Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 129389 dokumen yang sesuai dengan query
cover
Lilik Zulaihah
"Poliaromatik hidrokarbon (PAH) yang dikeluarkan oleh gas buang kendaraan bermotor ada dua fasa, yaitu fasa partikulat dan gas. PAH tersebut berasal dari bahan bakar dan dari hasil pembakaran yang tidak sempurna. Teknik pengambilan contoh yang digunakan adalah teknik filtrasi aerosol dengan menggunakan amberlite XAD-7 dan Florisil sebagai adsorben, dengan tujuan dapat menyerap PAH dari emisi gas buang kendaraan diesel.
Untuk mendapatkan kondisi yang baik, pada pengambilan contoh dilakukan variasi laju pembakaran bahan bakar/laju alir gas buang pada 30, 45 dan 60 liter per menit setts waktu pengambilan contoh selama 10, 30 dan 50 menit. Suhu adsorben tidak divariasi, akan tetapi diamati, yaitu pada laju pembakaran/laju alir gas buang pada 30 dan 45 liter per menu suhu adsorben menunjukkan antara 20 sampai 40°C, sedangkan pada laju pembakaran/laju alir gas buang pada 60 liter per menit antara 20 sampai 53°C. Setelah di desorpsi kadar PAH dari emisi gas buang diukur dengan menggunakan alat kromnatografi gas.
Hasil penelitian menunjukkan makin tinggi laju pembakaran/laju alir gas buang, makin banyak kadar PAH yang dikeluarkan dan makin lama waktu pengambilan contoh, makin banyak kadar PAH yang terserap oleh adsorben, yaitu 48, 76 dan 153 mg/kg adsorben pada adsorben amberlite XAD-7 dan 4, 13 dan 16 mg/kg adsorben pada Florisil.
Jenis PAH yang terserap sebanyak 11 jenis dengan adsorben amberlite XAD-7 dan 6 jenis dengan adsorben Florisil. Penelitian ini menunjukkan bahwa kemampuan penyerapan adsorben amberlite XAD-7 (total PAH 153 mg/kg adsorben) lebih tinggi dari pada Florisil (total PAH maksimum 16 mg/kg adsorben). Dengan asumsi bahwa toluen dapat mengadsorpsi PAH secara kuantitatif diperoleh sebanyak 7 jenis PAH untuk laju pembakarau/laju alir gas buang pada 30 dan 45 liter/menit pada waktu 10 menit.

Polyaromatic Hydrocarbon (PAH) which is discharged by vehicle exhaust gas has two phase, there are particulate phase and semi volatile phase. PAH comes from fuel and the unperfect result of combustion.
Sampling technique that has been used was Aerosol Filtration Technique using amberlite XAD-7 and Florisil as adsorbent. The aim of this experiment is to adsorb PAH of diesel exhaust gas emission.
To reach a good condition, there was a variation of exhaust gas flow rate at 30, 45 and 60 liter per minute and the time of sampling at 10, 30 and 50 minutes. Adsorption temperature was not variated, but it was only observed . The exhaust gas flow rate of 30 and 45 liter per minute showed adsorption temperature value between 20 until 40° C and at exhaust gas flow rate of 60 liter per minute showed adsorption temperature value between 20 until 53° C. After desorption process, the concentration of PAH of exhaust gas emission was measured by using Gas Chromatography.
The experiment result showed that the increasing of exhaust gas flow rate mode a lot of PAH concentration discharge and the foyer time of sampling mode PAH concentration was more adsorb there were 48, 76 and 153 mg/kg adsorbent of XAD-7 and 4, 13 and 16 mg/kg adsorbent of florisil.
The were is kind of PAH adsorb by amberlite XAD-7 and 6 kind by Florisil. The experiment showed, the total adsorption of amberlite XAD-7 (153 mg/kg adsorbent) was higher than forisil (16 mglkg absorbent). It was assumpted that tolune could adsorb PAH qualitatively and got 7 kinds of PAH at axhaust gas flow rate of 30 and 45 liter/minute on 10 minutes."
Depok: Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hanif Yuliani
"ABSTRAK
Poliaromatik hidrokarbon (PAH) adalah salah satu kontaminan yang paling banyak ditemukan di area yang terkontaminasi minyak. Senyawa PAH dalam limbah lumpur minyak bumi antara lain antrasena, benzo-antrasena, dan pirena. Diantara senyawa PAH tersebut, pirena merupakan PAH dengan berat molekul tinggi yang paling berlimpah, yang bersifat sangat beracun, mutagenik, genotoksik dan karsinogenik pada organisme hidup. Hasil riset ini menunjukkan beberapa mikroorganisme mampu mendegradasi senyawa pirena. Untuk mempelajari kemampuan strain Indonesia dalam mendegradasi senyawa pirena tersebut, studi eksploratif telah dilakukan. Lima isolat bakteri laut dari Cilacap dan Marina telah digunakan dalam penelitian ini untuk melakukan studi biodegradasi pirena. Lima strain diidentifikasi sebagai Ochrobactrum sp. M2292, Bacillus subtilis M128, Bacillus subtilis C318, Bacillus subtilis C19 dan Bacillus pumilus C15. Isolat bakteri ini dianalisis untuk keberadaan gen dioksigenase, diyakini sebagai gen kunci dalam biodegradasi PAH. Dari hasil studi telah ditemukan bahwa semua isolat memiliki gen dioksigenase, nidA dan nahAc, dua biomarker yang digunakan untuk mengevaluasi kemampuan bakteri dalam biodegradasi PAH. Kelima bakteri menunjukkan kemampuan mereka dalam proses biodegradasi PAH menggunakan media uji petri agar dengan menggunakan pirena atau fenantera sebagai substrat, tetapi hanya dua isolat yang sangat unggul dalam pertumbuhan, yaitu Bacillus subtilis C19 untuk biodegradasi pirena dan Ochrobactrum sp. M2292 untuk biodegradasi fenantrena. Pada Penelitian ini difokuskan pada biodegradasi pirena, sehingga B. subtilis C19 dipilih untuk studi lebih lanjut. Sebuah uji batch sederhana dilakukan untuk mempelajari kinetika biodegradasi pirena menggunakan B. subtilis C19, dimana pirena sebagai substrat pembatas. Laju pertumbuhan sel kemudian difitting dengan menggunakan model pertumbuhan bakteri Monod, Haldane, Andrews, dan Aiba. Hasil analisis menunjukkan nilai sum square error minimum pada model Andrews dengan laju pertumbuhan maksimum (μmax) 0,0048 h-1, konstanta spesifik substrat (Ks) 0,0079 gL-1, dan konstanta inhibisi substrat (Ki) 0,2619 gL-1. Model Andrew menghasilkan fitting terbaik dengan nilai sum square error 0.046 dibandingkan dengan model lain dengan nilai sum square error 0,050-0,207. Selain kemampuan intrinsik untuk biodegradasi pirena, bakteri ini juga dikenal menghasilkan biosurfaktan, yang dapat membantu mengemulsi substrat pirena, sehingga meningkatkan bioavailabilitasnya. Hasil riset menunjukkan bahwa B. subtilis C19 menghasilkan biosurfaktan lipopeptida, dan analisis lebih lanjut menunjukkan bahwa biosurfaktan ini memiliki stabilitas tinggi pada variasi pH dan salinitas, dua karakteristik yang diperlukan untuk aplikasi bioremediasi. Dalam sebuah studi tambahan, aktivitas antimikroba dari biosurfaktan pada lima bakteri

ABSTRAK
Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica typhi, Listeria monocytogenes, dan fungi Candida albicans telah dianalisis. Hasil riset menunjukkan biosurfaktan yang diproduksi oleh B. subtilis C19 menghambat pertumbuhan fungi tetapi tidak menghambat pertumbuhan bakteri. Hasil riset ini menunjukkan bahwa biosurfaktan yang dihasilkan oleh B. subtilis C19 dapat digunakan untuk aplikasi konsorsium dalam biodegradasi pirena, tanpa dampak negatif dari fungsi antimirobialnya.;Poly-aromatic hydrocarbon (PAH) is one of the most pervasive contaminant presents in oil ? contaminated sites. It comprises anthracene, benzo-anthracene, and pyrene. Of those, pyrene is the most abundant high-molecular weight PAHs, which is highly toxic, mutagenic, genotoxic and carcinogenic to the living organisms. However, reports have suggested that some microorganisms were capable of successfully degrading the pyrene. To study the ability of Indonesian strain to degrade the pyrene, an explorative study has been undertaken. A five marine bacterial isolate from Cilacap and Marina have been used in this study to undertake the pyrene degradation study. The five strains were identified as Ochrobactrum sp. M2292, Bacillus subtilis M128, Bacillus subtilis C318, Bacillus subtilis C19 and Bacillus pumilus C15. They were analyzed for the presence of dioxygenase genes, believed to be the key genes in the degradation of pyrene. It was found from the study that all the isolates have the dioxygenase genes, nidA and nahAc, two biomarkers used to evaluate the degradation capability of the bacteria. The five bacteria shows their capability in degrading the PAHs using petri dish agar medium test using pyrene or penanthere as substrate, but only two were superior in term of growth, which were, Bacillus subtilis C19 for pyrene and Ochrobactrum sp. M2292 for penantherene. As this study was focused on pyrene, B. subtilis C19 were chosen for further study. A simple batch test was undertaken to study the degradation kinetics of pyrene using B. subtilis C19, where pyrene was used as the limiting substrate. The growth rate was then fitted using the least sum square error with available bacterial growth models of Monod, Haldane, Andrews, and Aiba. The experimental results showed that the curve fitted Andrews model best, with a maximum specific growth rate (μmax) of 0.0048 h-1, a half velocity constant (Ks) of 0.0079 gL-1, and an inhibition growth rate coefficient (Ki) of 0.2619 gL-1. The fit produces a sum square error of 0.046 as compared to, between 0.050 ? 0.207 of other models. In addition to its intrinsic ability to degrade the pyrene, the bacterium was also known to produce a biosurfactant that may help the bacteria to emulsify the pyrene, so that increases its bioavailability. It was confirmed that the bacteria did produce the biosurfactant, and further analysis showed that the lipopeptide biosurfactant had a superior stability in term of pH and salinity, two characteristics required for a successful field application. In an additional study, an antimicrobial activity of the biosurfactant on five bacteria"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1915
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dian Noor Syamsu
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48886
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2001
04 Suh p-5
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Ahmad Ilhami
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
T39895
UI - Tesis Open  Universitas Indonesia Library
cover
Rony Gunawan
"Full Waveform Sonic Log dapat merekam gelombang compresional (P) dan shear (5) sehingga modulus elastisitas dan rasio VpNs batuan di sumur pemboran migas dapat diketahui dengan menggunakan tambahan data dari log densitas.
Dengan mengkombinasikan data hasil log konvensionai (SP, Gamma Ray, resistivitas,porositas dan densitas), dan hasil uji kandungan lapisan di sumur Tegal Tangkil-1 dengan hasil perhitungan modulus elastisitas (Poisson' Ratio, Modulus Bulk, kompresibilitas, modulus Young, modulus rigiditas) dan rasio VpNs maka akan diketahui karakter atau ciri modulus elastisitas dan rasio VpNs untuk setiap jenis litologi (batuan), sifat-sifat petrofisika dan kandungan hidrokarbon di sumur ini.
Penelitian menunjukan bahwa Poisson's Ratio, kompresibilitas dan rasio VpNs merupakan metoda yang terbaik untuk mendeteksi jenis litologi dan kandungan hidrokarbon dengan tingkat ketelitian yang cukup baik. Nilai Poisson's Ratio untuk batupasir Formasi Cibulakan Atas adalah: 0.33 - 0.36, Batugamping Formasi Baturaja dan Parigi : 0.28 - 0.33, Batulempung Formasi Cibulakan Atas : 0.37 - 0.40, Batugamping gas Formasi Cibulakan Atas : 0.16 - 0.20, batupasir gas Formasi Cibulakan Atas : 0.21 - 0.25.
Dari hasil cross plot Poisson's Ratio dengan Vpdapat diketahui jenis litologi dan kandungan hidrokarbon dengan cukup akurat. Nilai rasio VpNs untuk untuk batupasir Formasi Cibulakan Atas adalah: 2.0 - 2.1, Batugamping Formasi Baturaja dan Parigi : 1.8 - 2.0, Batu lempung Formasi Cibulakan Atas : 2.2 -- 2.45, Batugamping gas Formasi Cibulakan Atas : 1.6 - 1.7, batupasir mengandung gas Formasi Cibulakan Atas : 1.65 - 1.75. Dari hasil cross-plot rasio VpNs dengan acoustic impedance dapat diketahui jenis litologi dan kandungan hidrokarbon dengan cukup akurat.
Nilai kompresibilitas untuk batupasir Formasi Cibulakan Atas adalah: 0.05 - 0.08, Batugamping Formasi Baturaja : 0.03 - 0.05, Batugamping Formasi Parigi 0.035 - 0.07, Batulempung Formasi Cibulakan Atas : 0.06 - 0.015, Batugamping gas Formasi Cibulakan Atas : 0.16 - 0.165, batupasir gas Formasi Cibulakan Atas : 0.23 - 0.25. Porositas , kandungan shalellempung , dan tekanan mempengaruhi kecepatan gelombang P (Vp) dan gelombang S (Vs). Porositas dan kandungan lempung (Vshale) mengurangi vp dan Vs, tetapi Vshale meningkatkan rasio VpNs . Pengaruh porositas Iebih dominan dibandingkan Vshale, sedangkan tekanan meningkatkan Vp dan Vs."
Depok: Universitas Indonesia, 1999
T 2025
UI - Tesis Membership  Universitas Indonesia Library
cover
Myriam Moerwani Koeswardhani
"ABSTRAK
Isi Ringkasan
Indonesia adalah negara sedang berkembang, yang sedang melaksanakan pembangunan industri. Meningkatnya jumlah industri tidak hanya memberikan dampak positif, tetapi juga memberikan dampak negatif, misalnya pencemaran lingkungan hidup dari buangan industri, yang menyebabkan penurunan kualitas lingkungan.
Untuk mencegah menurunnya kualitas lingkungan diperlukan usaha pencegahan melalui pengolahan limbah tersebut. Secara garis besar, kegiatan pengolahan air limbah dapat dibagi menjadi 6 (enam) tahap antara lain : Pengolahan pendahuluan, Pengolahan primer, pengolahan sekunder, pengolahan tertier, Pembunuhan kuman dan Pembuangan lanjutan.
Salah satu cara untuk mengolah limbah pada pengolahan tertier adalah dengan proses adsorpsi (penjerapan ). Salah satu sistem adsorpsi adalah adsorpsi fisik (adsorpsi Van der Waals) yang terjadi karena adanya gaya Van der Waals antara molekul-molekul zat yang terjerap dan bersifat dapat balik. Pada umumnya adsorben yang digunakan adalah karbon aktif, dapat berbentuk granular maupun bubuk. Karbon aktif granular maupun bubuk,mempunyai permukaan dalam yang lebih luas sehingga mempunyai daya jerap yang lebih besar.
Untuk mengetahui efektivitas karbon aktif yang tepat, telah dilakukan penelitian di laboratorium Fakultas Teknologi Pertanian Institut Teknologi Indonesia, dengan sampel dart limbah tekstil P.T. Sandratex, dan karbon aktif bubuk yang dibeli dari pedagang bahan kimia.
Menurut hasil penelitian dart F.T. Sandratex,setelah diolah dengan pengolahan primer dan sekunder pun,limbah cair industri tekstil tersebut masih mengandung kadar Fe'dan Zn' yang cukup tinggi yaitu lebih kurang 16 ppm, sedang Nilai Ambang Batas yang diperbolehkan untuk Fe-dan Zn' masingmasing 5 ppm.(Kep-03/MENKLH/II/199I )
Proses adsorpsi adalah salah satu cara pada pengolahan tertier , dan limbah cair tekstil yang diteliti sudah mengalami proses pengolahan primer dan sekunder terlebih dahulu. Sebagai pembanding (kontrol) digunakan limbah cair tekstil sintetis , yang sengaja dipersiapkan dengan cara melarutkan FeSO-4 7 H2O dan Zn S0a dengan akuades sehingga diperoleh larutan murni yang mengandung jumlah senyawa Fe' dan Zn' seperti yang terdapat pada limbah tekstil P.T Sandratex.
Berkaitan dengan uraian diatas, maka masalah penelitian adalah sebagai berikut
1. Berapa besarkah efektivitas karbon aktif dalam mereduksi kadar ion Fe ' dan Zn+` dalam limbah cair industri tekstil dan limbah cair sintetis.
2. Berapakah lama kontak optimal yang dibutuhkan agar karbon aktif dapat me﷓
reduksi jumlah ion logam (Fe dan Zn ) sehingga tidak rnelebihi Nilai Ambang Batas yang diperbolehkan
3. Sampai berapa kalikah karbon aktif dapat digunakan untuk menjerap (mengadsorpsi) ion Fe' dan ion Zn' dalam limbah cair industri tekstil dengan optimal tanpa regenerasi.
Berdasarkan permasalahan yang telah diuraikan, penelitian ini ingin meneliti efektivitas karbon aktif bubuk dengan kadar karbon aktif (% berat per volume) dan lama kontak limbah cair dengan karbon aktif (menit/liter), dengan jumlah ion Fe' dan Zn' yang tertinggal dalam larutan setelah di adsorpsi oleh karbon aktif, dan persentase Fe'dan Zn' yang diadsorpsi, sehingga hipotesis yang diajukan dalam penelitian ini adalah sebagai berikut:
1. Semakin besar kadar karbon aktif bubuk yang diberikan, semakin besar persentase ion Fe"dan Zri yang diadsorpsi, dan semakin kecil pula jumlah Fe' dan Zn" yang tertinggal dalam limbah cair industri tekstil dan limbah cair sintetis setelah diadsorpsi.
2. Semakin lama waktu kontak karbon aktif bubuk dengan limbah cair industri tekstil dan limbah cair tekstil sintetis, semakin kecil jumlah ion Fe" dan Zn' yang tertinggal dalam limbah cair tekstil / sintetis dan semakin besar persentase Fe'dan Zn' yang diadsorpsi.
3. Pemakaian karbon aktif sebanyak 20 kali tanpa regenerasi, dapat menaikkan persentase Fe'dan Zn' yang diadsorpsi (dijerap) dan menurunkan jumlah ion Fe'dan Zn'dalam limbah cair industri tekstil maupun limbah cair tekstil sintetis, setelah diadsorpsi oleh karbon aktif
Penelitian ini bersifat eksperimental , dan bertujuan untuk mengetahui seberapa jauh kemampuan karbon aktif untuk mengadsorpsi (menjerap) ion Few` dan ion Zn' yang masih terdapat cukup tinggi dalam limbah cair industri tekstil, meskipun telah diperlakukan dengan pengolahan limbah cair tahap pertama maupun tahap kedua. Selain daripada itu ingin pula membandingkan daya adsorpsi karbon aktif pads limbah cair tekstil dengan limbah cair sintetis. Ion logam yang terdapat dalam limbah cair sintetis hanya terdiri dari ion Fe'dan ion Zn' saja, sedangkan pada limbah cair tekstil meski sudah dilakukan pengolahan tahap pertama dan kedua tetapi masih cukup banyak mengandung ion-ion yang lain, dan ingin pula meneliti tentang berapa kalikah penggunaan karbon aktif untuk mengadsorpsi limbah cair industri tekstil tanpa regenerasi.
Analisis percobaan dilakukan dengan menggunakan Rancangan Acak Lengkap pola faktorial. Variabel penelitian terdiri dari daya jerap karbon aktif sebagai variabel tergantung atau gayut ( dependent variable) sedangkan sebagai variabel babas atau variabel tak gayut (independent variable) adalah kadar karbon aktif ( persen berat per volume dalam gram/liter) dan lama kontak dengan karbon aktif ( menit/liter).
Penelitian iai dilaksanakan dalam dua tabap, tahap pertama adalah Penelitian Pendahuluan dan tahap kedua adalah Penelitian Utama.
Penelitian pendahuluan dilakukan untuk menentukan jenis karbon aktif yang digunakan, kadar karbon aktif dan lama kontak yang terbaik. Pala penelitian pendahuluan ini Variabel lama kontak limbah cair industri tekstil dengan karbon aktif yang digunakan merupakan variabel waktu dengen variasi waktu 30, 60, 90 menit , sedangkan kadar karbon aktif yang digunakan berkisar antara 10, 20, dan 30 % berat per volume(mg/liter).
Dari percobaan pendahuluan , ternyata variabel waktu (lama kontak) dengan variasi 30, 60, dan 90 menit tidak menunjukkan perbedaan yang nyata, sehingga diambil kesimpulan lama kontak terbaik adalah 30 menit. Untuk variabel dosis karbon aktif , ke tiga variasi kadar karbon aktif juga tidak menunjukkan perbedaan nyata, sehingga untuk sementara dianggap 10% merupakan kadar terbaik Untuk jenis karbon aktif , dipilih karbon aktif bubuk karena lebih ekonomis dibandingkan dengan karbon aktif pro analitis.
Pada penelitian utama, dilakukan penelitian yang lebih teliti. Perlakuan pada penelitian utama yaitu lama kontak yang terdiri dari 8 taraf yaitu 5, 10, 15, 20, 25, 30, 35 dan 40 menit /liter dan untuk kadar karbon aktif terdiri dari 6 taraf yaitu 2,5 ; 5,0 ; 7,5 ; 10,0 ; 12,5 ; dan 15 % berat per volume (gram/liter).
Dari hasil penelitian dan basil perhitungan secara statistik diperoleh basil sebagai berikut :
Pada limbah cair industri tekstil,perlakuan kadar karbon aktif tidak menunjukkan pengaruh yang berbeda nyata pada ion Fe'dan ion Zn' yang tertinggal dalam limbah cair tekstil ,tetapi perlakuan lama kontak limbah cair dengan karbon aktif, berpengaruh nyata pada jumlah ion Fe'+dan Zn' yang tertinggal dalam limbah cair industri setelah diadsorpsi dengan karbon aktif bubuk. Dari tabel Anava dan Duncan test didapatkan hasil terbaik pada lama kontak 10 menit/liter dan dipilih kadar yang terendah yaitu 2,5 % (25 gram karbon aktif/liter limbah cair)
Untuk limbah cair tekstil sintetis temyata perlakuan lama kontak tidak berpengaruh pada ion Fe dan Zn yang tertinggal dalam limbah cair tekstil sintetis. tetapi perlakuan dosis karbon aktif menunjukkan pengaruh yang nyata pada jumlah ion Fe"dan Zn' yang tertinggal dalam limbah cair tekstil sintetis setelah diadsorpsi dengan karbon aktif bubuk. Dari Anova dan S.N.K Test pads limbah cair tekstil sintetis ternyata hasil terbaik di dapatkan pada dosis karbon aktif 7.5 % blv (75 gram karbon aktif/liter limbah cair) dan dengan lama kontak 5 menit/liter.
Di samping itu dari Tabel Anova didapatkan pula bukti bahwa ternyata karbon aktif masih effektif dipakai tanpa regenerasi meskipun telah digunakan sebanyak 20 kali. Hal itu dapat dilihat dari Anova yang menunjukkan bahwa jumlah ion Fe' dan Zn' yang tertinggal tidak berbeda nyata, berarti karbon aktif masih dapat digunakan dengan hasil yang baik meski telah digunakan sebanyak 20 kali.
Kesimpulan dari penelitian ini adalah bahwa karbon aktif dapat menurunkan (mereduksi) jumlah ion Fe's dan Zn' dalam Iimbah cair industri (khususnya PT Sandratex) dengan waktu kontak 10 menit/liter dan kadar karbon aktif 7,5 % b/v (75 grain/liter ), dan karbon aktif masih dapat menjerap terus tanpa regenerasi walaupun telah digunakan duapuluh kali.

ABSTRACT
Thesis summary :
Indonesia, one of the developing countries, is currently developing industries. The increasing number of industries does not only cause some positive impacts, but negative ones as well, such as environmental pollution which is caused by industrial waste, leading to degradation of environmental qualities.
There are many steps of wastewater treatment, namely primary steps, secondary steps, tertiary steps, disinfection and sludge disposal.i
One system of the wastewater treatment is based on adsorption process. Physical adsorption as one of the adsorption system takes place due to Van der Waals forces among adsorbed molecules which are reversible. Adsorbent commonly used are active carbon, either granular or powdered
Both the granular active carbon and powdered active carbon have a wide internal surface, making their greater adsorbing ability. To understand the active carbon effectiveness, an experiment has been carried out at the Biochemistry laboratory of Agricultural Technology Department of Institute Technology Indonesia, using samples taken from P.T. Sandratex and powdered activated carbon purchased elsewhere. The adsorption process belongs to the third step treatment and therefore the textile plant waste, have been passed the first and the second process
As comparison material, the artificial textile plant liquid waste is used , made by dissolving FeSO4 71120 and ZnSO4 using aquadestilate as such that a solution is obtained containing compounds of Fe'and Zn- similar to the one found in the textile waste.
Variables used in this research were the amount of metal ion left in textile liquid waste after being adsorbed by the activated carbon using a certain concentration (% weight per volume) and contact length of time.
As mentioned above, the research problems were as follows :
a. What is the effectiveness of activated carbon in reducing Fe' and Zn' ions dosis in textile and synthetic liquid waste.
b. What is the the length of contact time needed in order that active carbon could reduce the amount of Fe' and Zn' ions, not exceeding the allowable threshold value.
d. How many times can active carbon be used optimally to adsorp metal ion (Fe}'and Zn') in textile and synthetic liquid waste without being regenerated.
Based on the problems mentioned above, this research was aimed to find out the interaction between the dosage of activated carbon (in % weight/volume),duration of contact of liquid waste and activated carbon, and the amount of metal ion (Few` and Zn' ) in the solution after being adsorped by the activated carbon.
Therefore the hypothesis of this research are as follows :
1. The higher the active carbon powder dosage used, the higher the percentage of Fe' and Zn`` ions adsorped and the lesser the amount of Fe' and Zn left in the textile and synthetic liquid waste.
2. The longer the active carbon powder contact time with textile industry and synthetic liquid waste, the smaller amounts of Fe'and Zn' ions left in textile and synthetic waste and the higher the percentage of Fe' and Zn' .
3. Using active carbon twenty limes without regeneration, can increase the percentage
of Fe' and a"- ions adsorped and decrease the amount of Fe'-'and Zn" ions in
in textile industry as well as synthetic liquid waste .
The research objectives were to study the ability of activated carbon in adsorping the Fe' and Zn' ions which are highly found in the textile industry liquid waste yet it has been treated both with the first and second stage processing. The second objectives were also to compare the adsorption capacity of activated carbon on the industrial waste and syntetic waste. The metal ion contained in the synthetic waste only consists of Fe" and Zn''ions, whereas in the textile waste having been given the first and the second treatment stiII contains quite a variety of metals .
The third objective was to study the effectivity of the activated carbon after being used without regeneration
The experiment analysis is done by using the Factorial Complete Random Design.
The research variables consist of the adsorptiveness y of active carbon as dependent variable, whereas the active carbon concentration ( weight percentage per volume in gram/Litre) and contact period as an adsorbtive capacity independent variables.
the characteristic of which later could be used to choose the best form of active carbon, powdered active carbon, granular active carbon and the pro-analytic active carbon_ The contact length of time of the textile liquid waste with the active carbon constitutes lime variable with time interval of 30, 60, 90 minutes and while the active carbon concentration ranges between 10, 20 and 30% weight per volume (gram/litre).
In the prelimary experiment,it is obvious that the time variables (contact length) of 30, 60, and 90 minutes didn't show a significant different, therefor it could be included that the best contact time was 30 minutes. For active carbon concentration variables,the three different concentration also did not show significant differences, but the concentration of 10% active carbon was assume to be the best concentration, the powder of active carbon was choosen due to more economic compare to pro analytic active carbon
The main research , further research is performed more in detail. Time intervals were conducted at 8 different level 5, 10, 15, 20, 25, 30, 35 dan 40 minutes,and for the active carbon concentration a research is also done through 6 different levels 2,5 ; 5.0; 7,5 ; 10,0; 12,5 and 15% weight per volume (gram/litre). The result data and statistical analysis showed as follows :
On textile liquid waste, the active carbon concentration variable doesnot show a
significant different of metal ion, but the contact length of time of liquid waste with active carbon indicates the amount of the remaining metal ion in the industrial Iiquid waste. In the ANOVA and Studen t Newman Ifeuls it is obvious that the best contact length of time is 10 minutes, and 2,5% dosis activated carbon.
For syntetic liquid waste, the contact length of time is not very obvious but the active carbon consentration points out the amount of the metal ion left in the liquid waste after being adsorped is obviously different. Using ANOVA and Student-Newman-Keuls (S.N.K. test) on syntetic waste,the best result with dosis (% weight per volume) active carbon 7,5 % wlv, and the textile industrial liquid waste, the optimal number of ions occur in the contact length of time with active carbon 5 minutes/litre liquid waste.
Besides that,it is found that active carbon is still effectively used without regeneration despite of 20 times applications. This can be seen from ANOVA that the remaining substance left (Adsorptions) is not really different,meaning to say the active carbon is still usable with effective resuly.
The conclussion showed that powder activated carbon could adsorbing metal Fe and Zn especially P.T. Sandratex with 10 minutes llitre contact period and 7,5 % weight/volume concentration of powder activated carbon and the powdered activated carbon can be used 20 times without regeneration.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Syah Afgani
"Pada penelitian ini dilakukan preparasi Cu0/zeolit alam dengan metode pertukaran ion menggunakan larutan Cu(NO3)2 ditambahkan dengan NI-I3 pekat. Proses preparasi ini berlangsung dengan mempertukarkan [Cu(NH3)4]2+ dengan Hf zeolit alam yang dilanjutkan dengan proses penyalingan, proses pemanasan pada temperatur 110 °C selama 12 jam serta kalsinasi pada temperatur 550 “C selama 4 jam.
Hasil analisis FTIR menunjukkan puncak Cu0 pada CuO/zeolit alam menumpuk pada puncak sekunder zeolit alam sehingga sulit untuk diketahui keberadaanya. Dari hasil analisis XRD dapat diketahui bahwa Cu() pada Cu0/zeolit alam terletak pada puncak utama sudut difiaksi (20) 35", 38° dan 48° dengan d-value berturut-turut 2,53; 2,33 dan 1,87 A. Hasil karakterisasi AAS, BET dan adsorpsi isotermik menunjukkan bahwa loading aktual Cu sebesar 7,96% berat, luas permukaan adalah 98,31 U12/gl' dan dispersi sebesar 60, 16%.
Pengujian adsorpsi dilakukan pada adsorben CuO/zeolit alam pada temperatur 350 °C. Sedangkan untuk proses regenerasi dibedakan atas tiga perlakuan yaitu termal pada temperatur 600 °C, reduksi pada temperatur 250 “C yang dilanjutkan dengan oksidasi pada temperatur 400 "C dan penambahan uap air pada temperatur 600 °C. Pengujian adsorpsi S02 dengan regenerasi termal dilakukan sampai dengan 3 siklus (adsorpsi-regenerasi-adsorpsi-regenerasi-adsorpsi), sedangkan untuk perlakuan regenerasi reduksi oksidasi dan penambahan uap air hanya dilakukan sampai dengan 2 siklus (adSorpsi-regenerasi-adsorpsi).
Hasil uji adsorpsi menunjukkan kemampuan CuO/zeolit alam cukup baik dalam mengeliminasi S02 sampai pada siklus ketiga. Kapasitas adsorpsi S02 CuO/zeolit alam adalah 2,27.10" mol/gr CuOf zeolit alam pada adsorpsi pertama, 5,68.l0" mol/gr CuO/zeolit alam pada adsorpsi kedua dan l,73-l0'5 mol/gr CuO/zeolit alam pada adsorpsi ketiga, Sedangkan variasi perlakuan regenerasi Dengan menggunakan reduksi H2 dilanjutkan dengan oksidasi O2 dan penambahan uap air tidak memberikan kenaikan kapasitas adsorpsi yang berarti dibandingkan dengan regenerasi termal."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S48921
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hantizen
"Rangkaian alat kolom gelembung pancaran (Jet Bubble Column) merupakan perpaduan antara proses absorpsi dan adsorpsi untuk mereduksi kandungan gas CO2. Kolom gelembung pancaran merupakan salah satu alat yang berfungsi sebagai media perpindahan massa antara fasa gas dan fasa cair. Aplikasi alat ini guna membantu menurunkan emisi gas CO2 ke lingkungan sekitar.
Penelitian ini mempelajari studi hidrodinamika dan laju reaksi penyerapan. Penelitian ini bertujuan untuk menentukan kondisi operasi optimum pada serangkaian alat tersebut melalui studi hidrodinamika dan menentukan kapasitas daya serap absorber dan adsorber gas CO2 melalui studi laju reaksi penyerapan. Alat yang dipergunakan berupa kolom adsorber dan serangkain kolom absorber (Jet Bubble Column) dengan masing-masing tinggi kolom sebesar 100cm dan diameter kolom sebesar 11cm. Kolom adsorber berisi karbon aktif berukuran sekitar 100 mesh sebanyak 1000 gram, sedangkan kolom absorber berisi larutan KOH 0,05M sebanyak 8 liter. Sampel yang dipakai berupa gas CO2 dari dry ice.
Pada eksperimen gas CO2 dialirkan ke dalam kolom adsorpsi. Sebelum masuk ke kolom adsorpsi dan sesudah melewati kolom adsorpsi, sampel gas CO2 diambil dengan syringe. Gas CO2 keluaran dari kolom tersebut dialirkan ke kolom absorber. Gas CO2 dalam udara akan terhisap melalui kepala nozzle dan masuk kedalam kolom Jet Bubble Column. Untuk pengukuran perubahan konsentrasi larutan KOH didalam kolom dilakukan dengan pengamatan terhadap perubahan warna. Sampel gas CO2 keluaran dari kolom absorber diambil juga dengan syringe. Sampel gas CO2 tersebut lalu dianalisa dengan Kromatograpi Gas(GC). Percobaan ini dilakukan dengan memvariasikan pada ukuran diameter nozzle(Dn=7,2mm; 9,3mm; dan 12,1mm) dan laju alir volumetrik cairan(QL). Data yang didapat dari eksperimen diolah sampai mendapatkan kondisi operasi optimum alat tersebut.
Dalam eksperimen laju alir volumetrik cairan divariasikan dari 13,25 hingga 25,8 liter/menit dan variasi diameter nozzle, memberikan variasi pada laju volumetric penyerapan absorber dari 0,767 hingga 3,233L/men sedangkan variasi pada laju volumetrik penyerapan adsorber dari 0,2572 hingga 1,3020 L/men. Persentase laju volumetrik absorber sebesar 86,51% sedangkan untuk laju volumetrik adsorber sebesar 13,49% pada kondisi Dn=7,2mm dan QL=19,02L/men. Kapasitas daya serap absorber terbaik sebesar 0,2603gram CO2/(gramKOH.menit) pada Dn=7,2mm dan QL=19,07L/men, sedangkan kapasitas daya serap adsorber sebesar 23,05x10-4 gramCO2/(gram karbon aktif.menit) pada Dn=12,1mm dan QL=25,8L/men."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49729
UI - Skripsi Open  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>