Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 60410 dokumen yang sesuai dengan query
cover
Helmi Alfarel
"Diagnosa dan pengobatan kanker pada tahap jinak adalah hal yang sangat penting. Akhir akhir ini, ahli patologi menggunakan bantuan komputer dengan teknologi machine learning untuk membantu mendiagnosis pasien menggunakan citra medis. Namun, jumlah data yang dibutuhkan machine learning besar dan biasanya jumlah citra medis yang tersedia terbatas. Transfer learning adalah teknik machine learning yang dapat mengatasi terbatasnya jumlah data. Transfer learning adalah teknik yang mentransfer pengetahuan yang didapat saat model mempelajari untuk menyelesaikan suatu masalah dan digunakan untuk menyelesaikan masalah lain. Pada machine learning, pemilihan arsitektur model dan hyperparameter lainnya sangat berpengaruh pada performa model. Penelitian ini melakukan hyperparameter optimization terhadap CNN yang mengklasifikasi citra histopatologi berisi jaringan sehat dan jaringan kanker. Penelitian ini menemukan CNN dengan arsitektur DenseNet121, freeze rate 75%, 0 lapis classifier, learning rate 0.001, dan optimizer RMSProp mempunyai performa keakuratan terbaik pada 98% dengan waktu latih selama 19.5 detik.

Diagnosis and treatment of cancer at the benign stage is very important. Recently, pathologists are using computer-aided diagnostics with machine learning techniques to diagnose patients from medical images. However, the amount of data required for machine learning is large and the number of medical images available is usually limited. Transfer learning is a machine learning technique that can handle limited amounts of data. Transfer learning is a technique that transfers knowledge gained when learning to solve a problem, to use it to solve a different problem. In machine learning, choosing an optimum architecture and hyperparameters is very important because it affects the performance of the network. In this research, we did a hyperparameter optimization of a CNN that classifies images that contain healthy tissue and cancer tissue. The research concludes that CNN with architecture DenseNet121, freeze rate 75%, zero hidden layer on classifier, learning rate 0.001, and optimizer RMSProp have the best performance with 98% accuracy and 19.5 seconds training time."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Durrabida Zahras
"Untuk memenuhi tantangan dalam hal meningkatnya jenis penyakit di era modern ini, teknologi memainkan peran yang sangat penting dalam penelitian kesehatan. Kesehatan wanita telah menjadi perhatian utama karena meningkatnya angka kanker serviks yang  dapat menjadi penyakit mematikan. Dalam studi ini, kami akan menggunakan Deep Convolutional Neural Network untuk menemukan akurasi dalam mengklasifikasikan data kanker serviks pada empat jenis metode. Data kanker serviks diwakili oleh 32 faktor risiko dan empat variabel target: Hinselmann, Schiller, Cytology, dan Biopsy. Presentase akurasi metode Deep Convolutional Neural Network cukup baik jika dibandingkan dengan Neural Network dalam hal pengklasifikasian data faktor risiko kanker serviks, kita dapat melihat bahwa setiap data diklasifikasikan dengan benar dengan total akurasi mencapai hampir 90% untuk setiap target.

To meet the challenge of the increasing types of disease in this modern era, technology plays a very important role in health research. Womens health has become a major concern because of the increasing rates of cervical cancer because it can be a deadly disease. In this study, we will use deep Convolutional Neural Networks to find the accuracy in classifying cervical cancer data on four different types of methods. The cervical cancer data are represented by 32 risk factors and four target variables: Hinselmann, Schiller, Cytology, and Biopsy. The result with deep learning method is quite encouraging compare to the original neural network in classyfying cervical risk dataset, we can see that each data were correctly classified with the total accuracy reach almost 90% for each target."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brahmana, Jane Eva Aurelia Sembiring
"Di dunia kesehatan, tenaga medis dituntut untuk mengatasi berbagai jenis penyakit dengan gejala yang beragam. Oleh karena itu, diperlukan suatu teknologi untuk membantu mereka menyelesaikannya dengan baik. Penelitian ini mendukung mereka dengan menggunakan machine learning sebagai pemecah masalah. Penelitian ini membahas kanker payudara yang merupakan salah satu penyakit dengan angka kematian tertinggi di dunia, khususnya bagi wanita. Berdasarkan patologisnya, ada beberapa jenis kanker payudara yang dikelompokkan menjadi dua kategori utama, yaitu invasif dan non-invasif. Penelitian ini menggunakan dataset MRI payudara penderita kanker payudara dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Dataset berupa citra MRI akan diimplementasikan pada algoritma yang telah dikonstruksikan. Pada tahap awal, metode Convolutional Neural Network akan digunakan untuk bagian konvolusi. Berikutnya, pada bagian klasifikasi, metode yang akan diterapkan sebagai metode klasifikasi adalah Support Vector Machine. Dengan mengevaluasi hasil kinerja metode pembaharuan yang digunakan (Convolutional Neural Network–Support Vector Machine) dari dataset yang dimiliki, kita akan mengetahui apakah metode Convolutional Neural Network–Support Vector Machine lebih akurat dibandingkan dengan metode Convolutional Neural Network dalam membantu klasifikasi dataset MRI penderita kanker payudara yang dimiliki. 

In the world of health, medical personnel are required to deal with various types of diseases with various symptoms. Therefore, a technology is needed to help them solve it well. This research supports them by using machine learning as a problem solver. This research discusses breast cancer, which is one of the diseases with the highest mortality rate in the world, especially for women. Based on the pathology, there are several types of breast cancer which are grouped into two main categories, namely invasive and non-invasive. This study used the breast MRI dataset of breast cancer patients from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The dataset in the form of an MRI image will be implemented in the algorithm that has been constructed. In the early stages, the Convolutional Neural Network method will be used for the convolution section. Next, in the classification section, the method that will be applied as a classification method is the Support Vector Machine. By evaluating the performance results of the renewal method used (Convolutional Neural Network–Support Vector Machine) from our dataset, we will find out whether the Convolutional Neural Network–Support Vector Machine method is more accurate than the Convolutional Neural Network method in helping to classify the MRI dataset for breast cancer patients which are owned."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rehan Hawari
"Jatuh merupakan penyebab utama kedua cedera dan kematian yang tidak disengaja di seluruh dunia. Kejadian ini sering terjadi pada lansia dan frekuensinya meningkat setiap tahun. Sistem pendeteksi aktivitas jatuh yang reliabel dapat mengurangi risiko cedera yang dialami. Mengingat jatuh adalah kejadian yang tidak dikehendaki atau terjadi secara tiba-tiba, sulit untuk mengumpulkan data jatuh yang sebenarnya. Deteksi jatuh juga sulit karena kemiripannya dengan beberapa aktivitas seperti jongkok, dan mengambil objek dari lantai. Selain itu, beberapa tahun belakangan dataset mengenai aktivitas jatuh yang tersedia secara publik juga terbatas. Oleh karena itu, di tahun 2019, beberapa peneliti mencoba membuat dataset jatuh yang komprehensif yang mensimulasikan kejadian yang sebenarnya dengan menggunakan perangkat kamera dan sensor. Dataset yang dihasilkan dataset multimodal bernama UP-Fall. Menggunakan dataset tersebut, penelitian ini mencoba mendeteksi aktivitas jatuh dengan pendekatan Convolutional Neural Network (CNN) dan Long Short Term Memory (LSTM). CNN digunakan untuk mendeteksi informasi spasial dari data citra, sedangakan LSTM digunakan untuk mengeksploitasi informasi temporal dari data sinyal. Kemudian, hasil dari kedua model digabungkan dengan strategi majority voting. Berdasarkan hasil evaluasi, CNN memperoleh akurasi sebesar 98,49% dan LSTM 98,88%. Kedua model berkontribusi kepada performa strategi majority voting sehingga mendapatkan akurasi (98,31%) yang melebihi akurasi baseline (96,4%). Metrik evaluasi lain juga meningkat seperti precision naik 11%, recall 14%, dan F1-score 12% jika dibandingan dengan baseline

.Fall is the second leading cause of accidental injury and death worldwide. This event often occurs in the elderly and the frequency is increasing every year. Reliable fall activity detection system can reduce the risk of injuries suffered. Since falls are unwanted events or occur suddenly, it is difficult to collect actual fall data. It is also difficult because of the similarity to some activities such as squatting, and picking up objects from the floor. In addition, in recent years the fall dataset that is publicly available is limited. Therefore, in 2019, some researchers tried to create a comprehensive fall dataset that simulates the actual events using camera and sensor devices. The experiment produced a multimodal dataset UP-Fall. Using this dataset, this study tries to detect falling activity using Convolutional Neural Network and Long Short Term Memory approaches. CNN is used to detect spatial information from image data, while LSTM is used to exploit temporal information from signal data. Then, the results of the two models are combined with the majority voting strategy. Based on the evaluation results, CNN obtained an accuracy of 98.49% and LSTM 98.88%. Both models contribute to the performance of the majority voting strategy with the result that the accuracy (98.31%) exceeds baseline accuracy (96.4%). Other evaluation metrics also improved such as precision goes up to 11%, recall 14%, and F1-score 12% in comparison with baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Endang Tri Hastuti
"Coronavirus Disease 2019 (COVID-19) pertama kali diidentifikasi di Wuhan, Thiongkok pada akhir Desember 2019. COVID-19 disebabkan oleh coronavirus baru yaitu The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Sejak 11 Maret 2020, WHO secara resmi menyatakan pandemi COVID-19. COVID-19 ini menginfeksi saluran pernapasan manusia yaitu sel epitel alveolus paru-paru yang menyebabkan pneumonia. Dengan bantuan metode dari Deep learning yaitu Convolutional Neural Network (CNN) dapat digunakan dalam mendeteksi kasus COVID-19 melalui tanda-tanda pneumonia pada data citra Chest X-ray. Deteksi dini kasus COVID-19 sangat diperlukan sebagai langkah meminimalkan penularan dan mengurangi resiko kematian pasien. Oleh karena itu, penelitian ini membangun metode CNN transfer learning model DenseNet121, MobileNet dan ResNet50 dengan pendekatan pseudo-colouring (RGB) dalam mengklasifikasi kasus COVID-19 ke dalam tiga kelas yaitu: COVID-19 pneumonia, sehat dan viral pneumonia. Pendekatan pseudo-colouring (RGB) dilakukan pada tahap praproses dengan memanipulasi warna pada data citra Chest X-ray sebagai sarana untuk membantu meningkatkan hasil akurasi, presisi dan sensitivitas. Hasil evaluasi pada terbaik terdapat pada model DenseNet121 menunjukkan peningkatan akurasi total 99%, presisi total 99% dan sensitivitas total 99%. Pada model MobileNet menunjukkan peningkatan pada akurasi total 97%, presisi total 97% dan sensitivitas total 95% dan pada model ResNet50 menunjukkan peningkatan pada akurasi total 97%, presisi total 98% dan sensitivitas total 94%.

Coronavirus Disease 2019 (COVID-19) was first identified in Wuhan, China at the end of December 2019. COVID-19 is caused by a new coronavirus, namely The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since March 11, 2020, WHO has officially declared a COVID-19 pandemic. This COVID-19 infects the human respiratory tract, namely the alveolar epithelial cells of the lungs which causes pneumonia. With the help of methods from Deep learning, the Convolutional Neural Network (CNN) can be used to detect cases of COVID-19 through signs of pneumonia in Chest X-ray image data. Early detection of COVID-19 cases is important to minimize transmission and reduce the risk of patient death. Therefore, this study builds the CNN transfer learning model DenseNet121, MobileNet and ResNet50 with a pseudo-coloring (RGB) approach in classifying COVID-19 cases into three classes, namely: COVID-19 pneumonia, healthy and viral pneumonia. The pseudo-coloring (RGB) approach at the preprocessing stage by manipulating the colors in the Chest X-ray image data as a means to help improve accuracy, precision and sensitivity results. The evaluation results on the DenseNet121 model showed an increase in total accuracy of 99%, total precision of 99% and total sensitivity of 99%. The MobileNet model showed an increase in total accuracy of 97% , total precision of 97% and total sensitivity of 95% and the ResNet50 model showed an increase in total accuracy of 97%, total precision of 98% and total sensitivity of 94%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldi Hilman Ramadhani
"Penelitian ini memiliki tujuan untuk mencari model machine learning yang dapat mengenali kegiatan yang dilakukan pengguna ATM, serta mencari algoritma terbaik untuk mengetahui kapan suatu kegiatan pengguna ATM dimulai dan selesai pada suatu video. Terdapat sembilan jenis aktivitas berbeda yang ingin dideteksi. Penelitian ini dapat dibagi dalam dua fase, yaitu fase mencari rentang waktu aktivitas pada video yang disebut fase deteksi aktivitas, dan fase mengenali aktivitas tersebut yang disebut fase pengenalan aktivitas. Pada fase pengenalan aktivitas, penulis mengajukan suatu rancangan arsitektur 3D CNN, serta melakukan eksperimen terhadap parameter pada arsitektur tersebut. Setelah melakukan beberapa eksperimen, didapatkan model terbaik dengan kernel berukuran 3 x 3 x 3, menggunakan input video dengan piksel berukuran 20 x 20 per frame, dan menggunakan dua lapis layer ekstraksi fitur. Pada fase deteksi aktivitas, penulis mengajukan suatu rancangan fungsi deteksi aktivitas, yang mengikuti framework ‘classification lalu post-processing’ yang merupakan salah satu framework untuk deteksi aktivitas (Yao et al., 2018), serta melakukan eksperimen terhadap parameter pada fungsi tersebut. Setelah melakukan beberapa eksperimen, didapatkan performa terbaik dengan parameter teta sebesar 20, dan konstanta C sebesar 365. Pada kedua eksperimen tersebut, terdapat beberapa kesalahan yang dilakukan, sehingga diperlukan eksperimen lanjutan dimana kesalahan tersebut tidak dilakukan. Kesalahan tersebut adalah model kemungkinan besar masih underfit, dan terdapat permasalahan pada pemotongan video manual pada dataset. Setelah menyelesaikan kesalahan tersebut, model untuk fase pengenalan aktivitas mendapatkan akurasi sebesar 93.94%, presisi sebesar 96.36%, recall sebesar 93.94%, dan f-score sebesar 93.69%. Pada sisi lain, dalam fase deteksi aktivitas didapatkan akurasi sebesar 94.44%, presisi sebesar 96.30%, recall sebesar 96.30%, dan f-score sebesar 94.07%.

This research aims to find a machine learning model that can recognize the activities of ATM users, and find the best algorithm to find when each ATM user activity starts and finishes on a video. There are nine different types of activities that this study want to detect. This research can be divided into two phases, namely the phase of detecting for a time span of activity on a video that is called the activity detection phase, and the phase of recognizing that activity that is called the activity recognition phase. In the activity recognition phase, I propose a 3D CNN architecture design, and conduct experiments on the parameters of the architecture. After carrying out several experiments, the best model is obtained with a kernel with dimensions of 3 x 3 x 3, using video input with pixels measuring 20 x 20 per frame, and using two layers of feature extraction layer. In the activity detection phase, I propose an activity detection function, which follows the ‘classification then post-processing’ framework, which is one of the frameworks for activity detection (Yao et al., 2018), and conducts experiments on the parameters of the function. After carrying out several experiments, the best performance was obtained with a theta parameter of 20, and a constant C of 365. In both experiments, there were some errors made, so that further experiments were needed to be done, where the errors were not carried out. The error is that the model is most likely still in underfit phase, and there are problems with manual video clipping on the dataset. After resolving these errors, the model for the activity recognition phase gained an accuracy of 93.94%, a precision of 96.36%, a recall of 93.94%, and an f-score of 93.69%. On the other hand, in the activity detection phase an accuracy of 94.44% is obtained, a precision of 96.30%, a recall of 94.44%, and an f-score of 94.07%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>