Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 28130 dokumen yang sesuai dengan query
cover
cover
cover
Wiwiek Utami Dewi
"Kitosan merupakan salah satu senyawa turunan kitin yang diperoleh melalui proses deasetilasi. Proses sintesis kitosan dari limbah cangkang kepiting terdiri dari dua tahap yaitu ekstraksi kitin dan transformasi kitin menjadi kitosan. Proses ekstraksi kitin terdiri dari dua proses, yaitu: demineralisasi dengan HCl, dan deproteinasi dengan NaOH. Selanjutnya, kitin ditransformasi menjadi kitosan melalui proses deasetilasi dengan NaOH. Kitosan dapat dimanfatkan untuk berbagai keperluan. Salah satunya yang sedang marak diteliti saat ini adalah pemanfaatan kitosan sebagai penyerap (adsorben) logam berat pada air limbah. Kitosan dapat berfungsi sebagai adsorben terhadap logam dalam air limbah karena kitosan mempunyai gugus amino bebas (-NH2) dan hidroksil yang berfungsi sebagai situs chelation (situs ikatan koordinasi) dengan ion logam guna membentuk chelate. Pada penelitian ini dilakukan optimasi pada dua variabel proses sintesis kitosan yaitu konsentrasi larutan (HCl dan NaOH) dan waktu reaksi. Sedangkan pada proses adsorpsi dilakukan pengujian kemampuan kitosan dalam menyerap logam Cu(II) dengan memvariasikan pH larutan limbah dan waktu kontak penyerapan. Hasil penelitian menunjukkan bahwa kondisi optimum proses demineralisasi diperoleh pada konsentrasi HC1 1M selama 1 jam, deproteinasi diperoleh pada konsentrasi NaOH 1M selama 2 jam dan deasetilasi diperoleh pada konsentrasi NaOH 50%(b/v) selama 45 menit. Kitosan yang dihasilkan dengan proses diatas mempunyai kadar abu sebesar 0,660%, kadar protein sebesar 6,769% dan derajat deasetilasi sebesar 52,946%. Kitosan tersebut kemudian digunakan untuk mengadsorp logam Cu (II) pada air limbah. Adsorpsi Cu (II) oleh kitosan mencapai hasil terbaik pada pH larutan 5. Namun dalam penelitian ini belum diperoleh kapasitas adsorpsi maksimum kitosan dan waktu kesetimbangan adsorpsi Cu (II) oleh kitosan."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49551
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wulan Erna Komariah
"Limbah cangkang kepiting dapat menimbulkan polusi udara serta menyebabkaa pencemaran tanah yaitu meningkatnya BOD dan COD. Padahal limbah yang berasal dari rumah makan seafood ini merupakan sumber potensial pembuatan kitosan yang diperoleh dengan mendeasetilasi kitin dari cangkang kepiting menggunakan NaOH. Kitin diperoleh melalui demineralisasi dengan asam kuat (HCl) dan deproteinasi dengan basa kuat (NaOH). Pada proses demineralisasi dan deproteinasi dilakukan variasi pengaruh konsentrasi larutan 0,5; 0,75; 1,0; 1,25; 1,5 M dan waktu reaksi selama 30; 60; 90; 120; 150 menit, dengan agitasi 500 rpm. Untuk mengetahui kandungan mineral dan protein yang masih tersisa pada kitin dilakukan uji kadar abu dan protein menggunakan metoda Kjehdahl. Kondisi optimum demineralisasi diperoleh dengan menggunakan larutan HC1 1 M selama 60 menit pada suhu 60°C, dan deproteinasi diperoleh dengan menggunakan larutan NaOH 1 M selama 120 menit pada suhu 70°C. Setelah itu dilakukan deasetilasi dengan pengaruh konsentrasi NaOH 30; 40; 50; 60; 70 % berat dan waktu kontak selama 15; 45; 75; 105; 135 menit. Untuk mengetahui derajat deasetilasi optimum dilakukan analisis FTIR. Optimasi proses deasetilasi diperoleh dengan menggunakan larutan NaOH 50 % selama 45 menit pada suhu 100°C dan agitasi 500 rpm, hasil derajat deasetilasi sebesar 52,95. Kitosan memiliki reaktifitas yang tinggi, dan bersifat sebagai bahan pengemuisi koagulasi serta polielektrolit kation sehingga mampu berperan sebagai adsorben terhadap logam berat. Oleh karena itu, kitosan dari limbah cangkang kepiting ini dapat digunakan sebagai adsorben logam Cd (II) pada air limbah. Kadmium sering digunakan pada pigmen keramik, penyepuhan listrik, pembuatan alloy dan baterai alkali (Marganof, 2003). Efek keracunan yang dapat ditimbulkan kadmium berupa penyakit paru-paru, hati, tekanan darah tinggi, gangguan pada sistem ginjal dan kelenjar pencemaan. Kitosan dengan hasil derajat deasetilasi tertinggi sebesar 52,95 digunakan untuk mengadsorpsi ion logam kadmium dengan pengaruh pH dan waktu kontak. Dari hasil penelitian terbukti bahwa kitosan dari limbah cangkang kepiting mampu mengadsorp ion logam kadmium. Kondisi terbaik penyerapan kadmium oleh kitosan diperoleh pada pH 5 selama 5 jam."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49546
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dinarti Paramita
"Indonesia sebagai negara maritim memiliki sumber bahan baku kitin yang melimpah, yaitu kulit udang. Kulit udang pada percobaan ini mengandung 41,995% mineral, 45,36% protein dan sisanya adalah kitin. Kitin, ?-(1-4)-2-asetamida-2-dioksi-D-glukosa, diisolasi dari kulit udang dengan melalui dua tahap proses, yaitu demineralisasi dan deproteinasi. Kitin yang didapat kemudian diubah menjadi kitosan melalui proses deasetilasi. Kitosan, disebut juga ?-1,4-2-amino-2-dioksi-D-glukosa, mengandung gugus amida dan hidroksil yang menyebabkan kitosan memiliki reaktifitas yang tinggi dan bersifat polielektrolit kation. Oleh sebab itu, kitosan dapat digunakan sebagai adsorben logam berat. Pada penelitian ini, proses demineralisasi menggunakan HCl 1 N dengan perbandingan solid:liquid sebesar 1:20 pada temperatur 90_C selama 60 menit. Proses deproteinasi menggunakan NaOH 3,5 N dengan perbandingan solid:liquid sebesar 1:10 pada temperatur 90_C selama 60 menit. Proses deasetilasi menggunakan NaOH pekat 80% (b/v) dengan perbandingan solid:liquid sebesar 1:10 pada temperatur 130_C selama 30 menit. Kitosan yang dihasilkan, selanjutnya akan digunakan sebagai adsorben logam Cu (II), memiliki nilai derajat deasetilasi sebesar 46,77%. Uji adsorpsi logam Cu (II) oleh kitosan dilakukan dengan empat variasi, yaitu pH, perbandingan solid:liquid, waktu kontak dan konsentrasi awal Cu (II). Kondisi optimum adsorpsi logam Cu (II) didapat pH 5 dengan perbandingan solid-liquid sebesar 1:100 selama 60 menit pada konsentrasi awal Cu (II) sebanyak 100 ppm dengan persentase adsorpsi maksimum sebesar 70,84%.

Indonesia as an maritime country has a lot of source of chitin. Prawn shell is one of the potential source of chitin. Prawn shell consist of 41.995% mineral, 45.36% protein and the rest is chitin. Chitin, ?-(1-4)-2-acetamido-2-deoxy-D-glucosamine, isolated from Prawn shell by demineralization and depretination. Isolated chitin must be converted become chitosan by deacetylation. Chitosan, ?-(1-4)-2-amino-2-deoxy-Dglucosamine, has amide and hydroxyl groups, that makes chitosan is very reactive and polyelectrolit. Because of that, chitosan can be used as an adsorbent of heavy metal. In this research, demineralization using 1 N HCl for 30 minutes at 90_C with ratio solid:liquid 1:20. Deproteinization using 3.5 N NaOH for 60 minutes at 90_C with ratio solid:liquid 1:10. Deacetylation using 80% (w/v) NaOH for 30 minutes at 130_C with ratio solid:liquid 1:10. Chitosan isolated, used as an adsorbent of metal Cu (II), has 46.77% degree of deacetylation. Adsorption Cu (II) by chitosan has four variations, which are pH, ratio solid:liquid, time contack and initial concentration of Cu (II). Optimum condition of adsorption is the highest precentage of adsorption at pH 5, ratio solid-liquid 1:100 for 60 minutes and initial concentration of Cu (II) 100 ppm. The highest precentage of adsorption is 70.84%."
Depok: Fakultas Teknik Universitas Indonesia, [2007;2007, 2007]
S49769
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Arif Saadilah
"Material Kitosan dibuat dari cangkang kepiting menggunakan metode kimia dengan demineralisasi HCL 1M selama 1 jam, deproteinasi NaOH 1M selama 2 jam dan variasi deasetilasi NaOH 30%, 40%, 50%, 60%, dan 70% selama 45 menit. Dari analisis FTIR didapat Derajat Deasetilasi kitosan terbaik pada NaOH 50%. Waktu reaksi terbaik untuk mendapatkan Derajat Deasetilasi maksimum dalah 30 menit. Hasil kitosan cangkang kepiting merupakan kitosan murni sesuai dengan database program Match!. Adsorbsi Pb dari larutan Pb(NO3)2 dilakukan pada konsentrasi Pb 10, 50, dan 100 ppm dengan pengadukan selama 30 menit. Dalam suasana asam Kitosan menyerap seluruh Pb untuk konsentrasi 10 ppm dan tidak menyerap Pb pada konsetrasi 50 dan 100 ppm. Sedangkan dalam suasana netral konsentrasi Pb 25 ppm terserap semua, pada konsetrasi 50 ppm terserap 44,77 ppm dan pada konsentrasi Pb 100 ppm terserap 97,04 ppm.

Chitosan has been made from the crab shells with a chemical method with 1M HCl demineralization for 1 hour, deproteination 1M NaOH for 2 hours and variations of deacetylation 30% NaOH, 40%, 50%, 60%, and 70% for 45 minutes. An analytical methode from FTIR showed that the best chitosan deacetylation degree obtained at 50% NaOH, and the best reaction time to get the best Chitosan is 30 minutes. Chitosan product from crab shells is a real chitosan agreed with database Match! program. Chitosan is known best Pb adsorption from Pb(NO3)2 solution with concentrations of 10, 50, and 100 ppm acid delution and neutral dilution of 25, 50, and 100 ppm for 30 minutes and tested variations chitosan residual liquid. Chitosan absorbed around 10 ppm Pb acid dilution and 25 ppm neutral dilution. No adsorption at 50 and 100 ppm Pb in acid dilution. Absorption of 44.77 ppm at 50 ppm and 97.04 ppm to 100 ppm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47632
UI - Skripsi Membership  Universitas Indonesia Library
cover
Esty Mustika Suud
"Zeolit NaY dengan bahan dasar dari Zeolit Alam Lampung ZAL telah disintesis dengan rasio molar Al2O3: 10 SiO2: 10,6 Na2O: 180,3 H2O dan rasio Si/Al 2,47. Sebelum mensintesis melalui proses hidrotermal dengan teknik seeding dilakukan aktivasi dan pemurnian terhadap ZAL. Langkah ini dilakukan untuk menghilangkan senyawa karbonat dan pengotor oksida besi dari zeolit. Selanjutnya, ZAL hasil pemurnian didepolimerisasi menggunakan NaOH untuk memecah atau memutuskan ikatan dalam kerangka zeolit. Zeolit NaY hasil sintesis dikarakterisasi menggunakan instrumen SEM-EDX, XRD, FTIR. Hasil XRD menunjukkan bahwa zeolit hasil sintesis merupakan zeolit NaY, walaupun kerangka sodalite juga teramati Hasil SEM-EDX menunjukkan morfologi dari zeolit NaY. Hasil karakterisasi FTIR menunjukkan tidak adanya vibrasi dari double-six-ring. Pada penelitian ini zeolit NaY hasil sintesis memiliki nilai kapasitas tukar kation 32,97 mek/100g lebih tinggi dibandingkan dengan ZAL raw 28,01 mek/100g . Adsorpsi ion logam kadmium II dan kobal II dilakukan pada termperatur ruang, dengan volume 25mL/0,1gram zeolit dan waktu kontak 120 menit. Hasil proses adsorpsi menunjukkan kapasitas adsorpsi zeolit NaY hasil sintesis lebih tinggi dibandingkan dengan ZAL raw.

NaY zeolite from natural zeolite Lampung had been synthesized with molar ratio of Al2O3 10 SiO2 10,6 Na2O 180,3 H2O and Si Al ratio 2,47, prior to synthesis via hydrotermal process and seeding technique ZAL was activated and purified. The purpose of this step was to remove carbonate and iron oxide which were impurities in zeolite. The purified ZAL was then depolymerized using NaOH to break the bonds within the zeolite framework. The as synthesized NaY zeolite was characterized using SEM EDX, XRD, and FTIR. XRD diffractogram shows that the as synthesized zeolite was NaY zeolite, although sodalite framework was do observed. SEM EDX characterization shows the morphology of NaY zeolite. FTIR characterization shows that there are no vibration mode for the double six ring. In this research as synthesized NaY has higher cation exchange capacity 32, 97 meq 100g compared to the raw ZAL 28,01 meq 100g . The adsorption of heavy metal cation cadmium II and cobalt II is done at room temperature, with volume 25mL per 0,1gram zeolite and contsat time of 120 minutes. The result shows that the synthesized NaY zeolite has better adsorption capacity than ZAL raw.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66143
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldrin Irsyarasyid
"Air limbah yang mengandum logam berat kadmium adalah salah satu pencemar utama dari perindustrian Indonesia. Salah satu sumber limbah tersebut adalah kegiatan elektroplating. Industri elektroplating sekarang menjadi salah satu industri terbesar di Indonesia. Hal ini menyebabkan tingginya limbah yang dihasilkan. Salah satu metode yang dapat digunakan untuk menurunkan konsentrasi kadmium di air limbah adalah dengan proses adsorpsi. Proses ini menggunakan adsorben yang digunakan sebagai penyerap polutan, dalam kasus ini logam berat kadmium ke permukaannya. Salah satu bahan yang dapat digunakan sebagai adsorben adalah lumpul vulkanik sidoarjo (LUSI). Dalam penelitian ini akan dilakukan pemanfaatan LUSI sebagai adsorben logam berat kadmium. Meneliti pengaruh variasi proses adsorpsi yaitu metode aktivasi, variasi dosis adsorben, waktu kontak, pH dan konsentrasi inisial kadmium. Pengujian dilakukan pada skala laboratorium dengan sistem batch. Dalam penelitian ini, LUSI diaktivasi dengan metode tanpa aktivasi, aktivasi asam, dan aktivasi basa. Aktivasi kimia akan dilakukan dengan H2SO4 5N untuk asam dan NaOH 5N untuk basa. Eksperimen akan dilakukan dengan metode batch dengan menguji parameter adsorpsi terhadapa efisiensi penyisihan kadmium, yang dilakukan pada waktu kontak (0-120 menit), dosis adsorben (0,025-0,7 g/L), konsentrasi polutan (0,5-2 mg/L), dan pH inisial (4-12). Efisiensi penyisihan maksimum dicapai oleh adsorben tanpa aktivasi pada 92,25% diikuti oleh 74,22% dengan aktivasi basa, dan 60,17% dengan aktivasi asam. Parameter operasional yang memiliki hasil maksimal ditemukan pada waktu kontak 60 menit, dosis 0,7 g/L, konsentrasi polutan 1 mg/L, dan pH inisial 12. Mekanisme adsorpsi digambarkan terbaik dengan Langmuir dengan R2 sebesar 0.93.

Wastewater containing heavy metal cadmium is one of the main pollutants from Indonesia's industrial sector. One source of such waste is electroplating activities. The electroplating industry has now become one of the largest industries in Indonesia, leading to a high volume of waste generated. One method that can be used to reduce cadmium concentration in wastewater is through the adsorption process. This process utilizes an adsorbent as a material to absorb pollutants—in this case, heavy metal cadmium—onto its surface. One material that can be used as an adsorbent is the Sidoarjo volcanic mud (LUSI). This study aims to utilize LUSI as an adsorbent for cadmium heavy metals by investigating the effects of various adsorption process parameters, including activation methods, adsorbent dosage, contact time, pH, and initial cadmium concentration. Testing is conducted on a laboratory scale using a batch system. In this research, LUSI is activated using three methods: no activation, acid activation, and base activation. Chemical activation is performed using 5N H2SO4 for acid activation and 5N NaOH for base activation. Experiments are carried out in batch mode by analyzing adsorption parameters' influence on cadmium removal efficiency. These parameters include contact time (0–120 minutes), adsorbent dosage (0.025–0.7 g/L), pollutant concentration (0.5–2 mg/L), and initial pH (4–12). The maximum removal efficiency is achieved with non-activated adsorbent at 92.25%, followed by 74.22% with base activation and 60.17% with acid activation. The optimal results for each operational parameters found in the study are a contact time of 60 minutes, an adsorbent dosage of 0.7 g/L, a cadmium concentration of 1 mg/L, and an initial pH of 12. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Sukmasari
"Studi pemanfaatan limbah untuk adsorpsi logam berat banyak menarik perhatian. Pada penelitian ini, selulosa yang berasal dari serat kardus bekas (WCF) dimodifikasi dengan nanokitosan (WCF/NCH) untuk meningkatkan kemampuan adsorpsi ion logam berat. WCF disiapkan dengan penambahan NaOH untuk memisahkan serat dengan material non selulosa. Hasil karakterisasi spektrofotometer FTIR menunjukkan modifikasi WCF dengan nanokitosan berhasil dilakukan dengan kondisi optimum pada 1 kali pencelupan nanokitosan. Hasil modifikasi WCF/NCH mampu mengadsorpsi larutan ion logam Pb(II) dan Cd(II). Kondisi optimum adsorpsi ion logam Pb(II) didapatkan pada pH awal 6,5, dosis adsorben 0,025 g, waktu kontak selama 10 menit, temperatur reaksi 30 ºC serta kapasitas adsorpsi maksimum sebesar 167,19 mg/g. Hasil optimasi ion logam Cd(II) menunjukkan proses adsorpsi berlangsung optimum pada pH awal 7,0, dosis adsorben 0,025 g, waktu kontak 15 menit, temperatur reaksi 30 ºC serta kapasitas adsorpsi maksimum sebesar 15,86 mg/g. Proses adsorpsi pada WCF/NCH untuk ion logam Pb(II) dan Cd(II) mengikuti model isoterm adsorpsi Langmuir. Studi termodinamika pada adsorpsi ion logam Pb(II) menunjukkan nilai energi bebas Gibbs (ΔGo) negatif pada semua temperatur yang diamati mengindikasikan proses adsorpsi berlangsung secara spontan, sedangkan pada adsorpsi ion logam Cd(II) menunjukkan nilai positif yang mengindikasikan proses adsorpsi berlangsung tidak spontan.

Recent Study of the utilization of wastes as low-cost adsorbent have become attention. In this work, cellulose from waste corrugated board fiber (WCF) was modified with nanochitosan (WCF/NCH) to enhance its ability to adsorb heavy metal ion. WCF was prepared by the addition of NaOH to separate the cellulose fiber with non-cellulose material. Modification of WCF/NCH was characterized by FTIR. Optimum modification process was obtained at 1 layer of nanochitosan. WCF / NCH can be used for adsorption Pb (II) and Cd (II) ion. Optimum condition for adsorption of Pb(II) ion takes place at the initial pH 6.5, 0.025 g adsorbent dose, 10 minutes of contact time, temperature 30 ºC, and the maximum adsorption capacity was 167.19 mg/g. Optimum condition for adsorption of Cd(II) ion occur at initial pH 7, 0.025 g of adsorbent dose, 15 minutes of contact time, temperature 30 oC, and the maximum adsorption capacity was 15.86 mg/g. The process of adsorption for Pb(II) and Cd(II) ion on WCF/NCH follow Langmuir adsorption isotherm model. Thermodynamics studies for adsorption of Pb(II) shows that the adsorption have negative value at any temperatures indicating adsorption process takes place spontaneously, whereas adsorption of Cd(II) ion have positive value indicating adsorption process takes place non-spontaneously.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S55952
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Amalina Qismina Fajrianti
"Sintesis zeolit NaY dari zeolit alam Bayat dilakukan melalui metode hidrotermal dengan teknik seeding. Sintesis dilakukan berdasarkan komposisi Al2O3: 10 SiO2: 10,3 Na2O: 180,3 H2O rasio molar . Sebelum dilakukan sintesis, zeolit alam Bayat dipreparasi melalui proses purifikasi dan depolimerisasi. Hasil XRD menunjukkan bahwa zeolit yang dihasilkan merupakan zeolit NaY yang didominasi oleh kerangka sodalite. Hasil SEM-EDX memperlihatkan morfologi zeolit NaY seperti tumpang tindih dengan rasio Si/Al sebesar 2,30. Berdasarkan penelitian, zeolit NaY hasil sintesis memiliki sisi aktif yang besar sehingga dapat berperan menjadi adsorben ion logam kadmium II dan kobalt II. Hal ini dibuktikan dengan kapasitas adsorpsi ion kadmium II rata-rata zeolit NaY hasil sintesis lebih tinggi daripada kapasitas rata-rata adsorpsi dari zeolit alam Bayat raw pada waktu optimum 120 menit, 33,46 mek/100 g untuk zeolit alam Bayat raw dan 105,60 mek/100 g untuk zeolit NaY hasil sintesis. Kapasitas adsorpsi ion kobalt II rata-rata zeolit NaY hasil sintesis juga lebih tinggi daripada kapasitas rata-rata adsorpsi dari zeolit alam Bayat raw pada waktu optimum 120 menit, 12,88 mek/100 g untuk zeolit alam Bayat raw dan 78,25 mek/100 g untuk zeolit NaY hasil sintesis. Nilai kapasitas tukar kation zeolit alam Bayat raw adalah sebesar 24,41 mek/100 gram zeolit, sedangkan nilai kapasitas tukar kation zeolit NaY hasil sintesis adalah sebesar 43,45 mek/100 gram zeolit.

NaY zeolite was hydrothermally synthesized using seeding technique. The synthesis were performed according to the following composition of Al2O3 10 SiO2 10.3 Na2O 180.3 H2O molar ratio . XRD pattern confirmed that the structure was NaY zeolite. Before synthesis, natural zeolite Bayat were prepared through purification and depolymerization. From XRD measurement, it is observed that zeolite structures are dominated by sodalite framework. SEM EDX showed that NaY crystals were intergrowth with Si Al ratio of 2.30. In this study, NaY zeolite synthesized has more active sites to adsorb cadmium II and cobalt II ions because the average adsorption capacity cadmium II ions of as synthesized NaY zeolite is higher than the average adsorption capacity of raw Bayat natural zeolite at its optimum contact time 120 minutes, 33.46 meq 100 g for raw natural zeolite Bayat and 105.60 meq 100 g for as synthesized NaY zeolite. The average adsorption capacity cobalt II ions of as synthesized NaY zeolite is also higher than the average adsorption capacity of raw Bayat natural zeolite at its optimum contact time 120 minutes, 12.88 meq 100 g for raw natural zeolite Bayat and 78.25 meq 100 g for as synthesized NaY zeolite. The cation exchange capacity of raw Bayat natural zeolite is 24.41 meq 100 gram zeolite, besides the cation exchange capacity of as synthesized NaY zeolite is 43.45 meq 100 gram zeolite.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66142
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>