Ditemukan 16949 dokumen yang sesuai dengan query
Walsh, Nancy
Beijing : O`Reilly and Associates, 1999
005.133 WAL l
Buku Teks Universitas Indonesia Library
Lutz, Mark
Beijing : O'Reilly, 1999
005.133 LUT l (1)
Buku Teks Universitas Indonesia Library
Nagler, Eric
Boston: PWS Publishing Company, 1997
005.13 NAG e
Buku Teks Universitas Indonesia Library
Wall, Larry
Bonn: O'Reilly, 1996
005.133 WAL p
Buku Teks Universitas Indonesia Library
Brown, Martin C.
Berkeley: Osborne/McGraw-Hill, 1999
R 005.13 BRO p
Buku Referensi Universitas Indonesia Library
Brown, Micah
New Jersey: Prentice-Hall, 1999
R 005.13 BRO e
Buku Referensi Universitas Indonesia Library
Skinner, G. G.
London: Pitman, 1993
001.642 SKI o
Buku Teks Universitas Indonesia Library
Budi Selamet Raharjo
"Sistem Penilaian Otomatis SIMPLE-O selama ini dikembangkan dengan pemrograman PHP di Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. Namun akurasi SIMPLE-O saat ini belum cukup tinggi untuk dapat digunakan secara praktis. SIMPLE-O kemudian dilanjutkan pengembangannya menggunakan pemrograman Bahasa C, tidak hanya untuk mencoba meningkatkan akurasi SIMPLE-O, tapi juga untuk memperluas penggunaannya. Untuk dapat meningkatkan akurasi penilaian SIMPLE-O diintegrasikan learning vector quantization LVQ pada pengembangannya. Skripsi ini membahas bagaimana pengembangan SIMPLE-O dengan LVQ menggunakan pemrograman Bahasa C.Seberapa banyak bagian data sampel yang digunakan pada saat training mempengaruhi performa penilaian. Semakin sedikit data yang digunakan pada fase training, maka akan terjadi penurunan akurasi pada fase evaluasi. Akurasi penilaian juga dipengaruhi proses ekstraksi ciri-ciri teks yang dilakukan menggunakan latent semantic analysis LSA dan singular value decomposition SVD . Akurasi penilaian dapat berubah ketika singular value yang dihasilkan, di proses terlebih dulu dengan frobenius norm dan vector angle. Faktor lainnya seperti jumlah kata-per-kolom matriks LSA tidak begitu mempengaruhi akurasi penilaian. Pada akhir percobaan, akurasi SIMPLE-O dengan LVQ secara rata-rata adalah 52.27 . Dengan menambahkan LVQ, akurasi SIMPLE-O mengalami peningkatan sebesar 41.67.
Sistem Penilaian Otomatis SIMPLE O was developed using PHP at Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. But the resulting accuracy of the SIMPLE O was not reliable enough to be used practically. Right now, SIMPLE O was being developed using C Programming Language. This was done to increase its reliability and to further widen its applications. To increase the accuracy of SIMPLE O, learning vector quantization LVQ was integrated as part of the new program. This Paper was written to address the development of SIMPLE O with LVQ.With less data used in LVQ training phase there will a decrease in the resulting accuracy of the validation phase. The accuracy was also affected by the method of how well the extraction of the text characteristic using latent semantic analysis LSA and singular value decomposition SVD . Additional process of the resulting singular value will result in change of accuracy. The number of words per column when creating the LSA matrix did not have any significant effect. At the end, SIMPLE O with LVQ has an average accuracy of 52.27. Implementation of LVQ give an increase of 41.67 of the accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68766
UI - Skripsi Membership Universitas Indonesia Library
Adam Arsy Arbani
"Departemen Teknik Elektro Universitas Indonesia sejak tahun 2007 telah mengembangkan sistem penilaian esai otomatis yang dinamakan dengan Simple-O. Simple-O menggunakan metode Latent Semantic Analysis LSA untuk membandingkan dua esai dengan cara mengekstrak esai tersebut menjadi matriks. Pengembangan sebelumnya dari Simple-O adalah penambahan Learning Vector Quantization LVQ yang merupakan metode dari artificial neural network. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O terhadap akurasi dari program itu sendiri. Untuk melihat pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O ini, maka dilakukan lima skenario berbeda. Skenario tersebut adalah dengan memvariasikan jumlah keywords yang ada pada esai jawaban menjadi sejumlah 100, 80, 60, dan 20 mendekati jumlah keywords jawaban referensi. Dari hasil pengujian yang telah dilakukan, terdapat skenario yang mengalami penurunan akurasi dan kenaikan akurasi. Jika disimpulkan, rata-rata akurasi program Simple-O setelah penambahan fungsi persamaan kata mengalami peningkatan. Namun, peningkatan rata-rata akurasi yang terjadi tidak terlalu signifikan, peningkatan rata-rata akurasi yang terjadi setelah penambahan fungsi persamaan kata adalah sebesar 5.4 dari 90.9 menjadi 96.3.
Department of Electrical Engineering Universitas Indonesia has developed an automatic essay grading system called Simple O since 2007. Simple O uses the Latent Semantic Analysis LSA method to compare two essays by extracting the essay into matrix. The previous development of Simple O is the addition of Learning Vector Quantization LVQ which is a method of artificial neural network. This research will discuss and provide analysis related to the effect of adding word similarity function to the automatic essay grading system Simple O to the accuracy of the system itself. The experiment will be conducted with five different scenarios by varying the number of keywords in the students answer essay to 100, 80, 60, 40, and 20 of the reference essay keywords. According to the result, there are scenarios that has decreased and increased in accuracy. The average accuracy of the Simple O system after the addition of word similarity function has increased, though not significant. The average increase in accuracy after the addition of word similarity function is 5.4 from 90.9 to 96.3."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Albon, Chris
"With Early Release ebooks, you get books in their earliest form--the author's raw and unedited content as he or she writes--so you can take advantage of these technologies long before the official release of these titles. You'll also receive updates when significant changes are made, new chapters are available, and the final ebook bundle is released. The Python programming language and its libraries, including pandas and scikit-learn, provide a production-grade environment to help you accomplish a broad range of machine-learning tasks. With this comprehensive cookbook, data scientists and software engineers familiar with Python will benefit from almost 200 practical recipes for building a comprehensive machine-learning pipeline--everything from data preprocessing and feature engineering to model evaluation and deep learning. Learn from author Chris Albon, a data scientist who has written more than 500 tutorials on Python, data science, and machine learning. Each recipe in this practical cookbook includes code solutions that you can put to work right away, along with a discussion of how and why they work--making it ideal as a learning tool and reference book"
Beijing: O'Reilly, 2018
006.31 ALB m
Buku Teks Universitas Indonesia Library