Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 148641 dokumen yang sesuai dengan query
cover
cover
cover
cover
Muhammad Agung Nugraha
"Penelitian ini bertujuan untuk membuat model peramalan yang efektif dalam meramalkan penjualan produk mobil dalam segmen B2B (Business to Business) agar didapatkan estimasi penjualan produk di masa mendatang. Peneilitian ini menggunakan regresi linear berganda dan jaringan syaraf tiruan yang dioptimasi dengan algoritma genetika.  Faktor peramalan penjualan mobil pada umumnya meliputi penjualan mobil secara nasional, Indeks Harga konsumen, Indeks Kepercayaan Konsumen, Laju Inflasi, Produk Domestik Bruto (GDP), dan  Harga Bahan Bakar Minyak (BBM). Penulis juga telah mendapatkan faktor yang berpengaruh dalam penjualan segmen B2B dengan menyebarkan survey (kuesioner) kepada 102 orang DMU (Decision Making Unit) yang memiliki keputusan dalam pembelanjaan mobil di perusahaan mereka. Kemudian hasil scoring dari kuesioner tersebut kami bobotkan pada data training dan simulasi pada Jaringan Syaraf Tiruan. Hasil penelitian ini menunjukkan bahwa Jaringan Syaraf Tiruan yang dioptimasi  dengan Algoritma Genetika dengan 18 Variabel dapat meningkatkan akurasi peramalan penjualan mobil segmen B2B dengan error 1,3503%, jika dibandingkan nilai error pada Jaringan Syaraf Tiruan biasa sebesar 4,173% dan Regresi Linear Berganda sebesar 17,68%.

ABSTRACT
This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business-to-Business) in order to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Car sales forecasting factors generally include National car sales, Consumer Price Index, Consumer Confidence Index, Inflation Rate, Gross Domestic Product (GDP), and Gasoline Price. The author has also obtained an influential factor in the sale of B2B segments by distributing surveys (questionnaires) to 102 DMU (Decision Making Unit) who have a decision in car purchasing at their company. Then the results of the scoring from the questionnaire are weighted to the training and simulation data on the Artificial Neural Network. The results of this study indicate that the Artificial Neural Network optimized with Genetic Algorithm can improve the accuracy of forecasting B2B segment car sales with an error of 1.3503%, when compared to the error value in the usual Artificial Neural Network of 4.173% and Multiple Linear Regression of 17.68 %."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T54561
UI - Tesis Membership  Universitas Indonesia Library
cover
"This article attempts to estimate the denabd for Indonesia, behavior money in 1997.1-2002.4 using non stationary technique
"
Artikel Jurnal  Universitas Indonesia Library
cover
Iqbal Mahmudy
"Penelitian dan pengembangan teknologi semakin berkesinambungan seiring giatnya eksplorasi di bidang sumber daya kelautan. Teknologi hidroakustik berperan besar khususnya dalam meningkatkan produksi ikan laut. Selain itu juga dikembangkan metode penelitian lain, misalnya proses pengidentifikasi spesies dalam sekelompok kawanan ikan (schooling).
Analisis difokuskan dalam hal pengolahan citra dari schooling yang datanya diambil dari hasil survei akustik dan observasi yang dilakukan Badan Penelitian Kelautan dan Perikanan. Data yang berbentuk citra ini tak lain adalah representasi target strength (koefisen pantul) dari sekelompok ikan, yang berikutnya diolah melalui konsep image processing dengan metode Jaringan Syaraf Tiruan (JST) pada MATLAB. JST disini berfungsi sebagai sebuah metode yang akan mengklasifikasi spesies yang data inputnya diambil dari nilai rata-rata matriks masing-masing citra schooling. Hasil klasifikasi selanjutnya akan langsung diidentifikasi untuk memastikan bahwa tingkat keakuratan dari sampel data pasca klasifikasi benar-benar terlihat.
Diharapkan metode ini akan menjadi sebuah alternatif yang cukup baik dalam menjawab berbagai permasalahan berkaitan dengan penelitian dan pendeteksian bawah air (hidroakustik).

Development of fishery and marine resources hydoacoustic technology has significant role for fish production improvement. It also develops other research method such as species in schooling of fish identification process.
The analysis is focused on images processing of fish schooling where the data is taken from the result of acoustic survey and observation by Fisheries and Marine Research Group. Data, as images that represents the coefficient of target strength of fish schoolings, processed by using images processing concepts with neural network and programmed in MATLAB. Neural Network has a function as method which will classify the species from its input data is taken from matrix averages of each schooling images. Clasification results would be identified directly to ensure the accuration level of this experiment is really seen.
Hopeful, this method could be an alternative of some problems related to the research and underwater detection (hydroacoustic).
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40409
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1997
S28387
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1998
S27511
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Sudarno Putra
"Perkembangan teknologi kontrol terus berlanjut dengan segala ragam pengembangannya, salah satu diantaranya adalah penerapan metode Jaringan Syaraf Tiruan dalam proses kontrol. Kendala yang saat ini dihadapi adalah kenyataan bahwa Jaringan Syaraf Tiruan memiliki respon yang relatif lambat, hal ini dikarenakan panjangnya algoritma sehingga memerlukan waktu komputasi yang lama. Maka dari itu tulisan ini akan membahas tentang pengembangan metode alternatif untuk mendapatkan algoritma Jaringan Syaraf Tiruan yang lebih cepat dan akurat. Ada dua yang sudah berhasil dikembangkan yaitu SOM Fuzzy dan LVQ Fuzzy dengan memfokuskan pada perhitungan jarak antar vektor fuzzy. Dimana, setelah dilakukan pengembangan dan pengujian, metode SOM Fuzzy dan LVQ Fuzzy terbukti mampu meningkatkan recognition dari metode SOM dan LVQ. Dari segi kecepatan, meskipun metode fuzzy yang dikembangkan ini memiliki waktu proses yang sedikit lebih lama daripada metode SOM dan LVQ reguler, namun jika dibandingkan dengan Backpropagation yang memiliki tingkat recognition sama baiknya waktu prosesnya metode fuzzy jauh lebih cepat.

The development of control technology continues with all kinds of development, one of them is the application of neural networks in process control. Constraints currently faced is the fact that neural networks have a slow response, this is because the length of the algorithm that requires a long computation time. So this paper will discuss the development of alternative methods to obtain algorithms of neural networks more quickly and accurately.The methods that have been successfully developed is the Fuzzy SOM and Fuzzy LVQ by focusing on the calculation of distance between fuzzy vectors. After development and testing, methods of Fuzzy SOM and Fuzzy LVQ been able to increase recognition of SOM and LVQ methods. In terms of speed, although the methods developed in this fuzzy processing time slightly longer than the regular method of SOM and LVQ, but when compared with a level of recognition Backpropagation as good when the process is fuzzy method is much faster."
Depok: Universitas Indonesia, 2011
T29527
UI - Tesis Open  Universitas Indonesia Library
cover
Jong, Jek Siang
Yogyakarta: Andi, 2009
005.1 JON j
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>