Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123409 dokumen yang sesuai dengan query
cover
Linda Rostiviani
"Dalam teori jaringan neural buatan (JNB) telah dikembangkan berbagai jenis jaringan neural yang berbeda. Diantaranya ada beberapa yang sudah cukup sering digunakan, misalnya jaringan propagasi balik dan jaringan swa-organisasi. Propagasi balik telah sukses digunakan untuk menyelesaikan berbagai permasalahan pengenalan, klasifikasi, aproksimasi, prediksi dan lain-lain. Namun jaringan propagasi balik membutuhkan waktu yang lama dalam pembelajarannya. Jaringan swa-organisasi mempunyai kemampuan klustering yang baik dan waktu pembelajaran yang singkat.
Penelitian ini akan merancang sebuah jaringan hibrid dengan cara menggabungkan propagasi balik dan swa-organisasi untuk mendapatkan kemampuan pengenalan yang lebih baik dan waktu pembeiajaran yang lebih singkat. Jaringan hibrid yang terbentuk, terdiri dari 2 modul, yaitu: modul swa-organisasi adaptif dan modul supervisi. Modul swa-organisasi adaptif bersifat tanpa pengarahan dan bobot-bobotnya dikontrol oleh pola masukan. Modul supervisi yang bersifat dengan pengarahan diarahkan oleh target yang telah ditentukan.
Karakteristik jaringan akan dilihat dengan kasus XOR. Kemampuan pengenalan jaringan diuji dengan menggunakan data aroma Martha Tilar dan konsentrasi etanol. Hasil penelitian menunjukkan jaringan hibrid dapat mengenali pola yang dilatihkan, pola yang tidak dilatihkan dan dapat mengidentifikasi kelas pola baru yang tidak diikutsertakan dalam pelatihan. Hasil perbandingan dengan jaringan propagasi balik standar memperlihatkan bahwa jaringan hibrid mempunyai kemampuan pengenalan yang lebih baik dan waktu pembelajaran yang lebih singkat."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ketut Dandi Darsana
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38749
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manik, Edgar Jonathan
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38761
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salihun Z.
"Jaringan syaraf tiruan (Arrgficial Neural Nerwork) merupakan salah satu bagian dari kecerdasan buatan (Artificial Intelligence) yang mengambil prinsip kerja jaringan syaraf manusia. Perhitungan propagasi balik (Back Propagartion) adalah algoritma belajar yang populer, yang merupakan generalisasi kaidah least square untuk jaringan syaraf berlapis jamak (Mulfflayer Neural Network).
Proses aromatisasi heptana menjadi toluena, dengan nama hydroforming, telah dikembangkan ketika Perang Dunia II (World War II) dengan tujuan untuk mendapatkan bahan baku peledak. Kondisi operasi diatas sangatlah riskan dan penuh resiko.
Pendeteksian yang akurat dan dini diperlukan guna mencegah kesalahan yang timbul, yang dapat mengakibatkan kerugian baik material maupun immaterial. Diagnosa kesalahan proses pada aromatisasi heptana dapat dilakukan dengan metode Jaringan Syaraf Tiruan Propagasi Balik (ANN/JNA BP) ini. Berdasarkan data lapangan (kondisi masukan dan kondisi keluaran), jaringan syaraf akan melakukan pembelajaran (learning) secara simultan dan kontinyu, yang pada akhirnya akan terbentuk sebuah pengetahuan. BP inilah metode ajar yang paling sederhana dan cocok sekali untuk diterapkan, karena sanggup mengenali pola (pattern recognition).
Sebagai studi kasus, proses aromatisasi heptana, penerapan ANN/JNA BP yang diteliti oleh Watanabe dan Himmelblau dapat dibuktikan dengan baik pada skripsi ini. Model ANN/JNA BP dapat melakukan pengenalan pola dengan balk dimana toleransi error lebih kecil dari 0.001, dengan jumlah iterasi pelatihan lebih dari 5000 iterasi, dan waktu pelathan lebih dari 40 menit."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49207
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edi Gunawan
"Skripsi ini membahas tentang Sistem Pengenalan Kendaraan dengan menggunakan Jaringan Saraf Tiruan (JST). Sistem yang digunakan bersifat off-line, dalam arti bahwa sistem tidak bekeda langsung pads saat kendaraan memasuki suatu tempat lalu sekaligus diambil citranya akan tetapi bekerja dengan pola citra statis kendaraan itu sendiri. Sistem jugs bersifat khusus dan terbatas hanya untuk mengenali 4 jenis kendaraan : sedan, jip, wagon dan mini. Sistem tidak dikembangkan untuk mengenali kendaraan dengan ukuran besar seperti trek dan bus. Jaringan yang dipakai pada skripsi ini disusun dengan topologi kaskade yang menggabungkan antara topologi JST Kohonen SOM dengan topologi JST Backpropagation. Kohonen SOM belajar dalam mode tak disupervisi, yang mampu melakukan proses pemisahan setup data masukan yang berlainan. Masing-masing data masukan dipetakan dengan data keluaran kemudian diajarkan kepada jaringan Backpropagation - bekerja dalam mode disupervisi -, yang kemudian mengingat pola pemetaan data masukan menjadi data keluaran tanpa melalui pendefirusian fungsi pemetaan. Dengan menggabungkan Kohonen SOM dan Backpropagation, diharapkan akaa aiperoleh hasil yang lebih balk daripada bila kedua topologi tersebut bekeda sendiri-sendiri."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38822
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Tujuan utama dari penelitian yang dilakukan adalah melakukan pengenalan pola isyarat tangan statis dalam bahasa Indonesia. Pengenalan pola isyarat tangan statis dalam bentuk citra secara garis besar dilakukan dalam 3 tahapan yang meliputi: 1) Segmentasi bagian citra yang akan dikenali berupa tangan dan wajah, 2) ekstraksi ciri, dan 3) klasifikasi pola. Data citra yang diterapkan ada 15 kelas kata isyarat statis. Segmentasi dilakukan dengan menggunakan filter HSV
dengan ambang berdasarkan warna kulit. Ekstraksi ciri dilakukan dengan dekomposisi wavelet Haar filter sampai level 2. Klasifikasi dilakukan dengan menerapkan sistem jaringan syaraf tiruan perambatan balik dengan arsitektur 4096 neuron pada lapisan input, 75 neuron pada lapisan tersembunyi dan 15 neuron pada lapisan output. Sistem diuji dengan menggunakan 225 data validasi dan akurasi yang dicapai adalah 69%.

Abstract
The main objective of this research is to perform pattern recognition of static hand gesture in Indonesian sign language. Basically, pattern recognition of static hand gesture in the form of image had three phases include: 1) segmentation of the image that will be recognizable form of the hands and face, 2) feature extraction and 3) pattern
classification. In this research, we used images data of 15 classes of words static. Segmentation is performed using HSV with a threshold filter based on skin color. Feature extraction performed with
the Haar wavelet decomposition filter to level 2. Classification is done by applying the back propagation system of neural network architecture with 4096 neurons in input layer, 75 neurons in hidden layer and 15 neurons in output layer. The system was tested by using 225 data validation and accuracy achieved was 69%."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Universitas Jenderal Soedirman. Fakultas Sains dan Teknik], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Sistem Pengaturan Lampu Lalu Lintas Terdistribusi adalah sebuah sistem lampu lalu lintas yang ditujukan untuk memenuhi kebutuhan akan kinerja pengaturan lampu lalu lintas yang cerdas dengan pengambilan data secara real-time. Sistem ini dapat melakukan penjadwalan dan pengaturan jaringan banyakpersimpangan secarareal-time yang tidak bisa dilakukan oleh sistem pengaturan lampu lalu lintas konvensional. Penerapan klasifikasi di dalam sistem ini digunakan untuk meningkatkan akurasi dari pengenalan mobil. Proses klasifikasi diimplementasikan menggunakan tiga algoritma Jaringan Syaraf Tiruan, yakni Backpropagation, FLVQ, dan FLVQ-PSO. Berdasarkan hasil ujicoba, dapat ditunjukkan bahwa algoritma Backpropagationmemiliki performa akurasi yang lebih baik dibandingkan dua algoritma JST yang lainnya.

Abstract
Distributed Traffic Light Control System is a traffic light system intended to meet the need for setting the performance of intelligent traffic lights with real-time data capturing. The system can perform scheduling and network settings of multi-junction in real time that can not be done by a conventional traffic light settings system. Application of classification within this system is used to improve the accuracy of the car recognition. Classification process is implemented using three neural network algorithms, namely Backpropagation, FLVQ, and FLVQ-PSO. Based on the test results, it can be shown that the Backpropagation algorithm performs better accuracy than the other two algorithms."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Penyakit jantung koroner adalah penyakit jantung yang paling mematikan sehingga perlu dilakukan diagnosa secara dini terhadap penyakit ini untuk keberhasilan pengobatan. Salah satu cara diagnosa awal penyakit jantung koroner yang dilakukan oleh dokter ahli jantung adalah melalui rekaman Elektrokardiografi (EKG). Deteksi penyakit jantung koroner dapat diotomasisasikan dengan membuat suatu perangkat lunak pengenalan pola EKG. Untuk kebutuhan ini diperlukan akurasi yang cukup tinggi sehingga mendapatkan hasil diagnosa awal yang tepat. Dalam penelitian ini akan dilakukan implementasi dan analisis performasi metode Jaringan syaraf tiruan Propagasi Balik dengan momentum untuk Pengenalan pola EKG Jantung koroner. Hasil pengujian menunjukan JST Propagasi balik RPROP dapat mengenalai pola EKG dengan tingkat akurasi 100% untuk citra latih dan 61.84% untuk citra uji."
507 JPS 3:2 (2007)
Artikel Jurnal  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
cover
Ashadi
"Pada skripsi ini, akan dilalcukan pemodelan sistem kardiovaskular manusia dengan menggunakan prinsip-prinsip dasar fisika. Model matematis yang diperoleh selanjutnya akan disimulasikan dengan menggunakan program Matlab 6.5.
Kemudian, juga dimodelkan dan disimulasikan proses regulasi tekanan darah yang terjadi pada sistem kardiovaskulan Simulasi akau dilakukan dengau mcnggunakan gabungan model sistem kardiovaskular dan model sistem regulasi tekanan darah.
Selanjumya, dirancang dan disimulasikan suatu pacu jantung rare-adaptif berbasis Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan berfnmgsi untuk menenlukan besamya periode impuls yang dikeluarkan pacu jantung. Jaringan Syaraf Tiruan yang digunakan terdiri dari tiga layer. Perancangan dilakukan dalam dua tahapan, yaitu proses pelatihan dan proses pengujian. Pada pelatihan, digunakan data basil simulasi sistem kardiovaskular yang telah dilengkapi dengan sistem regulasi sebagai data pelatihan, dan digunakan algoritma backpropagation sebagai algoritma pelatihan. Pada pengujian, akan dilihat kinerja pacu jantung berbasis Jaringan Syaraf Tiruan ketika digunakan pada sistem kardiovaskular.
Hasil perancangan menunjukkan perfonna pacu jannmg yang mendekati fungsi denyut jantung tubuh sebenarnya."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40103
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>