Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 92395 dokumen yang sesuai dengan query
cover
Aji Bimantoro
"Tanaman padi merupakan salah satu tanaman pangan terpenting di dunia terutama di negara-negara bagian Southeast Asia. Jumlah penduduk di dunia pun semakin meningkat setiap tahunnya sehingga kebutuhan akan makanan pokok seperti beras juga akan semakin meningkat. Namun karena adanya serangan hama dan penyakit pada tanaman padi menyebabkan kualitas dan kuantitas pada tanaman padi menurun sehingga terjadi kerugian besar dalam produksi beras. Untuk mengatasi masalah tersebut, pendeteksian penyakit pada tanaman padi menjadi sangat penting karena dapat mencegah terjadinya penurunan produksi beras. Oleh karena ini, pemrosesan data citra dan machine learning bisa menjadi salah satu cara untuk membantu mempercepat diagnosis penyakit pada tanaman padi. Pada penelitian ini, penulis menggunakan pendekatan deep learning yaitu metode Convolutional Neural Network (CNN) dengan arsitektur Xception untuk mengklasifikasi penyakit pada tanaman padi menggunakan citra daun. Data citra daun tanaman padi yang digunakan dalam penelitian ini adalah Rice Leaf Disease Image Samples yang diambil dari online database mendeley yang berisi 5932 data citra yang terdiri dari empat jenis penyakit daun padi yaitu penyakit hawar daun (Bacterial leaf blight), penyakit blas (Blast), penyakit bercak daun cokelat (brown spot), dan penyakit Tungro. Penulis melakukan tahap preprocessing sepeti crop dan resize agar ukuran citra sesuai dengan input pada model. Selanjutnya, Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur Xception. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, precision, dan running time. Rata-rata Accuracy, recall, dan precision yang dilakukan dalam 5 kali percobaan didapatkan pada split data 70:30 adalah masing-masing 99.708%, 99.707 %, dan 99.728% dan pada split data 80:20 masingmasing 99,662%, 99,688%, dan 99,687%. Running time yang didapatkan pada split data 70:30 adalah 43 menit dan pada split data 80:20 adalah 49 menit.

Rice is one of the most important food crops in the world, especially in Southeast Asian countries. The world's population is increasing every year so that the need for staple foods such as rice will also increase. However, due to pest and disease attacks on rice plants, the quality and quantity of rice plants decreases, resulting in huge losses in rice production. To overcome this problem, disease detection in rice plants is very important because it can prevent a decrease in rice production. For this reason, looking at image data and machine learning can be one way to help encourage disease diagnosis in rice plants. In this study, the author uses a deep learning approach, namely the Convolutional Neural Network (CNN) method with Xception architecture to classify diseases in rice plants using leaf imagery. The rice leaf image data used in this study is the Rice Leaf Disease Image Sample taken from the online mendeley database which contains 5932 image data consisting of four types of rice leaf disease, namely bacterial leaf blight and blast disease. , brown leaf spot disease (brown spot), and Tungro disease. The author performs preprocessing stages such as cropping and resizing so that the image size matches the input in the model. Furthermore, the model that will be built through the data uses the CNN method with the Xception architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. Value Performance Model with values of accuracy, recall, precision, and running time. The average accuracy, recall, and precision carried out in 5 trials at the 70:30 data split were 99.708%, 99.707%, and 99.728%, respectively, and in the 80:20 data split they were 99.662%, 99.688%, respectively, and 99.687%. The running time obtained in the 70:30 data split is 43 minutes and the 80:20 data split is 49 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rina Meidyana
"Kanker payudara adalah sekelompok penyakit di mana sel-sel di jaringan payudara berubah dan membelah secara tidak terkendali, yang biasanya menghasilkan benjolan atau massa. World Health Organization (WHO) telah merilis data dari Global Burden of Cancer (GLOBOCAN) yang menyebutkan bahwa jumlah kasus dan kematian akibat kanker payudara diperkirakan terus meningkat hingga lebih dari 13,1 juta pada tahun 2030. Salah satu metode yang menjadi gold standard dalam mendiagnosis kanker payudara adalah melalui pemeriksaan histopatologi, yang melibatkan pengambilan jaringan utuh melalui operasi, biopsi atau kerokan untuk menentukan jenis tumor payudara baik ganas ataupun jinak. Pemeriksaan ini berfungsi untuk melihat perubahan morfologi sel dari jaringan dengan metode paraffin. Metode machine learning dan deep learning berperan penting dalam klasifikasi kanker payudara. Belakangan ini, metode deep learning telah mengalami kemajuan yang besar dan kinerja yang baik dalam visi computer dan pemrosesan gambar yang diterapkan dalam metode klasifikasi pada citra gambar histopatologi. Dalam penelitian ini, penulis mengklasifikasi dua kelas pada kanker payudara menggunakan metode Xtreme of Inception (Xception) pada data citra histopatologi menjadi dua kelas, yaitu kelas jinak dan kelas ganas, yang terbagi menjadi dua kasus, dimana kasus 1 memiliki rasio pemisah data dimana data training : validation : testing sebesar 8:1:1 dan kasus kedua memiliki rasio 7:2:1. Dari hasil simulasi yang telah dilakukan, diperoleh hasil evaluasi dari kedua kasus penelitian bahwa pada evaluasi training model, kasus 1 memiliki hasil terbaik dimana pemisah data memiliki rasio 8:1:1 yang memiliki rata-rata accuracy 98,11%, validation 98,45% serta running time 663027.5772 ms. Seperti halnya pada evaluasi training model, pada evaluasi testing model kasus 1 dengan rasio pemisah data 8:1:1 memiliki hasil terbaik yaitu precision 96,56%, recall 99,55%, accuracy 99,55% serta running time 607,6727 ms.

Breast cancer is a group of diseases in which cells in the breast tissue change and divide uncontrollably, which usually results in a lump or mass. The World Health Organization (WHO) has released data from the Global Burden of Cancer (GLOBOCAN) which states that the number of cases and deaths from breast cancer is expected to continue to increase to more than 13.1 million in 2030. One of the methods that has become the gold standard in diagnosing Breast cancer is through histopathological examination, which involves taking intact tissue through surgery, biopsy or scraping to determine the type of breast tumor whether malignant or benign. This examination serves to see changes in cell morphology of tissues with the paraffin method. Machine learning and deep learning methods play an important role in breast cancer classification. Recently, deep learning methods have experienced great progress and good performance in computer vision and image processing applied in classification methods on histopathological images. In this study, the authors classified two classes of breast cancer using the Xtreme of Inception (Xception) method on histopathological image data into two classes, namely the benign class and the malignant class, which were divided into two cases, where case 1 had a data separator ratio where the training data : validation : testing is 8:1:1 and the second case has a ratio of 7:2:1. From the simulation results that have been carried out, the evaluation results of the two research cases show that in the training model evaluation, case 1 has the best results where the data separator has a ratio of 8:1:1 which has an average accuracy of 98.11%, validation of 98.45 % and running time 663027.5772 ms. As with the evaluation of the training model, the evaluation of testing model case 1 with a data separation ratio of 8:1:1 has the best results, namely 96.56% precision, 99.55% recall, 99.55% accuracy and 607.6727 ms running time."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rangga Buwana
"Penyakit mata kering adalah suatu kondisi yang bersifat multifaktorial kronis yang sering terjadi pada permukaan mata. Mata kering diklasifikasikan menjadi dua, yaitu mata kering defisiensi aqueous dan mata kering evaporatif. Penyakit mata kering evaporatif yang disebabkan oleh disfungsi kelenjar meibom sudah terjadi pada lebih dari 85% kasus penyakit mata kering. Disfungsi kelenjar meibom adalah kelainan difus dan kronis dari kelenjar meibom yang umumnya ditandai dengan adanya perubahan kualitatif atau kuantitatif dalam sekresi kelenjar. Area kerusakan pada kelenjar meibom dibagi menjadi 4 tingkat atau skala, yaitu normal (meiboscore 0), meiboscore 1, meiboscore 2, dan meiboscore 3. Proses dalam mendiagnosis penyakit mata kering masih dilakukan secara subjektif oleh tenaga medis, hal tersebut dapat mengakibatkan perbedaan dalam menilai tingkat disfungsi kelenjar meibom. Penulis menggunakan data science untuk mendiagnosis penyakit mata kering dengan melakukan pendekatan Artificial Intelligence (AI) yang di dalamnya terdapat metode deep learning. Pada penelitian ini, penulis melakukan klasifikasi pada data citra yang merupakan hasil segmentasi model U-Net dengan 4 kelas skala meiboscore menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur ResNet50. Data citra yang digunakan pada penelitian ini adalah sebanyak 417 data citra yang dilatih menggunakan ResNet50 dengan epoch sebanyak 30 dan learning rate sebesar 0,001. Pembagian data dilakukan dengan masing-masing data training, data testing, dan data validation sebanyak 80%, 20%, dan 10% dari data training. Dari hasil simulasi, diperoleh masing-masing nilai rata-rata akurasi dan AUC adalah 92,62% dan 0,99 dengan running time yang didapat selama 1,8 detik.

Dry eye disease is a chronic multifactorial condition that often occurs on the ocular surface. Dry eye is classified into two, namely aqueous deficiency dry eye and evaporative dry eye. Evaporative dry eye disease caused by meibomian gland dysfunction already occurs in more than 85% of dry eye disease cases. Meibomian gland dysfunction is a diffuse and chronic disorder of the meibomian glands that is generally characterized by qualitative or quantitative changes in glandular secretions. The area of damage to the meibomian glands is divided into 4 levels or scales, namely normal (meiboscore 0), meiboscore 1, meiboscore 2, and meiboscore 3. The process of diagnosing dry eye disease is still done subjectively by medical personnel, which can lead to differences in assessing the level of meibomian gland dysfunction. The author uses data science to diagnose dry eye disease by taking an Artificial Intelligence (AI) approach in which there is a deep learning method. In this research, the author classifies image data which is the result of segmentation of the U-Net model with 4 classes of meiboscore scale using the Convolutional Neural Network (CNN) method with ResNet50 architecture. The image data used in this research is 417 image data trained using ResNet50 with 30 epochs and a learning rate of 0.001. Data division is done with each training data, testing data, and validation data as much as 80%, 20%, and 10% of the training data. From the simulation results, the average accuracy and AUC values are 92.62% and 0.99 respectively with a running time of 1.8 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fakhry Firdausi
"Tanaman padi (Oryza Sativa) telah menjadi sumber pangan pokok bagi masyarakat Indonesia selama ribuan tahun. Dengan seiring bertambahnya jumlah masyarakat di Indonesia setiap tahunnya, tentunya kebutuhan akan tanaman padi semakin meningkat. Oleh karena itu, perlu adanya pemanfaatan teknologi untuk meningkatkan produksi serta mempertahankan kualitas padi untuk mempertahankan kualitas padi untuk memenu kebutuhan pangan masyarakat Indonesia. Penyakit yang umum menyerang tanaman padi di Indonesia adalah penyakit blas (blast), hawar daun (blight) dan tungro. Dalam penelitian ini, penulis menggunakan transfer learning dengan model DenseNet201 dan ResNet-50 untuk mengklasifikasi penyakit tanaman padi pada citra daun secara akurat. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi 240 citra daun tanaman padi dengan 3 penyakit yang berupa penyakit blas (blast), hawar daun (blight) dan tungro. Selanjutnya, penulis menggunakan teknik preprocessing seperti resizing dan normalization serta berbagai macam teknik augmentasi seperti rotasi, zoom dan lain-lain untuk meningkatkan kinerja model dalam mengklasifikasi penyakit tanaman padi. Hasil penelitian ini menunjukkan bahwa model DenseNet201 memiliki kinerja yang jauh lebih baik dibandingkan dengan model ResNet-50 dalam mengklasifikasi penyakit tanaman padi. Evaluasi dari kinerja model dilihat dari nilai akurasi serta running time dimana model DenseNet201 memiliki akurasi testing sebesar 93,34% dan running time pada tahap training selama 74,7083 detik.

Rice (Oryza sativa) has been a staple food source for Indonesian people for thousands of years. With the increasing number of people in Indonesia every year, of course the need for rice plants is increasing. Therefore, it is necessary to use technology to increase production and maintain the quality of rice to maintain the quality of rice to meet the food needs of the Indonesian people. Diseases that commonly attack rice plants in Indonesia are blast, leaf blight and tungro disease. In this study, the authors used transfer learning with DenseNet201 and ResNet-50 models to classify rice plant diseases on leaf images accurately. The data used in this study were taken from an online database containing 240 images of rice leaves with 3 diseases, namely blast, blight and tungro. Furthermore, the authors use preprocessing techniques such as resizing and normalization as well as various kinds of augmentation techniques such as rotation, zoom and others to improve the performance of the model in classifying rice plant diseases. The results of this study indicate that the DenseNet201 model has a much better performance than the ResNet-50 model in classifying rice plant diseases. Evaluation of the model's performance is seen from the accuracy value and running time where the DenseNet201 model has a testing accuracy of 93.34% and the running time at the training stage is 74.7083 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shinta Aprilia Safitri
"Pola konsumsi pangan masyarakat Indonesia saat ini telah beralih dari sekedar pemenuhan kebutuhan dasar menjadi pola konsumsi makanan sehat yang disebut sebagai pangan fungsional. Beras berpigmen masuk kedalam jenis makanan fungsional karena mengandung banyak antioksidan yang berasal dari antosianin. Namun beras berpigmen dinilai mudah apek jika disimpan terlalu lama. Teknologi iradiasi dapat digunakan untuk mengawetkan makanan secara aman dan efektif sehingga dapat memperpanjang umur simpannya. Penyinaran radiasi gamma dengan dosis tertentu dapat menyebabkan terjadinya perubahan komposisi nutrisi yang terkandung dalam beras. Sehingga perlu dilakukan pengukuran kandungan nutrisi beras berpigmen pasca iradiasi untuk menjamin kesesuaian gizi pada beras tersebut.  Penelitian ini dilakukan untuk membangun sistem multi-output yang mampu memprediksi kadar total antosianin dan kadar air pada beras berpigmen teriradiasi berbasis pencitraan hiperspektral. Evaluasi model dilakukan dengan menghitung nilai root mean square error (RMSE) dan koefisien determinasi R2 dari model multi-output dan membandingkan performanya dengan model single-output. Hasilnya didapatkan bahwa model multi-output Spectral Xception mampu melakukan prediksi yang sangat baik dengan performa pengujian kadar total antosianin menghasilkan nilai RMSE sebesar 0,9105 dan R2 sebesar 0,9963, serta pengujian kadar air bernilai RMSE sebesar 0,2529 dan R2 sebesar 0,9784. Selain itu, model multi-output secara umum lebih efisien dibandingkan single-output karena proses pelatihannya 48% lebih cepat. Pada penelitian ini juga dilakukan evaluasi performa model multi-output Spectral Xception saat menggunakan dataset yang berbeda.

Food consumption pattern of the Indonesian people has shifted from merely fulfilling basic needs to becoming a healthy food consumption which is referred to functional food. Pigmented rice can be categorized as a type of functional food because it contains antioxidants derived from anthocyanins. However, pigmented rice is considered to be easily stale when stored for too long. Irradiation technology can be used to safely and effectively preserve food to extend its shelf life. Utilization of gamma radiation irradiation with certain doses can cause changes in the composition of the nutrients contained therein. So it is necessary to measure the nutritional content of post-irradiation pigmented rice to ensure the nutritional suitability of the rice. This research was conducted to develop a multi-output system to predict total anthocyanin content and water content in irradiated pigmented rice based on hyperspectral imaging. Model evaluation has been carried out by calculating the root mean square error (RMSE) value and the coefficient of determination R2 of the multi-output model and comparing its performance with the single-output model. The results showed that the multi-output spectral xception model was able to make very good predictions with test performance at total anthocyanin content RMSE values of 0.9105 and R2 0.9963, as well as testing for water content RMSE values of 0.2529 and R2 0.9784. In addition, the multi-output model is generally more efficient than the single-output model because the training process is 48% faster. This research also evaluates the performance of the multi-output spectral exception model when using different datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ghazy
"Indonesia merupakan salah satu negara dengan produksi tanaman padi terbesar di dunia dengan total lebih dari 150 juta ton padi dihasilkan pada 3 tahun terakhir. Meskipun sudah menjadi makanan pokok selama bertahun-tahun, tanaman padi tidak luput dari serangan penyakit yang dapat menghambat produksi beras padi. Berbagai macam penyakit dapat menghambat produksi beras padi di Indonesia. Daun tanaman padi yang terkena serangan penyakit dapat digunakan sebagai indikator jenis penyakit dikarenakan setiap penyakit tanaman padi memiliki corak yang unik pada daun tanaman padi. Dari citra daun tanaman padi yang didapat, dilakukan transformasi format citra ke dalam format grayscale untuk dibentuk Gray Level Co-occurence Matrix (GLCM) untuk beberapa sudut. Fitur Haralick kemudian diekstraksi dari GLCM yang sudah didapatkan untuk mendapatkan fitur-fitur yang dapat menjelaskan citra daun tanaman padi tersebut. Metode ini dapat digunakan dikarenakan fitur Haralick dalam GLCM mampu menangani citra yang memiliki perbedaan tekstur dengan baik dan citra daun penyakit tanaman padi memiliki perbedaan pada tekstur daun yang cukup jelas dilihat. Sehingga dapat dikatakan bahwa metode ini cocok untuk digunakan pada kasus ini. Dengan jumlah fitur Haralick yang cukup banyak, Linear Discriminant Analyis (LDA) kemudian diaplikasikan kepada fitur-fitur Haralick sebagai metode reduksi dimensi sedemikian sehingga fitur baru yang didapatkan memiliki separasi yang lebih baik. Kemudian, Support Vector Machine (SVM) digunakan sebagai classifier dalam mengklasifikasi penyakit tanaman padi menggunakan fitur LDA yang sudah didapatkan.

Indonesia is one of the world’s leading rice producers with a total of more than 150 million tons of rice produced in the last three years . Rice plants, despite being a staple crop for many years, are susceptible to diseases that can hamper rice production.  Because each diseases of rice plants has a distinctive pattern on the leaves of rice plants, the leaves of diseased rice plants can be used as indicators of the type of disease. The picture format of the rice leaf is converted to grayscale in order to create a Gray Level Co-occurence Matrix (GLCM) at multiple angles. The Haralick feature is extracted from the GLCM to obtain features that can describe the image of the rice plant leaf. Because the Haralick feature in GLCM can handle images with diverse textures and the image of leaves of rice plant diseases has differences in leaf texture that are clearly apparent, this method can be used. With a large number of Haralick features, the Linear Discriminant Analysis (LDA) is used as a dimension reduction technique for the Haralick features, resulting in better separation of the new features. The Support Vector Machine (SVM) is used as a classifier to classify rice plant diseases based on the obtained LDA features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evan Eka Wijaya
"Klasifikasi genre musik merupakan salah satu bidang dari Music Information Retrieval (MIR) yang menggunakan pola-pola spektral dalam rekaman audio digital sebagai fitur untuk membentuk sebuah sistem yang dapat menentukan genre dari sebuah musik secara otomatis. Beberapa model deep learning telah dikembangkan untuk memperoleh performa terbaik dalam melakukan klasifikasi genre musik. Tiga di antaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan model hybrid CNN-LSTM. Walaupun model- model tersebut mampu memberikan hasil yang cukup memuaskan, model-model tersebut memiliki kekurangan masing-masing. Model CNN kurang dapat memperhitungkan urutan-urutan fitur pada data berurutan dan model LSTM tidak dapat melakukan komputasi secara paralel. Ketiga model tersebut juga membutuhkan pengulangan dan konvolusi yang kompleks, serta waktu yang cukup panjang untuk perhitungan berurutan. Transformers merupakan arsitektur model yang tidak lagi mengandalkan recurrence/pengulangan, melainkan mekanisme attention yang dapat memperhitungkan urutan-urutan data pada data berurutan dan melakukan perhitungan paralel sehingga jangka waktu yang dibutuhkan dalam perhitungan lebih singkat. Melihat keberhasilan dan kepopuleran dari Transformer pada berbagai bidang seperti Bidirectional Encoder Representations from Transformers (BERT) pada bidang Natural Language Processing dan Vision Transformers pada bidang Computer Vision, pada skripsi ini dilakukan analisis mengenai kinerja model Transformers dalam permasalahan klasifikasi genre musik dibandingkan dengan model CNN, LSTM, dan CNN-LSTM.

Music genre classification is one of the fields of Music Information Retrieval (MIR) that uses spectral patterns in digital audio recording as features to build a system that can automatically classify a music’s genre. Several deep learning models have been developed to get the best performance in classifying music genres. Three of them are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and hybrid CNN-LSTM model. Although those models can give satisfactory results, each model has their own weakness. CNN is less able to consider the sequences in sequential data and LSTM is not able to do parallel computation. All these models also require complex recurrences and convolutions, as well as quite a long time for sequential calculations. Transformers is a model architecture that no longer relies on recurrences, but rather on an attention mechanism that can consider the sequences in data and perform parallel calculations so that the time required for calculation is shorter. Looking into the success and popularity of Transformers in various fields such as BERT in the field of NLP and Vision Transformers in the field of Computer Vision, this thesis analyzes the performance of Transformers on music genre classification compared to CNN, LSTM, and CNN-LSTM."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widi Nugroho
"Bayi prematur adalah bayi yang lahir dengan usia kehamilan kurang dari 37 minggu yang memiliki sistem saraf dan organ-organ yang belum sempurna sehingga lebih beresiko mengalami berbagai masalah kesehatan. Salah satu masalah kesehatan yang dapat terjadi adalah pada organ mata yang merupakan organ penting dalam perkembangan bayi. Retinopathy of Prematurity (ROP) merupakan salah satu penyakit mata yang terjadi pada bayi prematur yang disebabkan oleh pembentukan pembuluh darah retina yang tidak normal. Proses diagnosis yang dilakukan oleh dokter mata belum bisa mengatasi kenaikan jumlah kasus ROP, sehingga disini penulis menggunakan pendekatan deep learning untuk melakukan klasifikasi tingkat keparahan ROP pada citra fundus retina. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur ResNet50. Data yang digunakan pada penelitian ini merupakan data sekunder yang diperoleh dari online database Kaggle berupa 90 data citra fundus retina yang terbagi atas 38 citra bukan penderita ROP, 19 citra penderita ROP Stage 1, 22 citra penderita ROP Stage 2, dan 11 citra penderita ROP Stage 3. Pada tahap persiapan data, dilakukan perbaikan kontras citra menggunakan Contrast Limited Adaptive Histogram (CLAHE) dan image masking. Kemudian dilakukan resize citra menjadi ukuran 224×224. Data kemudian diaugmentasi menggunakan teknik flip horizontal dan rotation agar data menjadi lebih banyak yang kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 20% untuk data validation. Training model dilakukan menggunakan model dengan arsitektur ResNet50 dengan hyerparameter model yaitu batch size 64, learning rate 0.001, dan epoch sebanyak 30, fungsi optimasi Adam (Adaptive moment estimation), dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan berhasil memperoleh nilai rata-rata kinerja training model sebesar 99.714% dan 92.85% pada akurasi training dan akurasi validation-nya, selain itu diperoleh nilai 0.01864 dan 0.18434 pada loss training dan loss validation. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 97.352%, testing loss sebesar 0.0986374, dan AUROC sebesar 0.0955. Selain melakukan evaluasi kinerja, peneliti juga akan menggunakan GradCAM untuk menampilkan visualisasi ciri-ciri yang dianggap penting untuk nantinya membantu dokter dalam mengevaluasi ROP.

Premature infants are babies born with a gestational age of less than 37 weeks, and they have underdeveloped nervous systems and organs, making them more susceptible to various health issues. One of the health problems that can occur involves the eye, which plays a crucial role in the baby's development. Retinopathy of Prematurity (ROP) is one of the eye diseases that affects premature infants and is caused by abnormal blood vessel formation in the retina. The current diagnostic processes performed by ophthalmologists have not been effective in addressing the increase in ROP cases. Therefore, in this study, the author employs a deep learning approach to classify the severity of ROP in retinal fundus images. The deep learning method utilized is the Convolutional Neural Network (CNN) with the ResNet50 architecture. The research data consists of 90 retinal fundus images obtained from the online database Kaggle, comprising 38 images of non-ROP cases, 19 images of ROP Stage 1, 22 images of ROP Stage 2, and 11 images of ROP Stage 3. In the data preparation phase, the image contrast is enhanced using Contrast Limited Adaptive Histogram (CLAHE) and image masking techniques. Subsequently, the images are resized to 224×224 dimensions. Data augmentation is performed using horizontal flip and rotation techniques to increase the dataset, which is then split into 80% training data and 20% testing data. From the 80% training data, 20% is further allocated for validation data. The model is trained using the ResNet50 architecture with hyperparameters set to batch size 64, learning rate 0.001, and 30 epochs. The optimization function used is Adam (Adaptive Moment Estimation), and the loss function is categorical cross-entropy. The modeling process is repeated five times, and the average performance of the training model is achieved at 99.714% for training accuracy and 92.85% for validation accuracy, with training and validation losses of 0.01864 and 0.18434, respectively. As for the average performance of the testing model, the testing accuracy is 97.352%, the testing loss is 0.0986374, and the AUROC (Area Under the Receiver Operating Characteristic) is 0.0955. In addition to evaluating the model's performance, the researcher also employs GradCAM to visualize important features, which can assist doctors in evaluating ROP cases.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>