Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 132612 dokumen yang sesuai dengan query
cover
Rudi Cahyo Nugroho
"Ignition delay merupakan salah satu parameter panting dalam operasi mesin diesel, ignition delay didefinisikan sebagai selang waktu antara mulai injeksi bahan bakar sampai dengan mulainya terjadi penyalaan bahan bakar, pembakaran akan optimum bila penyalaan terjadi sebelum titik mati atas. Secara ukuran derajat putaran poros engkol, semakin tinggi putaran mesin semakin panjang ignition delaynya, sehingga perlu adanya perubahan waktu injeksi. Ignition delay semakin pendek bila bilangan cetana bahan bakar bertambah, bilangan cetana solar dapat dinaikkan dengan menambah metil ester yang mempunyai bilangan cetana lebih tinggi.
Penelitian bertujuan untuk mengetahui pengaruh penggunaan bahan bakar campuran metil ester kelapa sawit (ME) dan solar terhadap unjuk kerja mesin dan ignition delay. Pengujian dilakukan dengan menggunakan mesin diesel satu silinder injeksi langsung. dengan memperbandingkan beberapa komposisi campuran bahan bakar yaitu solar murni, 20% massa metil ester (20% ME), 30% ME dan 40% ME. Pengujian dilakukan berdasarkan kurva daya yang dihasilkan bahan bakar solar. Ignition delay didapat dari grafik tekanan gas dalam silinder terhadap posisi poros engkol, untuk itu dalam pengujian dilakukan pengukuran tekanan gas dalam silinder.
Dari pengujian didapatkan bahwa torsi dan daya yang dihasilkan bahan bakar campuran ME dan solar 1.5 s/d 4% lebih rendah dibanding solar. Sedangkan tingkat emisi asap lebih rendah 5 ski 25%. Ignition delay semakin pendek bila putaran mesin dan bilangan cetana bertambah, dengan suatu persamaan linier pengaruh putaran mesin dan bilangan cetana terhadap ignition delay adalah : ignition delay = 0.0033 putaran mesin-0.375 bilangan cetana 4-38.321.

Ignition delay is important parameter for diesel engine operation. Ignition delay is the time between start of injection and start of combustion, combustion will be optimum if started before TDC. Injection liming advancing is needed, because ignition delay (in crank angle degree) increase as engine speed increase. Ignition delay decrease as cetane number increase, cetane number of petroleum diesel can be increased with addition of methyl ester.
The research conduct in a single cylinder direct injection diesel engine, the engine was fueled with several different composition fuel blend ( petroleum diesel and ME). The fuel blend are petroleum diesel (D), 20% mass ME (20 % ME), 30% and 40% ME. Effect of different fuel blend to engine performance and ignition delay is studied. Engine setting to get power curve for petroleum diesel used as the basic. engine test Ignition delay was determined from cylinder pressure vs. crank position diagram. Cylinder pressure measurement is needed to get cylinder pressure vs. crank position diagram.
Engine power for ME & petroleum diesel blend are 1.5 - 4 % lower than petroleum diesel, and smoke are 5 - 25 % lower. Engine speed, cetane number and ignition delay correlation is : ignition delay = 0.0033 engine speed -0.375 cetane number + 38.321 .
"
Depok: Fakultas Teknik Universitas Indonesia, 2002
T5197
UI - Tesis Membership  Universitas Indonesia Library
cover
R. Triyono Budi Prayitno
"Pada pembakaran dengan bahan bakar cair, diperlukan suatu usaha untuk memperbesar permukaan kontak antara udara dengan bahan bakar. Pengaruh perubahan diameter sembur udara dan tekanan bahan bakar cair terhadap panjang dan stabilitas nyala api akan dipelajari pada penelitian ini. Burner yang digunakan dalam penelitian ini adalah burner dengan tipe jet-mixing combustor. Dimana semprotan bahan bakar dari nosel di irnpak dengan semburan udara dengan diameter yang divariasikan dari ф 45 mm, ф 50 mm, ф 55 nun dan ф 60 mm pada sudut 60°. Nasal yang digunakan untuk menyemprotkan bahan bakar adalah nosel dengan tipe hollow-cone. Nyala api hasil dari proses pembakaran dipelajari dari warna dan panjang apinya. Dan hasil penelitian ini diperoleh adanya pengaruh perubahan diameter sembur udara dan AFR terhadap panjang api. Panjang api tertinggi 140 mm pada diameter sembur udara 45 mm. Beban burner maximum yang diterima ruang bakar adalah: 23.862,928 kW/m2 pada diameter sembur udara 60 mm dengan menggunakan bahan bakar minyak tanah dan 23.713,780 kW/m2 pada diameter sembur udara 60 mm dengan menggunakan bahan bakar solar. Space heat release maximum yang diterima ruang bakar adalah: 2,480 kW/m2.Pa pada diameter sembur udara 60 mm dengan menggunakan bahan bakar minyak tanah dan 2,514 kW/m2. Pa pada diameter sembur udara 60 mm dengan menggunakan bahan bakar solar.

In the combustion process using liquid fuel, the contact surface between air and fuel needs to be widen. These experiments study the effect of changes in air spray diameter and the liquid fuel pressure on the length and stability of flame. Burner used in this study is a jet mixing type combustor. Fuel spray from nozzle is impacted with air jet at the diameter of 45 mm, 50 mm, 55 mm and 60 mm with impinging angle of 60°. The nozzle is a hollow-cone one. Flames come from the combustion process are measured for their lengths and colors.
Experiments show that the changes in air spray diameter and the AFR do have effects on the flame length. The longest flame obtained by the experiments is 140 mm at the air spray diameter 45 mm. Maximum burner loading in the combustor is 23.862,928 kW/m2 at air spray diameter of 60 mm using kerosene, and 23.713,780 kW/m2 at air spray diameter of using 60 mm using high fuel oil (FIFO). Maximum space heat release in the combustor is 2.480 kW/m2 Pa at air spray diameter of 60 mm using kerosene, and 2.514 kW/m2 Pa at air spray diameter of 60 mm using HFO.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
T14969
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadapdap, Huala
"Emisi gas buang kendaraan bermotor khususnya yang berbahan bakar bensin berpotensi meningkatkan kandungan CO di perparkiran bawah tanah dua kali lebih besar dalam empat bulan. Korelasi konsentrasi CO, HC dan Opasitas dari emisi gas buang dengan perparkiran sangat erat dengan nilai r untuk rata-rata kandungan CO mencapai 0.9845. Kandungan CO dan HC dapat terakumulasi di perparkiran tertutup dengan terbatasnya ventilasi, sirkulasi udara dan exhaust. Perancangan sistem perparkiran yang memadai dan memenuhi kaidah Kesehatan dan Keselamatan Kerja menentukan seberapa besar akumulasi CO.
Kandungan CO dalam darah dan Phenol dalam air kemih merupakan indikasi paparan CO emisi gas buang kendaraan dengan udara ruang parlor P2 BEJ. Kandungan CO berdampak negatif langsung terhadap kesehatan manusia. CO dengan cepat dapat menggeser 02 dari dalam darah karena CO dengan Hb membentuk COHb dengan cepat 200 - 300 kali lebih kuat dari oksigen dalam mengikat Hb darah. Dampak CO terhadap pekerja parkir tergantung lamanya pemajanan dan konsentrasi CO nya. Perokok lebih berisiko terhadap pajanan CO di P2. Kondisi pekerja yang terpajan CO di P2 sudah relatif terganggu, potensi hipoksia sudah megganggu sistem kardiovaskuler terlihat dari keluhan-keluhan pekerja seperti nyeri kepala, pusing, mual dan vertigo.
Pengendalian dampak emisi gas buang dapat dilakukan oleh pekerja secara proaktif. Tindakan preventif dengan menekan emisi gas buang melalui penyuluhan pemeliharaan mesin secara teratur, pemiiihan jenis dan tahun produksi kendaraan. Pengelola gedung sebaiknya melakukan tindakan perbaikan yang terpadu mencakup perencanaan system perparkiran, ventilasi, sirkulasi udara dan sistem pengaturan kerja.

Within four month periods the gas emissions from burning gasoline vehicles has the potential to doubling increase of the carbon monoxide (CO) concentration in the underground parking area. The correlation of HC, CO and Opacity of gas emission is very close to the parking indoor air quality, it shows by the r-value of CO about 0.9845. CO and HC content can be accumulated in the indoor parking area due to the poor ventilation, air circulation, number and capacity of exhaust fans. The adequate parking system designs that meet with Health and Safety requirement will effect the CO content accumulation.
The CO content in the blood and phenol in the urine are indicating the employee exposure to CO vehicles gas emission and P2 BET parking indoor air quality. The CO concentration at P2 has direct impact to the parking employee health. Carbon monoxide quickly reduce the oxygen intake from blood stream and by binding carbon monoxide with hemoglobin (Hb) to become a carboxyhemoglobin (COHb) compounds that toxic to human. CO bound Hb rapidly 200 - 300 times stronger than oxygen in the blood. The effect of carbon monoxide to the employee depends on the duration of exposure and CO concentration. Moreover smokers have a higher risk to the CO exposure in the P2. The condition of employee who expose to the CO at P2 has relatively been affected of the gas emission and will suffering from hypoxia with aggravated cardiovascular problem such as head pain, headache, fatigue and vertigo.
The employee can proactively participate in controlling of vehicles gas emission. Preventive action by minimizes the gas emission through awareness program, regular engine maintenance, choosing type of vehicles and year of product are parts of better control_ The building management should concern a continuous improvement through corrective action such as redesign the parking system, ticketing system, ventilation system, and shift work system of the employee.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2003
T12742
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Zaki Rahman
Depok: Fakultas Teknik Universitas Indonesia, 2006
S37539
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Hernawan
"ABSTRAK
Baja tahan karat tuangan hasil peleburan RUT 1 merupakan bahan rekayasa
yang diharapkan dapat memenuhi kebutuhan material sebagai komponen turbin.
Baja tahan karat tuangan ini diupayakan untuk memiliki komposisi kimia dan
spesifikasi sesuai material Gx-5CrNi13.4 yang mengacu pada standar 17445
dengan nomor material 1.4313.
Siklus termal hardening yang dilakukan pada baja tahan karat tuangan hasil
peleburan RUT I meliputi tahap quencbingyang menggunakan media celup oli dan
leburan garam (Salt-bath ) dan tempering yang melibatkan variabel temperatur-
550, 600, dan 650 °C dengan tujuan untuk meningkatkan kekerasan dan
memperbaiki ketangguhan atau keuletannya Pendinginan cepat ( Quenching )
pada baja tahan karat RUT 1 tidak menghasilkan struktur martensit sehingga
kekerasannya tetap rendah.
Proses temper (Tempering) pada temperatur 600 °C, selain menghasilkan
kekerasan yang Iebih tinggi, juga diperoleh elongasi dan reduksi penampang gang
optimum. Nilai kekerasan 143,57 I-IV diperoleh melalui mekanisme secondary-
hardening sedangkan nilai optimum elongasi dan reduksi penampang masing-
masing 23,77% dan 22,31% .
Baja tahan karat tuangan hasil peleburan RUT I tidak dapat dikeraskan
melalui siklus temial hardening atau proses laku-panas termal.

"
1996
S41173
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satriawan Wiguna
"Tempurung kelapa dan ranting merupakan potensi biomassa yang sangat besar yang dimiliki oleh Indonesia sebagai salah satu negara kepulauan yang terletak di daerah tropis. Sejauh ini masih sedikit yang memanfaatkannya tersebut sebagai sumber energi alternatif. Fluidized bed combustor merupakan salah satu alat pengkonversi energi biomassa menjadi energi panas yang dapat dimanfaatkan lagi. Proses pembakaran yang terjadi ialah pembakaran dengan sendirinya secara terus-menerus yang berlangsung pada temperatur tinggi. Pengujian untuk pembakaran dilakukan pada FBC jenis bubbling menggunakan bahan bakar campuran ranting dengan tempurung kelapa untuk mengetahui komposisi bahan bakar yang terbaik. Eksperimen ini menggunakan beberapa variasi feeding bahan bakar, yaitu 0.25kg sampai 2 kg. Selain itu juga menggunakan beberapa variasi perbandingan komposisi bahan bakar campuran ranting dan tempurung kelapa.

Coconut shell and branch are very large biomass potensial which Indonesia has as one of tropical-archipelago-country. Fluidized bed combustor is one of the biomass energy converter tool into heat energy that can be used again. Combustion process that occurs is burning by itself is continuously at high temperature . Burning testing on the type of bubbling FBC in University of Indonesia using coconut shells and branch to determine the best fuel composition. This experiment uses a variation of the fuel feeding, which is 0.25 kg to 2 kg. Beside that, it also uses a variation of the fuel composition."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1214
UI - Skripsi Open  Universitas Indonesia Library
cover
Zaki Bonnie Rahatwan
"Menurut Indonesia Energy Outlook yang dikeluarkan oleh BPPT tahun 2021 mengenai outlook kebutuhan energi sektor transportasi Indonesia pada skenario BAU, Total kebutuhan energi final sektor transportasi diproyeksikan terus meningkat menjadi 1.110,1 juta SBM pada tahun 2050 dimana pangsa kebutuhan bensin masih berada di angka 20%. Hal ini memberikan dampak buruk pada kualitas udara dan memicu ketergantungan Indonesia terhadap bahan bakar fosil. Oleh karena itu, inisiatif pengembangan bahan bakar alternatif harus mulai dilakukan yang nantinya dapat digunakan oleh masyarakat. Pemerintah melalui Peraturan Presiden Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional menyatakan bahwa bioethanol yang diproyeksikan sebagai substitusi dari bensin (gasoline) ditargetkan pada tahun 2025 hingga seterusnya ditargetkan sebesar 20%. Campuran bioethanol sebesar 20% sampai saat ini belum direalisasikan karena mahalnya harga bioethanol sehingga pada penelitian ini penulis mencoba menambahkan campuran methanol agar dapat menurunkan harga campuran bahan bakar sehingga Gasoline Ethanol Methanol 80% (GEM 80) adalah bahan bakar yang kami uji. Oleh karena itu, penelitian ini bertujuan untuk mengetahui pengaruh caampuran Gasoline Ethanol Methanol 80% (GEM 80) terhadap emisi gas buang yang dihasilkan. Pengujian ini dilakukan pada mesin spark ignition dengan baseline bahan bakar yaitu Pertalite yang dilakukan dengan variasi air fuel ratio untuk mengetahui lebih lanjut pengaruh air fuel ratio terhadap emisi gas buang pada penggunaan bahan bakar Gasoline Ethanol Methanol 80% (GEM 80). Hasilnya, penambahan ethanol dan methanol pada Pertalite (GEM 80) yang dilakukan pada spark ignition engine di lambda manapun akan meningkatkan emisi Karbon Monoksida (CO), menurunkan emisi Karbon Dioksida (CO2), meningkatkan emisi Hidrokarbon (HC) dan menurukan emisi Oksigen (O2). Selain itu, penambahan air fuel ratio dengan penggunaan bahan bakar Pertalite maupun campuran GEM 80 manapun yang dilakukan pada spark ignition engine akan menurunkan emisi Karbon Monoksida (CO), meningkatkan emisi Karbon Dioksida (CO2), menurukan emisi Hidrokarbon (HC), dan meningkatkan emisi Oksigen (O2).

According to the Indonesia Energy Outlook issued by BPPT in 2021 concerning the outlook for the energy needs of the Indonesian transportation sector in the BAU scenario, the total final energy demand for the transportation sector is projected to continue to increase to 1,110.1 million BOE in 2050 where the share of gasoline demand is still at 20%. This has a negative impact on air quality and triggers Indonesia's dependence on fossil fuels. Therefore, initiatives to develop alternative fuels must be initiated which can later be used by the community. The government through Presidential Regulation Number 22 of 2017 concerning the National Energy General Plan states that bioethanol which is projected as a substitute for gasoline (gasoline) is targeted for 2025 onwards is targeted at 20%. A 20% bioethanol mixture has so far not been realized due to the high price of bioethanol, so in this study the authors tried to add a mixture of methanol in order to reduce the price of the fuel mixture so that Gasoline Ethanol Methanol 80% (GEM 80) is the fuel we tested. Therefore, this study aims to determine the effect of a mixture of Gasoline Ethanol Methanol 80% (GEM 80) on the exhaust emissions produced. This test was carried out on a spark ignition engine with a baseline fuel, namely Pertalite, which was carried out with a variation of the air fuel ratio to find out more about the effect of the air fuel ratio on exhaust emissions when using 80% Gasoline Ethanol Methanol (GEM 80) fuel. As a result, the addition of ethanol and methanol to Pertalite (GEM 80) which is carried out on the spark ignition engine in any lambda will increase Carbon Monoxide (CO) emissions, reduce Carbon Dioxide (CO2) emissions, increase Hydrocarbon (HC) emissions and reduce Oxygen (O2) emissions. In addition, the addition of air fuel ratio with the use of Pertalite fuel or any GEM 80 mixture applied to the spark ignition engine will reduce Carbon Monoxide (CO) emissions, increase Carbon Dioxide (CO2) emissions, reduce Hydrocarbon (HC) emissions, and increase the emission of Oxygen (O2)."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Subhan Nafis
"Pemanfaatan biodiesel sebagai bahan bakar alternatif solar merupakan hal yang gencar dilakukan, terutama pemanfaatan minyak sawit sebagai bahan baku biodiesel di Indonesia, mengingat ketersediannya yang cukup besar. Namun disisi lain hal ini menimbulkan kontroversi akan kekhawatiran bahwa pemanfaatan minyak sawit sebagai biodiesel akan bersaing dengan pemanfaatannya sebagai bahan baku minyak goreng.
Oleh karena itu dalam penelitian ini dilakukan usaha untuk mengurangi pemanfaatan minyak sawit dengan melakukan pencampuran (blending) dengan minyak jarak pagar. Studi ini berusaha mencari data tentang performan mesin diesel yang menggunakan bahan bakar biodiesel 10% (B-10), 20% (B-20), 30% (B-30), dan 100% (B-100). Komposisi bahan bakar biodiesel itu sendiri terdiri atas campuran 60% biodiesel sawit dengan 40% biodiesel jarak. Pada studi kali ini proses pembakaran dituang bakar dipelajari dengan menggunakan analisa heat release dan tekanan puncak silinder. Dari analisa ini dapat diketahui bahwa perubahan Static Injection Timing (SIT) bakar dan kecepatan putaran mesin sangat mempengaruhi tekanan yang dihasillkan dalam ruang bakar. Bahan bakar yang lebih dahulu mengalami proses pembakaran cenderung memiliki puncak tekanan (Pmax) yang lebih tinggi, dan cenderung menyebabkan emisi Nox dan HC menjadi lebih tinggi. Untuk putaran rendah, dalam hal ini 1500 rpm pembakaran pada bahan bakar solar lebih cepat tegadi dibandingkan dengan bahan bakar biodiesel, sehingga tidak terdapat perbedaan yang berarti antara penggunaan bahan bakar solar dan biodiesel. Penggunaan bahan bakar biodiesel baru menunjukkan hasil yang lebih baik dari bahan bakar solar pada kecepatan tinggi, baik dari heat release dan emisi yang dihasilkan.

The combustion and heat release of engines using diesel fuel and bio-diesel have been investigated. The bio-diesel consists of palm and jatropha oil, and were tested in variation of static injection timing (SIT) with 1500, 2500, 3000, and 3500 Rpm engine speed. The research conduct in a Ricardo Hydra Research Single Cylinder Direct Injection Diesel Engine. Engine in cylinder pressure data were collected and use to evaluate the rate of heat release with respect to crank angle. It was observed that commonly the peak rates of heat release for all fuel blends were less than diesel fuel on low engine speed. But some of bio-diesel getting higher than diesel fuel on high speed of engine. Static Injection Timing (SIT) will give significant effect of heat release rate and emissions. The emissions from bio-diesel and diesel fuel are compared paying special attention to the most concerning emission: Nox, HC, and CO. The result show that smoke emissions further reduced when engine speed was increased. A reduction in charged temperature can reduce NO emission."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25977
UI - Tesis Open  Universitas Indonesia Library
cover
Subhan Nafis
"Pemanfaatan biodiesel sebagai bahan bakar alternatif solar merupakan hal yang gencar dilakukan, terutama pemanfaatan minyak sawit sebagai bahan baku biodiesel di Indonesia, mengingat ketersediannya yang cukup besar. Namun disisi lain hal ini menimbulkan kontroversi akan kekhawatiran bahwa pemanfaatan minyak sawit sebagai biodiesel akan bersaing dengan pemanfaatannya sebagai bahan baku minyak goreng. Oleh karena itu dalam penelitian ini dilakukan usaha untuk mengurangi pemanfaatan minyak sawit dengan melakukan pencampuran (blending) dengan minyak jarak pagar.
Studi ini berusaha mencari data tentang performan mesin diesel yang menggunakan bahan bakar biodiesel 10% (B-10), 20% (B-20), 30% (B-30), dan 100% (B-100). Komposisi bahan bakar biodiesel itu sendiri terdiri atas campuran 60% biodiesel sawit dengan 40% biodiesel jarak. Pada studi kali ini proses pembakaran diruang bakar dipelajari dengan menggunakan analisa heat release dan tekanan puncak silinder. Dari analisa ini dapat diketahui bahwa perubahan Static Injection Timing (SIT) bakar dan kecepatan putaran mesin sangat mempengaruhi tekanan yang dihasillkan dalam ruang bakar.
Bahan bakar yang lebih dahulu mengalami proses pembakaran cenderung memiliki puncak tekanan (Pmax) yang lebih tinggi, dan cenderung menyebabkan emisi Nox dan HC menjadi lebih tinggi. Untuk putaran rendah, dalam hal ini 1500 rpm pembakaran pada bahan bakar solar lebih cepat terjadi dibandingkan dengan bahan baker biodiesel, sehingga tidak terdapat perbedaan yang berarti antara penggunaan bahan bakar solar dan biodiesel. Penggunaan bahan bakar biodiesel baru menunjukkan hasil yang lebih baik dari bahan bakar solar pada kecepatan tinggi, baik dari heat release dan emisi yang dihasilkan. "
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41205
UI - Tesis Open  Universitas Indonesia Library
cover
Daffa Farhan Ahmad
"Penelitian ini bertujuan untuk mengkaji karakteristik pembakaran dari campuran premix bahan bakar yang terdiri dari gasoline, etanol, dan metanol menggunakan simulasi Closed Homogeneous Batch Reactor berupa Shock Tube Reactor pada perangkat lunak CHEMKIN yang terintegrasi dalam ANSYS. Dengan meningkatnya kebutuhan akan bahan bakar alternatif yang efisien dan lebih ramah lingkungan, studi ini berfokus pada pemahaman perilaku pembakaran campuran bahan bakar tersebut dan potensinya untuk mengurangi emisi berbahaya serta meningkatkan efisiensi pembakaran. Metode yang digunakan melibatkan simulasi numerik dengan mengatur berbagai rasio campuran antara gasoline, etanol, dan metanol. Parameter yang dianalisis mencakup temperatur pembakaran, fraksi mol, laju pembentukan, sensitivitas, dan emisi gas buang seperti CO dan CO₂. Simulasi dilakukan pada kondisi tekanan tetap dan temperatur yang difokuskan pada temperatur 800-1500 K. Studi ini menyimpulkan bahwa penggunaan campuran premix gasoline, etanol, dan metanol sebagai bahan bakar alternatif dapat memberikan solusi yang lebih ramah lingkungan dengan tetap mempertahankan efisiensi pembakaran yang tinggi. Simulasi Closed Homogeneous Batch Reactor CHEMKIN ANSYS terbukti efektif dalam menganalisis karakteristik pembakaran dan memberikan wawasan penting untuk pengembangan bahan bakar campuran yang lebih baik di masa depan.

This study aims to examine the combustion characteristics of a premix fuel mixture consisting of gasoline, ethanol, and methanol using a Closed Homogeneous Batch Reactor simulation in the form of a Shock Tube Reactor on the CHEMKIN software integrated within ANSYS. With the increasing demand for efficient and more environmentally friendly alternative fuels, this study focuses on understanding the combustion behavior of these fuel mixtures and their potential to reduce harmful emissions while improving combustion efficiency. The method involves numerical simulations by setting various mixture ratios between gasoline, ethanol, and methanol. The parameters analyzed include combustion temperature, mole fraction, formation rate, sensitivity, and exhaust gas emissions such as CO and CO₂. The simulations are conducted under constant pressure conditions with temperatures ranging from 700 to 1500 K. The study concludes that using a premix of gasoline, ethanol, and methanol as an alternative fuel can provide a more environmentally friendly solution while maintaining high combustion efficiency. The CHEMKIN ANSYS Closed Homogeneous Batch Reactor simulation proves effective in analyzing combustion characteristics and offers important insights for the development of better fuel mixtures in the future."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>