Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 118781 dokumen yang sesuai dengan query
cover
cover
Agus Zainal Arifin
"Klasifikasi citra penginderaan jauh (inderaja) bertujuan untuk menghasilkan peta tematik, dimana tiap warna mewakili sebuah objek, misalkan hutan laut, sungai, sawah dan lain-lain. Makalah ini mempresentasikan disain dan implementasi perangkat lunak untuk mengklasifikasi citra inderaja multispektral. Metode berbasis unsupervised yang diusulkan ini adalah integrasi dari metode feature extraction, hierarchical (hirarki) clustering dan partitional (partisi) clustering. Feature extraction dimaksudkan untuk mendapatkan komponen utama citra multispektral tersebut sekaligus mengeliminir komponen yang redundan, sehingga akan mengurangi kompleksitas komputasi. Histogram komponen utama ini dianalisa untuk lemlah terkonsentrasinya pixel dalam feature space, sehingga proses split dapat menghasilkan cluster dengan cepat.
Beberapa cluster yang sangat mirip akan digabungkan oleh proses merge. Pada tahap akhir proses partisi akan mendeteksi prototype tiap cluster dengan Fuzzy C-Mean (FCM). Uji coba perangkat lunak ini dilakukan pada citra Landsat TM dan GOES-8. Hasilnya diukur berdasarkan homogenitas eksekusi dan nilai label contingency. Tabel ini akan membuktikan keberhasilan klasifikasi terhadap 800 sampel dari Jawa Timur yang sebelumnya telah dikenali. Untuk bahan perbandingan sampel diuji coba dengan algortima ISMC (Improve Split and Merge Classification), yang berdasarkan penelitian sebelumnya telah telah terbukti lebih baik dari pada ISODATA. Secara umum, uji coba menunjukkan keunggulannya dibandingkan ISMC."
2002
JIKT-2-1-Mei2002-49
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Hartman Korneluis
Depok: Fakultas Teknik Universitas Indonesia, 1994
TA2777
UI - Tugas Akhir  Universitas Indonesia Library
cover
Aniati Murni Arymurthy
"This dissertation describes the synergy use of remote sensing data from multi-temporal and multi sensor (optical and radar) for improving our understanding of the land-cover structural phenomena. A tropical country like Indonesia has a high cloud coverage throughout the year with a maximum during the rainy season, and hence the availability of cloud-free optical images is minimal. To solve this problem, radar images have been intensively introduced. The radar images are cloud-free but their use is hampered due to their speckle noise and topographic distortions, and the lack of a suitable radar image classification system.
In many cases, the use of optical or radar image alone is not sufficient. Therefore, the main objectives of this research are: (i) to develop a framework for multi date and multi sensor (optical and radar) image classification; (ii) to solve the cloud cover problem in optical images; and (iii) to obtain a more consistent image classification using multi date and multi sensor images. We have proposed a framework for multi date and multi sensor image classification based on a uniform image classification scheme. The term uniform means that the same procedure can be used to classify optical or radar images, low-level mosaic or fused images, single or multiple feature images.
To be able to conduct a multi temporal and multi sensor analysis, we have unified the optical and radar image classification procedure after finding that both optical and radar images consist of homogeneous and textured regions. A region is considered as homogeneous if the local variance of gray level distribution is relatively low, and a region is considered as textured if the local variance is high. We used a multivariate Gaussian distribution to model the homogeneous part and a multinomial distribution to model the gray level co-occurrences of the textured part, and applied a multiple classifier system to improve the classification accuracy.
The main advantages of the uniform classification scheme are as follow. First, we can tune the homogeneous-textured threshold value parameter in order to obtain an optimal result by allowing the classifier working as a single (conventional) or multiple classifier system. The classifier can have a better or at least the same classification accuracy as the conventional one. Second, we can use either single-band or multi-band input images. This will make it possible to classify a. radar image based on multi-model texture feature images or to classify multi spectral optical images. Third, we can use the same procedure to classify any input images. Compared to the conventional classifiers, the multiple classifier system can improve the classification result from 0% to 20% for radar images and from 0% to 2% for optical images.
The proposed framework incorporates the image mosaicking and data fusion at the low-level stage (before the classification process) as well as at the high-level stage (after the classification process). For cloud cover removal, the image mosaicking at the low-level stage is usually done using multi temporal optical images, whereas mosaicking at the high-level stage is applied to the classified optical and radar images. To be able to obtain a cloud-free image, we have modified the existing Soofi and Smith algorithm which is using multi temporal optical images to an algorithm using multi sensor images. In the high-level data fusion, we have also been able to incorporate a mechanism for cloud cover removal by omitting the information from the optical sensor and using only the information from the radar sensor. According to a case study in our experiment, the cloud cover removal and image classification using the low-level image mosaicking, the high-level image mosaicking, and the high-level data fusion gave 80.2%, 76.2%, and 80.5% classification accuracy, respectively.
The high-level data fusion combines the decisions from several input images to obtain a consensus of classified image. We have applied both the maximum joint posterior probability and the highest rank method for the decision combination functions. We have utilized two existing data fusion methods and have proposed an alternative data fusion method based on the compound conditional risk. According to the experimental results, the decision combination function based on the maximum joint posterior probability favors the optical feature image, while the highest rank method favors the radar feature image. The preference of using the maximum joint posterior probability results in the domination of optical features in the fusion result, and the classification accuracy of the fused image can be better 8.5% in average than the individual radar classified image."
1997
D235
UI - Disertasi Membership  Universitas Indonesia Library
cover
Reza Primardiansyah
"Ultrasonografi (USG) merupakan salah satu teknologi pencitraan medis. Teknologi ini paling banyak digunakan dalam dunia kedokteran saat ini. Beberapa faktor pemilihan teknologi USG ini adalah minimalnya faktor tingkat resiko serta persiapan fisik dan waktu pasien dan operator USG-nya. Kurangnya penelitian berkaitan dengan teknologi USG ini di Indonesia menjadi ketergantungan pembelian perangkat USG secara import. Peneliti mencoba melakukan pengembangan dan penambahan fungsi antarmuka visualisasi dengan memberikan analisa sederhana untuk penelitian lebih lanjut. Dalam penelitian ini Peneliti menggunakan Matlab untuk pengolahan sinyal, pengolahan matrik, visualisasi, dan kontrol. Tujuan penelitian ini adalah merancang dan mengembangkan suatu antarmuka perangkat lunak untuk visualisasi dan analisis citra USG. Algoritma yang ada dinalisis lebih jauh sehinga bisa dilakukan pemilahan proses.
Eksperimen awal dilakukan dengan mengolah hasil data dari sinyal A-mode dan kemudian divisualisasi menjadi B-mode. Selanjutnya dikembangkan suatu antarmuka visual dan analisa proses pencitraan, serta penambahan fungsi citra lainnya. Visualisasi citra USG yang dilakukan belum secara real time. Visualisasi citra hasil pengembangan antarmuka perangkat lunak ini dapat dalam bentuk citra B-mode dan juga Video. Citra bisa dikarakterisasi dengan menggunaan filter IIR dan FIR ataupun tanpa filter. Aplikasi mendukung penggunaan lowpass filter dan highpass filter dan perubahan kondisi nilai cut-off secara dinamis.
Pengubahan filter order menentukan hasil citra yang divisualkan. Pada nilai filter order tertentu dengan karakteristik filter yang berbeda akan menghasikan citra yang bervariasi. Hasil visual citra scan dapat disimpan dalam format Jpeg dan dapat dicetak. Aplikasi bisa memvisualkan konstruksi proses sinyal data grafik secara optimal. Dalam hal ini pengguna dapat memilih line data pada frame citra untuk dianalisa. Pengembangan antarmuka memberikan kemudahan dalam penggunaan aplikasi, serta bisa memahami proses visualisasi dengan lebih baik. Komponen-komponen antarmuka yang jelas menjadikan solusi analisa visualisasi, dan pemahaman terhadap algoritma USG lebih jauh.

Ultrasonography (USG) is an application of medical image technologies. It is mostly used in medical practice nowadays. Several factors in selecting USG technology are risk factor level, physical and time preparedness for patient and USG operator. The lack of research related to USG technology in Indonesia is the major cause to import USG devices. Researchers try to develop interface and enrich functions with a simple analysis to study the existing algorithms. In this study, Matlab is used for signal processing, matrix processing, visualization, and control. The purpose of this research is to design and develop a software interface for visualization and image analysis of USG. The algorithm is analyzed further so they can be processed with filtering process.
Early experiments performed by processing the data results from the A-mode signal and then visualized to B-mode. Furthermore, visualization interface and imaging process analysis are contructed, and enrichment of other imaging function. USG visualization is not in real time. Visualization of application outputs can be in the B-mode image and also Video. The image can be characterized with or without IIR or FIR filter. Applications support the use of lowpass filter and highpass filter, and capable of setting up of the cut-off value dynamically.
The combination of the value of Filter Order capable of determined the outcome of the visualized image. By combining different filters, various images could be obtained. The results of scanned image can be stored in Jpeg format and printed directly. Application is capable of visualizing the contruction process in the form of grapichs. In this case the user can select the data line position on the frame layer for analisis. Tool interface provides ease of use of the application and better understanding of the visualization process. Clear component of the interface is created to visually analyze the solution and for understanding USG algoritms further.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29548
UI - Tesis Open  Universitas Indonesia Library
cover
Rezza Prayogi
Depok: Fakultas Teknik Universitas Indonesia, 2004
S36375
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1991
S38172
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joko Ariyanto
"Ada banyak attributattribut yang dapat diekstrak dari data seismik dan pemilihan attribut yang hanya dapat mempengaruhi distribusi litologi ini secara dominan bukan merupakan hal yang mudah karena pada kenyataannya beberapa attribut tidak memberikan kontribusi dalam pengelompokan litologi. Untuk mengurangi hal itu, penulis menggunakan Principal Component Analysis (PCA) pada data seismik dan generalized principal component analysis (GPCA) pada attribut seismik. Analisis GPCA terdiri dari dua langkah: Pertama, meningkatkan variasi data dengan menggunakan principal component analysis sehingga pemisahan data yang lebih baik bisa didapatkan, dan kedua, memilih attribut yang telah terotasi berdasarkan urutan nilai eigen valuenya yang dihitung sebelumnya. Tujuan analisis PCA adalah untuk menghilangkan komponen bising yang bersifat acak yang terdapat di dalam data seismik sedangkan tujuan analisis GPCA adalah untuk menghasilkan atribut seismik yang mampu memberikan kontribusi untuk clustering.
Cluster analisis dari attribut seismik merupakan suatu metode yang digunakan untuk mengelompokkan litologi dari data seismic yang telah direkam dan diproses. Secara prinsip, cluster analisis memproyeksikan N attribut seismik ke sistem koordinat dengan N-dimensi yang menghasilkan K cluster yang merepresentasikan litologi yang berbeda. Penentuan pusat awan data (centroid) dapat dilakukan melalui proses yang iteratif (unsupervised). Algoritma clustering yang dipakai adalah Kmeans clustering. Hasil clustering yang didapat menunjukkan konsistensi dengan peta litologi yang sudah ada yang di intrepetasi dari korelasi data sumur.

There are a lot of seismic attributes that can be generated from seismic data and choosing attributes that mainly affect the distribution of the lithology clouds is not a simple task to do due to the fact that some attributes may not contribute to the separation of the clusters. To reduce that difficulty, the authors implemented a principal component analysis (PCA) of seismic data and a generalized principal components analysis (GPCA) of seismic attributes. This GPCA analyisis consists of two steps : First, increasing the variation of data points using the principal component method such that better cluster separation can be obtained, and second, selecting contributing rotated attributes based on the rank of previously calculated eigen values. The aim of PCA analysis is to reduce noise effect which random in seismic data while the aim of GPCA analysis is to result seismic attributes which give contribution to clustering.
Cluster analysis of seismic attributes is a tool to classify lithologies brought by recorded and processed seismic data. In principal, cluster analysis projects N seismic attributes into Ndimension coordinate system resulting with K groups of clouds representing different lithologies. Identification of the center of the clouds and its related samples can be done differently by iterative process (unsupervised). Clustering algorithm is Kmeans clustering. The results of clustering show consistency with existing lithology map interpreted from well correlation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S28860
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jakarta : Universitas Islam As-Syafi'iyah, 2012
922.97 TUJ;922.97 TUJ (2)
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>