Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183883 dokumen yang sesuai dengan query
cover
Andi Suciati
"Ulasan dapat mempengaruhi orang-orang dalam mengambil keputusan karena orang-orang dapat mengetahui ulasan yang diberikan merupakan ulasan positif atau negatif. Namun, sentimen positif, negatif, atau netral, tanpa mempertimbangkan emosi yang ada dianggap kurang, karena emosi dapat memperkuat hasil sentimen. Tesis ini membahas perbandingan antara machine learning dan deep learning dalam mengklasifikasikan sentimen dan emosi pada ulasan dengan metode klasifikasi multi-label. Pada perbandingan machine learning, digunakan metode transformasi masalah Label Powerset (LP), Binary Relevance (BR), dan Classifier Chain (CC), serta algoritma Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), dan Extra Tree Classifier (ET). Fitur yang dibandingkan yaitu n-gram language model (unigram, bigram, unigram-bigram). Untuk deep learning, algoritma yang dibandingkan yaitu Gated Recurrent Unit (GRU) dan Bidirectional Long Short-Term Memory (BiLSTM), menggunakan word embedding yang dibangun sendiri. Hasil perbandingan menunjukkan bahwa RF unggul dengan nilai F1-score 88.4% dan 89.54% dengan metode CC untuk aspek makanan, dan LP untuk harga. Untuk aspek pelayanan dan suasana, ET memimpin dengan 92.65% dan 87.1% dengan metode LP dan CC berturut-turut. Sedangkan pada perbandingan deep learning, GRU dan BiLSTM mendapatkan nilai F1-score yang sama untuk aspek makanan, 88.16%. Pada aspek harga, GRU memimpin dengan 83.01%. Namun untuk pelayanan, dan suasana, BiLSTM mendapatkan nilai lebih tinggi dengan F1-score.

Review can affect the decision making from people because people can know whether the review is positive, or negative. However, the sentimen positive, neagtive, and neutral, without considering the emotion is considered not enough because emotion can strenghten the sentimen result. This thesis explaining about the comparison of machine learning and deep learning in sentiment as well as emotion classification with multi-label classification. In machine learning comparion, the problem transformation that were used are Label Powerset (LP), Binary Relevance (BR), and Classifier Chain (CC), with Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extra Tree Classifier (ET) as algorithms. The features that compared are yaitu n-gram language model (unigram, bigram, unigram-bigram). For deep learning, algorithms that were compared are Gated Recurrent Unit (GRU) and Bidirectional Long Short-Term Memory (BiLSTM), using self-developed word embedding. The comparion results RF dominates with F1-score 88.4% and 89.54% with CC method for food aspect, and LP for price. For service and ambience aspect, ET leads with 92.65% and 87.1% with LP and CC methods, respectively. On the other hand, in deep learning comparison, GRU and BiLSTM obtained similar F1- score for food aspect, 88.16%. On price aspect, GRU leads 83.01%. However, for service and ambience BiLSTM obtained higher F1-score 89.03% and 84.78%"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Timotius Victory
"Pengguna media sosial di Indonesia merupakan salah satu yang terbanyak di dunia. Hal ini mendorong pemilik produk atau layanan menggunakan media sosial sebagai saluran utama untuk penjualan dan layanan pelanggan. Masyarakat Indonesia cenderung mencari ulasan online sebelum memutuskan pembelian, sehingga ulasan pengguna sangat mempengaruhi keputusan pembelian dan keberhasilan bisnis. Oleh karena itu, pemilik produk dan layanan harus cepat tanggap terhadap sentimen ulasan pengguna untuk mempertahankan reputasi dan menghindari penurunan penjualan. Analisis sentimen adalah salah satu cara untuk mengetahui sentimen terhadap produk atau layanan. Terdapat pendekatan machine learning dan deep learning dalam analisis sentimen. Penggunaan machine learning pada analisis sentimen ulasan pengguna berbahasa Indonesia telah banyak dilakukan, namun eksplorasi dalam bidang deep learning masih jarang ditemukan. Penelitian ini menggunakan model CNN-BiLSTM dan BiLSTM-CNN yang dibandingkan dengan logistic regression, support vector machine, dan naïve bayes. Pada skenario pertama, analisis ulasan pengguna di Traveloka menunjukkan model BiLSTM-CNN dengan Precision tertinggi 85% dan AUC 82.14%, serta model Support Vector Machine (SVM) dengan Accuracy 83.25% dan F1-Score 86.53%. Pada skenario kedua, analisis ulasan pengguna provider telekomunikasi menunjukkan SVM sebagai yang terbaik dengan Accuracy 78.15%, Precision 68.78%, F1-Score 76.33%, dan AUC 77.36%. Dari hasil ini, model machine learning lebih unggul dibandingkan deep learning.

Social media users in Indonesia are among the largest in the world. This drives product or service owners to use social media as the main channel for sales and customer service. Indonesian consumers tend to look for online reviews before making a purchase decision, so user reviews greatly influence purchasing decisions and business success. Therefore, product and service owners must quickly respond to user review sentiments to maintain reputation and avoid sales decline. Sentiment analysis is one way to understand the sentiment towards a product or service. There are machine learning and deep learning approaches in sentiment analysis. The use of machine learning in sentiment analysis of user reviews in Indonesian has been widely conducted, but exploration in the field of deep learning is still rarely found. This study uses CNN-BiLSTM and BiLSTM-CNN models compared to logistic regression, support vector machine, and naïve bayes. In the first scenario, analysis of user reviews on Traveloka shows the BiLSTM-CNN model with the highest Precision of 85% and AUC of 82.14%, and the Support Vector Machine (SVM) model with an Accuracy of 83.25% and F1-Score of 86.53%. In the second scenario, analysis of user reviews of telecommunications providers shows SVM as the best with an Accuracy of 78.15%, Precision of 68.78%, F1-Score of 76.33%, and AUC of 77.36%. From these results, machine learning models outperform deep learning models."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Azizah Zuhriya Nurmadina
"Model deep learning adalah model dengan banyak lapisan jaringan saraf tiruan. Model Bidirectional Gated Recurrent Unit (BiGRU) adalah salah satu jenis model deep learning yang memproses urutan data dalam dua arah, yaitu arah maju dan arah mundur. Hal tersebut memungkinkan model BiGRU untuk mengakses informasi masa depan dan masa lalu dari setiap titik dalam urutan data untuk pemahaman konteks yang lebih baik. Model BiGRU dapat digunakan untuk analisis sentimen, yaitu proses mengategorikan sentimen opini dalam teks menjadi negatif, netral, atau positif. Representasi teks yang digunakan pada penelitian ini adalah Bidirectional Encoder Representations from Transformers (BERT) karena kemampuannya memahami kata secara kontekstual sehingga meningkatkan akurasi. Salah satu masalah umum pada analisis sentimen adalah ketidakseimbangan data Penggunaan data tidak seimbang mempengaruhi kinerja model dalam melakukan klasifikasi sentimen karena bias terhadap kelas mayoritas. Oleh karena itu, penggunaan Synthetic Minority Oversampling Technique (SMOTE) dalam mengatasi ketidakseimbangan kelas pada data dilakukan pada penelitian ini. SMOTE digunakan untuk melakukan oversampling pada data kelas minoritas dan dipasangkan dengan model BiGRU yang menggunakan fungsi kerugian categorical cross entropy menghasilkan kinerja dengan nilai akurasi sebesar 85,52% yang merupakan akurasi tertinggi dibandingkan dengan daripadamodel BiGRU dengan fungsi kerugian categorical cross entropy tanpa penanganan SMOTE (model standar dalam penelitian ini) dan model BiGRU dengan fungsi kerugian weighted cross entropy yang dibangun untuk memperkuat bukti bahwa model yang diajukan adalah model terbaik.

Deep learning models are models with multiple layers of artificial neural networks. The Bidirectional Gated Recurrent Unit (BiGRU) model is one type of deep learning model that processes data sequences in two directions, the forward direction and the backward direction. This allows the BiGRU model to access future and past information from each point in the data sequence for better context understanding. The BiGRU model can be used for sentiment analysis, which is the process of categorizing the sentiment of opinions in text into negative, neutral, or positive. The text representation used in this research is Bidirectional Encoder Representations from Transformers (BERT) because of its ability to understand words contextually to increase accuracy. One of the common problems in sentiment analysis is data imbalance. The use of unbalanced data affects the performance of the model in performing sentiment classification due to bias towards the majority class. Therefore, the use of Synthetic Minority Oversampling Technique (SMOTE) in overcoming class imbalance in the data is done in this study. SMOTE is used to perform oversampling on minority class data and paired with the BiGRU model using the categorical cross entropy loss function results in performance with an accuracy value of 85.52% which is the highest accuracy compared to the BiGRU model with the categorical cross entropy loss function without SMOTE handling (the standard model in this study) and the BiGRU model with the weighted cross entropy loss function built to strengthen the evidence that the proposed model is the best model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Safitri
"Pemilihan metode machine learning atau deep learning menjadi suatu permasalahan dalam klasifikasi. Hal ini didapatkan dari penelitian yang menunjukkan bahwa deep learning kinerjanya lebih baik daripada machine learning, namun terdapat penelitian bahwa kedua metode tersebut kinerjanya tidak menentu tergantung dataset yang digunakan. Oleh karena itu, penelitian ini membandingkan kinerja dari machine learning dan deep learning untuk permasalahan klasifikasi teks dan analisis sentimen terhadap dampak Covid-19 di Indonesia. Hasil penelitian ini menunjukkan bahwa kinerja pada klasifikasi teks dan analisis sentimen menggunakan metode machine learning lebih baik dibandingkan dengan deep learning. Hasil penelitian mengenai klasifikasi teks menunjukkan bahwa kinerja metode machine learning yaitu Label Powerset dan Random Forest menghasilkan akurasi 77 % sedangkan kinerja metode deep learning yaitu Long Short-Term Memory (LSTM) dan Gate Reccurent Unit (GRU) menghasilkan akurasi 48%. Hasil penelitian mengenai analisis sentimen menunjukkan bahwa kinerja metode machine learning yaitu Label Powerset dan Random Forest menghasilkan akurasi 63 % sedangkan kinerja metode deep learning yaitu Long Short-Term Memory (LSTM) dan Gate Reccurent Unit (GRU) menghasilkan akurasi 55% dan 54%. Keseimbangan jumlah label pada semua label mempengaruhi hasil dari klasifikasi. Oleh karena itu, disarankan untuk menggunakan metode untuk menyeimbangkan jumlah label yang digunakan untuk klasifikasi.

The choice of machine learning or deep learning methods becomes a problem in classification. This is obtained from research which shows that deep learning performs better than machine learning, but there is research that the two methods perform erratically depending on the dataset used. Therefore, this study compares the performance of machine learning and deep learning for text classification problems and sentiment analysis on the impact of Covid-19 in Indonesia. The results of this study indicate that the performance of text classification and sentiment analysis using machine learning methods is better than deep learning. The results of research on text classification show that the performance of machine learning methods, namely Label Power and Random Forest, produces an accuracy of 77%, while the performance of deep learning methods, namely Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU), produces an accuracy of 48%. The results of the research on sentiment analysis show that the performance of machine learning methods, namely Label Power and Random Forest, produces an accuracy of 63%, while the performance of deep learning methods, namely Long Short-Term Memory (LSTM) and Gate Recurrent Unit (GRU), produces 55% and 54% accuracy. The balance of the number of labels on all labels affects the results of the classification. Therefore, it is advisable to use a method to balance the number of labels used for classification."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suci Fitriyani
"Analisis sentimen merupakan studi komputasi untuk menganalisis opini seseorang terhadap suatu entitas yang diekspresikan dalam sebuah teks. Tersedia cukup banyak model machine learning terutama deep learning yang dapat digunakan untuk melakukan analisis sentimen seperti Convolutional Neural Network (CNN) dan Bidirectional Long Short-Term Memory (BiLSTM). Pada dasarnya, model deep learning tidak dapat memproses langsung sebuah data dalam bentuk teks sehingga diperlukan metode untuk mentransformasi teks menjadi tensor numerik seperti word embedding. Pada penelitian ini, diajukan model gabungan CNN-BiLSTM dengan word embedding fastText untuk melakukan analisis sentimen. Model tersebut dilatih menggunakan data tweet berbahasa Indonesia tentang opini masyarakat mengenai rencana subsidi pembelian kendaraan listrik di Indonesia. Data tersebut diklasifikasikan menjadi sentimen positif, negatif, dan netral dan ditemukan bahwa komposisi dari ketiga sentimen tersebut tidaklah seimbang (imbalanced dataset) dimana kelas positif memiliki lebih sedikit data dibanding kelaskelas lainnya. Untuk mengatasi masalah tersebut, digunakan metode resampling SMOTE agar jumlah data pada kelas positif dapat mengimbangi kelas lainnya. Model fastTextCNN-BiLSTM diukur performanya dengan melihat nilai akurasi, precision, recall, dan f1-score. Dari hasil penelitian didapat bahwa model gabungan CNN-BiLSTM memberikan nilai akurasi, precision, recall, dan f1-score yang paling baik dibanding model CNN dan BiLSTM saja. Model-model yang menggunakan word embedding fastText juga memberikan performa yang lebih baik dibanding model tanpa fastText (menggunakan word embedding standar). Secara keseluruhan, model gabungan fastTextCNN-BiLSTM ditemukan memiliki performa yang lebih baik dibandingkan dengan model-model lainnya.

Sentiment analysis is a computational study to analyze person’s opinion about an entity expressed in text. There are several machine learning models, especially deep learning models that can be used for sentiment analysis, such as Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM). Essentially, deep learning models cannot directly process textual data and they need a method to transform text into numerical tensors such as word embedding. In this research, a hybrid model CNN-BiLSTM with fastText word embedding is proposed for sentiment analysis. The model is trained using Indonesian tweets data regarding public opinions on the plan for subsidizing the purchase of electric vehicles in Indonesia. The data is classified into positive, negative, and neutral sentiments, and it is found that the composition of these sentiments is imbalanced, with the positive class having fewer data compared to the other classes. To address this issue, the SMOTE resampling method is used to balance the data in the positive class with the other classes. The performance of the fastText-CNNBiLSTM model is measured by accuracy, precision, recall, and f1-score. The research results show that the hybrid model CNN-BiLSTM achieves the highest accuracy, precision, recall, and f1-score compared to the single models CNN and BiLSTM. Models with fastText word embedding also outperform models without fastText (with standard word embedding). Overall, the hybrid model fastText-CNN-BiLSTM is found to outperform other models in terms of performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maranatha Florensia Wijaya
"Analisis sentimen merupakan bidang studi yang menganalisis pendapat seseorang terhadap suatu entitas untuk mencari polaritas sentimennya. Potensi manfaat yang besar didukung dengan ketersediaan data teks beropini yang melimpah di internet memicu dikembangkannya model yang mampu melakukan analisis sentimen secara otomatis dan seakurat mungkin. Dua diantaranya adalah Long Short-Term Memory (LSTM) dan Convolutional Neural Network (CNN) yang merupakan arsitektur deep learning. LSTM digunakan karena dapat menangkap aliran informasi pada kalimat, sedangkan CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dari tiap penggalan kalimat atau region. Kedua model ini dapat digabungkan menjadi model gabungan LSTM-CNN yang telah terbukti mampu meningkatkan akurasi model. Penelitian ini kemudian akan mengajukan modifikasi pada model gabungan LSTM-CNN dengan mengganti LSTM menjadi Bidirectional LSTM (BiLSTM) dan CNN menjadi CNN Multi Region Size CNNMRS sehingga terbentuk tiga model modifikasi yaitu BiLSTM-CNN, LSTM-CNNMRS, dan BiLSTM-CNNMRS. Implementasi model, baik untuk model gabungan LSTM-CNN standar maupun model modifikasi, dilakukan pada data tweets berbahasa Indonesia. Hasilnya, didapatkan kesimpulan bahwa penggunaan BiLSTM untuk menggantikan LSTM pada model gabungan LSTM CNN tidak meningkatkan akurasi dari model. Hal berbeda didapatkan dari penggunaan CNNMRS untuk menggantikan CNN yang memberikan peningkatan akurasi pada model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Guna Mandhasiya
"Ilmu Data adalah irisan dari matematika dan statistika, komputer, serta keahlian domain. Dalam beberapa tahun terakhir inovasi pada bidang ilmu data berkembang sangat pesat, seperti Artificial Intelligence (AI) yang telah banyak membantu kehidupan manusia. Deep Learning (DL) sebagai bagian dari AI merupakan pengembangan dari salah satu model machine learning yaitu neural network. Dengan banyaknya jumlah lapisan neural network, model deep learning mampu melakukan proses ekstrasi fitur dan klasifikasi dalam satu arsitektur. Model ini telah terbukti mengungguli teknik state-of-the-art machine learning di beberapa bidang seperti pengenalan pola, suara, citra, dan klasifikasi teks. Model deep learning telah melampaui pendekatan berbasis AI dalam berbagai tugas klasifikasi teks, termasuk analisis sentimen. Data teks dapat berasal dari berbagai sumber, seperti sumber dari media sosial. Analisis sentimen atau opinion mining merupakan salah satu studi komputasi yang menganalisis opini dan emosi yang diekspresikan pada teks. Pada penelitian ini analisis peforma machine learning dilakukan pada metode deep learning berbasis representasi data BERT dengan metode CNN dan LSTM serta metode hybrid deep learning CNN-LSTM dan LSTM-CNN. Implementasi model menggunakan data komentar youtube pada video politik dengan topik terkait Pilpres 2024, kemudian evaluasi peforma dilakukan menggunakan confusion metric berupa akurasi, presisi, dan recall.

Data Science is the intersection of mathematics and statistics, computing, and a domain of expertise. In recent years innovation in the field of data science has developed very rapidly, such as Artificial Intelligence (AI) which helped a lot in human life. Deep Learning (DL) as part of AI is the development of one of the machine learning models, namely neural network. With the large number of neural network layers, deep learning models are capable of performing feature extraction and classification processes in a single architecture. This model has proven to outperform state-of-the-art machine learning techniques in areas such as pattern recognition, speech, imagery, and text classification. Deep learning models have gone beyond AI-based approaches in a variety of text classification task, including sentiment analysis. Text data can come from various sources, such as source from social media. Sentiment analysis or opinion mining is a computational study that analyze opinions and emotions expressed in text. In this research, machine learning performance analysis is carried out on a deep learning method based on BERT data representation with the CNN and LSTM and hybrid deep learning CNN-LSTM and LSTM-CNN method. The implementation of the model uses YouTube commentary data on political videos related to the 2024 Indonesia presidential election, then performance analysis is carried out using confusion metrics in the form of accuracy, precision, and recall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syach Riyan Muhammad Ardiyansyah
"Pendeteksian topik merupakan sebuah proses dalam menganalisis data teks untuk menemukan sebuah topik-topik yang ada pada data teks. Pada era digital saat ini, pendeteksian topik sering digunakan untuk menganalisis topik dan mengelompokkan informasi berdasarkan topiknya. Machine learning membantu proses pendeteksian topik menjadi lebih cepat dan efisien, terutama pada data teks dengan ukuran data yang besar. Salah satu metode machine learning yang dapat digunakan untuk pendeteksian topik adalah metode clustering. Namun karena dimensi data yang tinggi membuat beberapa metode clustering kurang efektif menyelesaikan pendeteksian topik. Untuk mengatasi hal tersebut data yang memiliki ukuran dimensi yang cukup tinggi perlu dilakukan proses reduksi dimensi terlebih dahulu. Improved Deep Embedded Clustering (IDEC) merupakan sebuah metode clustering yang secara bersamaan melakukan reduksi dimensi data dan clustering. Oleh karena itu, pada penelitian ini dilakukan pendeteksian topik dengan metode clustering IDEC. Data yang digunakan pada penelitian ini merupakan data berita online AG News, Yahoo! Answer, dan R2. Namun pada metode IDEC, data teks tidak bisa langsung menerima input berupa data teks. Data teks perlu diubah menjadi vektor representasi yang dapat diterima input. Pada penelitian ini digunakan metode representasi teks Bidirectional Encoder Representation from Transformers (BERT). Data teks mula-mula akan diubah oleh BERT menjadi vektor representasi, setelah itu vektor representasi akan diterima dan dilakukan pendeteksian topik oleh metode IDEC. Kemudian pada proses simulasi dilakukan perbandingan kinerja model IDEC dengan representasi teks BERT dan model IDEC dengan representasi teks TF-IDF. Didapatkan hasil simulasi dari kinerja model IDEC dengan representasi teks BERT memiliki kinerja yang lebih unggul dibandingkan dengan model IDEC dengan representasi teks TF-IDF

Topic detection is a process in analyzing text data to find topics that exist in text data. In today's digital era, topic detection is often used to analyze topics and grouping the information by topic. Machine learning helps the topic detection process to be faster and more efficient, especially in text data with large data sizes. One of the machine learning methods that can be used for topic detection is the clustering method. However, because the high data dimensions make some clustering methods less effective in completing topic detection. To overcome this, data that has a sufficiently high dimension size needs to be carried out in a dimension reduction process first. Improved Deep Embedded Clustering (IDEC) is a clustering method that simultaneously performs data dimension reduction and clustering. Therefore, in this study, topic detection was carried out using the IDEC clustering method. The data used in this study is the online news data of AG News, Yahoo! Answer, and R2. However, in the IDEC method, text data cannot directly receive input in the form of text data. Text data needs to be converted into a vector representation that can accept input. In this study, the Bidirectional Encoder Representation from Transformers (BERT) text representation method was used. The text data will first be converted by BERT into a vector representation, after that the vector representation will be accepted and topic detection will be carried out by the IDEC method. Then the simulation process compares the performance of the IDEC model with the BERT text representation and the IDEC model with the TF-IDF text representation. The simulation results obtained from the performance of the IDEC model with the text representation of BERT which has superior performance compared to the IDEC model with the text representation of TF-IDF."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hartina Hiromi Satyanegara
"Serangan MitM ini memiliki dampak yang cukup besar dan dapat membuka jalan untuk serangan selanjutnya, seperti Phishing. Penelitian ini membahas tentang pendekatan metode hybrid deep learning yang dapat membantu pendeteksian serangan MitM secara efektif. Metode hybrid deep learning yang digunakan dalam penelitian ini adalah CNN-MLP dan CNN-LSTM, yaitu merupakan gabungan dari CNN, MLP, dan LSTM. Selain itu, dalam skenario eksperimennya menggunakan berbagai metode feature scaling (StandardScaler, MinMaxScaler, dan MaxAbsScaler) dan tanpa menggunakan metode feature scaling sebelum melakukan pemodelan, yang kemudian akan ditentukan metode hybrid deep learning yang terbaik untuk mendeteksi serangan MitM dengan baik. Dataset yang digunakan dalam penelitian ini yaitu Kitsune Network Attack Dataset (ARP MitM Ettercap). Hasil dari penelitian ini yaitu metode CNN-MLP dengan 10 epoch menggunakan MaxAbsScaler memiliki nilai accuracy tertinggi, yaitu 99.93%. Pada urutan kedua, CNN-MLP dengan 10 epoch menggunakan StandardScaler memiliki nilai accuracy sebesar 99.89%.

Man in the Middle (MitM) has a sizeable impact because it could make the attackers will do another attacks, such as Phishing. This research is discussing about hybrid deep learning methods-approach on detecting MitM attacks effectively. We were used 2 (two) combinations of the Deep Learning methods (CNN, MLP, and LSTM), which are CNN-MLP and CNN-LSTM. Besides that, in the experiment scenarios, we also used various Feature Scaling methods (StandardScaler, MinMaxScaler, and MaxAbsScaler) and without using any Feature Scaling methods before building the models and will determine the better hybrid Deep Learning methods for detecting MitM attack. Kitsune Network Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results of this research proves that CNN-MLP that with 10 epoch using MaxAbsScaler has the highest accuracy rate of 99.93%. In second place, CNN-MLP with 10 epoch using StandardScaler has the accuracy rate of 99.89%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>