellers to produce the desired movements. With the advancement of technology, especially Artificial Intelligence and Machine Learning, technology has become an integral and influential part of human life. Artificial Intelligence, such as Neural Networks, is also applied in the field of Quadcopter Autonomous Aerial Vehicles (UAV). In this context, Neural Networks are used as the basis for control methods to be applied to Quadcopter Unmanned Aerial Vehicles (UAV), referred to as Neural Network Controllers. The Neural Network Controller method is a control method with a mathematical model constructed by an Artificial Neural Network (ANN) consisting of two primary components: the inverse component and the identification component. The type of controller used to stabilize the maneuvers in the movement of the Quadcopter UAV is then tested and verified through simulations conducted in the MATLAB programming language and compared with Single Neuron Adaptive PID (SNAPID) controllers regarding controller performance."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>