Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 87262 dokumen yang sesuai dengan query
cover
cover
cover
Fakultas Teknik Universitas Indonesia, 1995
S36429
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kusuma Dewi
"Pengenalan wajah merupakan salah satu bidang dalam pengenalan pola. Pengenalan pola adalah disiplin ilmu yang bertujuan untuk mengklasifikasikan objek menjadi sejumlah kategori atau kelas. Seperti halnya pengenalan pola, pengenalan wajah bertujuan untuk mengklasifikasikan citra wajah menjadi sejumlah kategori wajah. Yang dimaksud dengan kategori wajah di sini adalah, siapakah pemilik wajah tersebut atau wajah tersebut termasuk kategori wajah siapa. Selama ini, umumnya feature untuk sistem pengenalan wajah berupa nilai grayscale per-pixel. Dalam tugas akhir ini, dilakukan uji coba untuk meneliti apakah feature kedalaman per-pixel dari gambar wajah memiliki pengaruh atau seberapa pentingnya feature kedalaman ini terhadap hasil pengenalan wajah. Representasi feature nilai grayscale dan kedalaman per-pixel ini adalah sebagai input untuk 2*32*32 neuron. Untuk mengetahui seberapa penting feature kedalaman ini, maka dilakukan perbandingan antara 3 macam hasil pengenalan yaitu hasil pengenalan dengan feature nilai grayscale saja, hasil pengenalan dengan feature kedalaman saja, dan hasil pengenalan dengan feature nilai grayscale dan feature kedalaman. Untuk pengujian, pengenalan wajah dilakukan dengan menggunakan Jaringan Neural Buatan (JNB) propagasi balik. Selanjutnya dilakukan pengenalan wajah dengan menggunakan JNB propagasi balik yang dioptimasi dengan algoritma genetika. Untuk memampatkan data masukan, maka digunakan transformasi Karhunen-Loéve. Pengujian dilakukan untuk data yang tidak ditransformasi dan data yang ditransformasikan dengan Karhunen-Loéve. Hasil uji coba menunjukkan bahwa feature kedalaman memiliki arti penting, yaitu dalam hal meningkatkan hasil pengenalan dengan memanfaatkan feature nilai grayscale digabung dengan feature kedalaman."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewi Khairani
"Penelitian ini merupakan kombinasi dari penelitian-penelitian sebelumnya mengenai pengenalan sudut-pandang dan wajah 3D dengan menggunakan Jaringan Saraf Tiruan (JST) yang sebelumnya menggunakan Self Organizing Map (SOM) dalam representasi ruang eigen dan penerapan algoritma genetika dalam menentukan ruang ciri yang optimal. Pada penelitian kali ini Jaringan Neural Buatan yang digunakan adalah Learning Vektor Quantization (LVQ) dalam ruang eigen dengan mengaplikasikan algoritma genetika untuk mengoptimasi ruang ciri. Untuk menganalisa seberapa baik pengenalan dengan menggunakan algoritma LVQ ini, dilakukan beberapa eksperimen dalam penelitian ini untuk memperbandingkan tingkat pengenalan pada sistem fully-KLT dan Subset II-KLT, dengan menggunakan algoritma genetika dan dengan menggunakan full eigen untuk sistem dengan dan tanpa reduksi awal pada PCA untuk masing-masing dataset yang telah ditentukan. Tingkat pengenalan terbaik untuk pengenalan sudut basis mencapai 96,9 %, pengenalan sudut tengah mencapai 67,7 % pada sistem fully-KLT dan pengenalan sudut tengah pada subset II-KLT mencapai hasil tertinggi sebesar 80,6 %. Sedangkan untuk pengenalan wajah, tingkat pengenalan terbaik mencapai 79,2 %, pada pengenalan wajah peningkatan jumlah citra uji GA ternyata tidak memberikan perbaikan hasil pengenalan. Secara umum pengenalan dengan menggunakan algoritma genetika belum mampu menyaingi tingkat pengenalan dengan menggunakan keseluruhan eigen (full eigen). "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Masalah dalam mengimplementasikan metode algoritma k-means adalah menentukan jumlah cluster sebelum melakukan klasifikasi. Untuk mengatasi masalah ini, maka para peneliti mengusulkan suatu variasi dari algoritma k-means, yaitu algoritma adaptif k-means. Dalam penelitian ini, algoritma ini dipakai untuk melakukan pengenalan wajah. Sistem yang dibuat dalam penelitian ini dibagi ke dalam dua bagian utama, yaitu proses pelatihan dan proses pengujian. Dalam proses pelatihan, dibentuk sebuah himpunan eigenface dari himpunan citra latih. Masing-masing citra latih ini diproyeksikan terhadap eigenface untuk memperoleh bobot citra latih. Bobot citra latih akan di-cluster-kan dengan algoritma adaptif k-means. Kontribusi utama penulis dalam penelitian ini adalah dalam proses menemukan jumlah cluster (k) yang tepat pada algoritma adaptif k-means, dimana jumlah cluster akan terus ditambahkan (mulai k = 2) sampai kondisi terdapat ada cluster baru yang tidak memiliki anggota (cluster kosong). Dalam proses pengujian, citra uji akan dicari identitasnya. Pencarian identitas dilakukan dengan mencari jarak euclidean terpendek antara bobot citra uji dengan citra latih dari dalam cluster terdekat. Pengujian dilakukan dengan citra wajah yang terdapat dalam pangkalan data, yang akan disebut citra internal, dan dengan citra wajah bukan bagian dari pangkalan data, yang akan disebut citra eksternal, dimana identitas citra eksternal ini terdapat dalam pangkalan data juga. Dari hasil pengamatan diperoleh bahwa algoritma adaptif k-means dapat mengurangi jumlah proses identifikasi citra uji dengan tetap mempertahankan rate pengenalan dalam batas yang wajar (robust)."
620 JURTEL 16:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Umar Tsani Abdurrahman
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38483
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Pengembangan sistem pengenalan wajah yang optimal akan sangat bergantung pada proses seleksi ciri yang digunakan sebagai basis pada pengenalan pola. Dalam proses seleksi ciri tersebut akan terdapat dua aspek yang akan saling berpengaruh yaitu, aspek reduksi terhadap jumlah data yang digunakan pada klasifikasi dan peningkatan kemampuan pendiskriminasiannya. Dalam proyek mahasiswa ini, digunakan salah satu metode pengkodean citra wajah yang dapat memenuhi kedua aspek di atas, yaitu metode Fisherface yang berbasis pada Fisher?s Linear Discriminant (FLD). FLD merupakan metode class specific yang mampu memaksimalkan perbandingan antara between scatter class dengan within scatter class. Fisherface memiliki karakteristik mampu mengenali citra wajah dalam berbagai variasi pencahayaan, ekspresi, dan atribut [BELH97]. Transformasi Whitening kemudian diterapkan sebagai pre-processor FLD. Penerapan Whitening akan menghasilkan vektor baru yang komponennya tidak saling berkorelasi dan variansinya sama dengan unity. Sedangkan Algoritma Genetika digunakan untuk mengotomatisasi proses reduksi dimensi sehingga penentuan reduksi dimensi yang optimal tidak lagi dilakukan secara eksperimental. Eksperimen dilakukan pada dua jenis basis data wajah yang berbeda. Basis data wajah Yale digunakan untuk melihat pengaruh penerapan transformasi Whitening pada citra wajah frontal. Sedangkan basis data wajah 3 Dimensi digunakan untuk melihat pengaruh transformasi Whitening pada citra wajah 3 dimensi. Hasil eksperimen dengan basis data Yale menunjukkan tingkat pengenalan Fisherface dengan transformasi Whitening relatif sama dengan yang tidak menggunakan Whitening. Sementara pada basis data 3 Dimensi, penerapan Whitening diduga dapat memperbaiki tingkat pengenalan Fisherface pada saat jumlah citra acuan relatif sedikit. Pada kedua basis data, transformasi Whitening dapat meningkatkan tingkat pengenalan pada kondisi di mana dimensi ciri yang dihasilkan sangat kecil."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Doloksaribu, Rudy
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39790
UI - Skripsi Membership  Universitas Indonesia Library
cover
Restomi
"Dalam bidang pengenalan citra wajah dua dimensi telah diujikan sistem
jaringan saraf tiruan hibrida (JST-Hibrida) dan Averaging Representation berbasiskan Eigenface dan Fisherface. Dalam pengujiannya, JST-Hibrida memiliki kemampuan pengenalan yang lebih buruk dibandingkan Averaging Representation. Dalam penelitiannya, penulis mengimplementasikan jaringan saraf tiruan propagasi balik (JST-PB) yang ternyata memiliki kemampuan pengenalan di atas JST-Hibrida dan Averaging Representation. Untuk meningkatkan kinerja jaringan dan sekaligus mengoptimasi struktur jaringan maka digunakan algoritma genetika untuk memangkas koneksi-koneksi
yang tidak diperlukan. Algoritma genetika ternyata mampu menemukan solusi yang bagus dengan jumlah koneksi yang lebih kecil.
Dalam pengujiannya dipergunakan berbagai citra wajah dua dimensi
dengan berbagai variasi ekspresi dan pencahayaan. Metode yang digunakan untuk mereduksi dimensi citra adalah metode Fisherface. Metode Fisherface dapat mengenali wajah, baik untuk berbagai variasi cahaya dan ekspresi wajah. Hasil pengujian menunjukkan bahwa Algoritma Genetika mampu meningkatkan kemampuan pengenalan JST-PB terhadap citra wajah dua dimensi."
2000
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>