Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 57189 dokumen yang sesuai dengan query
cover
Aida Nabilah Army Husna
"Cacar air merupakan penyakit menular yang disebabkan oleh virus varicella zoster. Penyakit ini menyebabkan ruam berisi cairan gatal di seluruh tubuh. Untuk mencegah infeksi cacar air, dapat dilakukan vaksinasi dengan vaksin varicella sebanyak dua dosis. Pada skripsi ini dikonstruksi model SVIuIvR yang membahas mengenai penyebaran penyakit cacar air dengan intervensi vaksinasi. Analisis secara analitik dan numerik mengenai titik keseimbangan bebas penyakit, titik keseimbangan endemik, dan basic reproduction number dilakukan untuk memahami dinamika populasi jangka panjang dari model yang dikonstruksi. Hasilnya menunjukkan laju vaksinasi yang tinggi dapat mereduksi jumlah individu yang terinfeksi cacar air dan mencegah terjadinya endemik. Lebih lanjut apabila vaksinasi diiringi dengan pengobatan, maka pengendalian penyebaran penyakit cacar air akan menjadi lebih optimal.

Chickenpox is an infectious disease caused by varicella zoster virus. This disease causes rashs filled with itchy fluid all over the body. To prevent chickenpox infection, two doses of varicella vaccine can be vaccinated. In this undergraduate thesis, the SVIuIvR model is constructed which discusses the spread of chickenpox by vaccination intervention. Analytical and numerical analysis of disease-free equilibrium point, endemic equilibrium point, and basic reproduction number were carried out to understand the long-term population dynamics of the constructed model. The results show that high vaccination rates can reduce the number of individuals infected with chickenpox and prevent endemic occurance. Furthermore, if vaccination is accompanied by treatment, then control of the spread of chickenpox will be more optimal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurdini Khairunnisa
"Meningitis merupakan salah satu penyakit menular mematikan yang menyerang otak. Meningitis disebabkan oleh peradangan pada membran meninges (selaput pelindung otak dan sumsum tulang belakang) akibat infeksi yang disebabkan oleh patogen bakteri, virus atau jamur. Salah satu cara untuk memahami dinamika penyebaran penyakit meningitis yaitu dengan menggunakan pemodelan matematika. Oleh karena itu, pada skripsi ini dikonstruksi model matematika penyebaran penyakit meningitis yang memiliki bentuk SVCtvCvIR melalui persamaan diferensial biasa berdimensi enam nonlinear. Pemodelan penyebaran meningitis yang dibuat dalam penulisan skripsi ini mempertimbangkan intervensi vaksinasi. Model SVCtvCvIR ini diharapkan dapat membantu memberikan pemahaman tentang penyebaran penyakit meningitis guna mengurangi dampak beban penyakit meningitis di masyarakat. Analisis secara analitik maupun numerik dilakukan untuk menentukan titik keseimbangan, berikut dengan jenis kestabilannya serta basic reproduction number (R0). Diperoleh bahwa titik keseimbangan bebas penyakit bersifat stabil jika R0<1 dan tidak stabil jika R0>1. Lebih lanjut, dilakukan simulasi numerik pada model SVCtvCvIR untuk melihat interpretasi dari kajian analitik yang dilakukan sebelumnya. Dari proses numerik yang dilakukan, diperoleh bahwa laju penularan yang rendah serta laju vaksinasi dan pengobatan yang tinggi mampu mengendalikan penyebaran penyakit meningitis.

Meningitis is a deadly infectious disease that attacks the brain. Meningitis is an inflammation of the meninges (the membrane that protects the brain and spinal cord) due to infection caused by bacterial, viral or fungal pathogens. One way to understand the dynamics of the spread of meningitis is to use mathematical modeling. Therefore, in this thesis, a mathematical model of the spread of meningitis is constructed which has the form SVCtvCvIR through a six-dimensional non-linear ordinary differential equation system. The modeling of the spread of meningitis made in this undergraduate thesis considers the vaccination intervention. This model is expected to help provide an understanding of the spread of meningitis in order to reduce the impact of meningitis burden within the community. Analytical and numerical analysis is carried out to determine the equilibrium point, the type of its stability and basic reproduction number (R0). It was found that the disease-free equilibrium point is stable if R0<1, and unstable if R0>1. Furthermore, a numerical simulation was performed on the SVCtvCvIR model to see the interpretation of the previous analytical study. From the numerical process carried out, it was found that the low transmission rate and high vaccination and treatment rates were able to control the spread of meningitis."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cella Haruningtyastuti
"Hepatitis B merupakan salah satu penyakit menular yang dapat menyebabkan kematian. Hepatitis B adalah penyakit hati yang disebabkan oleh virus hepatitis B. Penyakit ini dapat dicegah penularannya dengan melakukan vaksinasi. Pada skripsi ini dikonstruksi model matematika SVAKR yang membahas mengenai model matematika penyebaran penyakit hepatitis B dengan intervensi vaksinasi. Kajian analitik dan simulasi numerik telah dilakukan pada model tersebut untuk mempermudah dalam memahami dinamika populasi jangka panjang. Kajian analitik yang telah dilakukan meliputi konstruksi model matematika beserta interpretasi model tersebut, titik keseimbangan beserta kestabilannya, dan Basic Reproduction Number (R0). Pada kajian analitik, didapatkan hasil bahwa titik keseimbangan bebas penyakit ada dan stabil asimtotik lokal ketika R0 < 1. Berdasarkan simulasi numerik yang telah dilakukan, diperoleh informasi bahwa intervensi vaksinasi dapat mengendalikan penyebaran penyakit hepatitis B. Lebih lanjut apabila vaksinasi diiringi dengan peningkatan laju kesembuhan infeksi akut, maka penyebaran penyakit hepatitis B dapat dikendalikan dengan lebih optimal.

Hepatitis B is an infectious disease that can cause death. Hepatitis B is a liver disease caused by the hepatitis B virus. This disease can be prevented from being transmitted by vaccination. In this undergraduate thesis, a mathematical model SV AKR is constructed which discusses the mathematical model of the spread of hepatitis B disease with vacci- nation intervention. Analytical studies and numerical simulations have been carried out on the model to make it easier to understand long-term population dynamics. Analytical studies that have been carried out includes the construction of a mathematical model and its interpretation, the equilibrium point and its stability, and Basic Reproduction Number (R0). In the analytical study, it was found that a disease-free equilibrium point exists and locally asymptotically stable when R0 < 1. Based on numerical simulations that have been carried out, it was found that vaccination intervention was able to control the spread of hepatitis B. Furthermore, if vaccination is accompanied by an increase in recovery rate of acute infection, the spread of hepatitis B can be controlled more optimally."
Depok: Fakultas Matematika dan Ilmu Penetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rusyana Bathari Candrika
"Kanker serviks atau kanker leher rahim adalah kanker yang tumbuh pada sel-sel di leher rahim. Secara global, kanker serviks menempati urutan keempat sebagai kanker yang paling banyak diderita oleh wanita di dunia. Penyakit kanker serviks disebabkan adanya infeksi oleh Human Papilloma Virus (HPV), yaitu virus HPV tipe 16 dan tipe 18. Penelitian mengungkapkan bahwa kanker serviks dapat dicegah dengan diberikan vaksin HPV secara lengkap. Terdapat beberapa cara yang dapat dilakukan untuk mengendalikan penyebaran kanker serviks akibat penularan virus HPV tipe 16/18, salah satunya dengan intervensi vaksinasi HPV. Pada skripsi ini digunakan model matematika untuk membahas bagaimana pengendalian penyakit kanker serviks dengan adanya intervensi vaksinasi. Model dikonstruksi menjadi model matematika dengan pendekatan sistem persamaan diferensial biasa berdimensi tujuh. Dari model yang telah dikonstruksi, dilakukan kajian analitik yang meliputi analisis eksistensi dan kestabilan dari titik-titik keseimbangan serta hubungannya dengan bilangan reproduksi dasar (R0). Kemudian, dilakukan simulasi numerik yang mencakup analisis elastisitas dan sensitivitas bilangan reproduksi dasar serta simulasi autonomous. Dari hasil kajian analitik dan numerik yang dilakukan, diperoleh bahwa laju vaksinasi lengkap yang tinggi merupakan salah satu cara efektif untuk menekan penyebaran kanker serviks akibat penularan virus HPV tipe 16/18.

Cervical cancer is cancer that grows in cells in the cervix. Globally, cervical cancer ranks as the fourth most common cancer among women in the world. Cervical cancer is caused by infection with the Human Papilloma Virus (HPV), namely HPV types 16 and type 18. Research reveals that cervical cancer can be prevented by being given the complete HPV vaccine. There are several ways that can be done to control the spread of cervical cancer due to transmission of the HPV type 16/18 virus, one of which is by intervention with HPV vaccination. In this undergraduate thesis a mathematical model is used to discuss how to control cervical cancer with vaccination interventions. The model is constructed to be a mathematical model with a seven-dimensional system of
ordinary differential equations approach. From the model that has been constructed, an analytical study is carried out which includes an analysis of the existence and stability of the equilibrium points and their relationship to the basic reproduction number (R0). Then, numerical simulations were carried out which included elasticity and sensitivity analysis of the basic reproduction number and autonomous simulations. From the results of the analytical and numerical studies conducted, it was found that a high complete vaccination rate is an effective way to suppress the spread of cervical cancer due to the transmission of the HPV type 16/18 virus."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jilan Alya
"Pneumonia pneumokokus merupakan jenis community-acquired pneumonia yang merupakan infeksi saluran pernapasan akut yang disebabkan oleh bakteri Streptococcus pneumoniae. Dalam penelitian ini, model matematis penyebaran Pneumonia pneumokokus dibangun dengan mempertimbangkan intervensi vaksinasi dan perawatan di rumah sakit. Model tersebut dibentuk dengan membagi populasi manusia berdasarkan status kesehatannya. Beberapa faktor dipertimbangkan dalam mengonstruksi model, seperti individu tanpa gejala, fase laten selama infeksi, dan intervensi vaksinasi dan perawatan di rumah sakit. Studi analitik dilakukan untuk menemukan dan menganalisis eksistensi dan stabilitas lokal dari titik-titik keseimbangan, menentukan bilangan reproduksi dasar (R0), dan menyelidiki jenis bifurkasi model. Ditemukan bahwa model yang dikonstruksi mengalami bifurkasi maju ketika R0=1. Hasil ini menunjukkan bahwa R0 perlu dikurangi sebesar mungkin dengan vaksinasi dan/atau perawatan di rumah sakit untuk menghindari terjadinya infeksi di masyarakat. Beberapa pendekatan numerik ditampilkan untuk melihat visualisasi hasil dari model. Hasil simulasi menunjukkan bahwa laju vaksinasi dan laju perawatan hanya memberikan efek yang sangat signifikan di awal dalam menurunkan nilai R0, tetapi tidak begitu signifikan saat nilai kedua laju yang diberikan sudah cukup besar. Didapatkan kesimpulan juga bahwa peningkatan laju vaksinasi lebih berhasil menekan angka manusia terinfeksi Pneumonia pneumokokus dibandingkan dengan peningkatan laju perawatan. Jenis vaksin yang digunakan dalam proses vaksinasi juga berpengaruh besar dalam menurunkan nilai R0.

Pneumococcal pneumonia is a type of community-acquired pneumonia which is an acute respiratory infection caused by Streptococcus pneumoniae bacteria. In this study, a mathematical model on the spread of Pneumococcal pneumonia is constructed by considering vaccination and hospital care interventions. The model is formed by dividing the human population based on their health status. We consider several things in the model’s construction, such as asymptomatic individuals, the latent phase during infection, and interventions of vaccination and hospitalization. Analytical studies are carried out to find and analyze the existence and local stability of the equilibrium points, determining the basic reproduction number (R0) and investigate the type of bifurcation of the model. We find that the model exhibits a forward bifurcation when R0=1. Several numerical experiments are shown to see the visualization of the model. The simulation results show that the rate of vaccination and the rate of hospitalization only have a very significant effect at the beginning in reducing the value of R0. It is also concluded that an increase in the rate of vaccination is more successful in reducing the number of individuals infected with Pneumococcal pneumonia compared to an increase in the rate of hospitalization.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dinda Asrianti
"Campak adalah penyakit yang sangat menular yang disebabkan oleh virus campak. Sebuah model matematika penyebaran penyakit campak dengan intervensi isolasi dan dua tahap vaksinasi telah dikonstruksi pada penelitian ini. Model tersebut dikonstruksi menjadi model SVIQR dengan sistem persamaan diferensial biasa berdimensi enam. Analisis matematika terhadap titik-titik keseimbangan beserta stabilitas lokalnya dilakukan secara analitik dan numerik. Bilangan reproduksi dasar juga ditunjukkan sebagai nilai eigen terbesar dari Next-Generation Matrix. Simulasi numerik pada model dilakukan menggunakan berbagai kasus untuk menyediakan pemahaman yang lebih baik mengenai model. Dari simulasi numerik dapat disimpulkan bahwa laju vaksinasi tahap pertama, laju vaksinasi tahap kedua, dan laju diisolasinya individu yang terinfeksi dapat mengurangi penyebaran penyakit campak pada populasi.

Measles is a highly contagious diseases caused by a virus. A mathematical model of measles with isolation and two stages of vaccination intervention constructed in this article. The model is constructed as an SVIQR system of sixdimensional ordinary differential equation. Mathematical analysis of the equilibrium points and its local stability is performed, both analytically and numerically. We also show the form of the basic reproduction number as the spectral radius of the Next-Generation matrix. Numerical simulations of the model are done for various scenarios to provide a better understanding of the model. From the numerical simulation, we can conclude that the first step and the second step of vaccination and the isolation can reduce the spread of the disease.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Krisdayanti Lamtiur Bertua
"

Pes merupakan penyakit menular yang disebabkan oleh bakteri Yersinia pestis. Bakteri tersebut mempertahankan hidupnya dalam suatu siklus yang melibatkan hewan pengerat dan kutu yang hidup pada hewan pengerat. Pada umumnya, pes terbagi menjadi tiga bentuk yaitu pes tipe bubonik, pes tipe septisemik, dan pes tipe pneumonia, serta setiap bentuk dari pes ini mempunya gejala yang berbeda satu dengan yang lain. Berdasarkan hal tersebut, maka dikonstruksikan sebuah model matematika penyebaran penyakit pes dengan intervensi fumigasi dan dusting. Pada skripsi ini, populasi pada model matematika penyebaran penyakit pes terbagi menjadi kelompok kutu yang rentan, kelompok kutu yang terinfeksi, kelompok tikus yang rentan, kelompok tikus yang exposed, kelompok tikus yang terinfeksi bubonic plague, kelompok tikus yang terinfeksi septicemic plague, kelompok tikus yang terinfeksi pneumonic plague, dan kelompok bakteri, sehingga model menjadi terbentuk dalam sistem persamaan diferensial biasa non-linear berdimensi delapan. Selanjutnya, model yang telah dibangun akan dianalisis secara analitik dan numerik. Studi analitik dilakukan untuk menemukan dan menganalisis titik keseimbangan, menentukan bilangan reproduksi dasar , dan menyelidiki keberadaan bifurkasi dari model yang dibangun. Hasil analisis menunjukkan bahwa untuk mereduksi wabah suatu penyakit diperlukan parameter intervensi, dimana pada skripsi ini dapat disimpulkan bahwa laju kematian kutu akibat dusting dan laju kematian tikus akibat fumigasi merupakan langkah yang tepat diambil pemerintah untuk mengurangi penyebaran penyakit pes.


Plague is an infectious disease caused by the bacteria Yersinia pestis. The bacteria maintain their life in a cycle involving rodents and their fleas. In general, plague is divided into three main types: bubonic plague, septicemic plague, and pneumonic plague. Based on this, mathematical model of plague transmission with fumigation and dusting interventions was constructed. In this thesis, the mathematical model considers eight population, those are susceptible flea, infectious flea, susceptible rodent, exposed rodent, bubonic plague infectives, septicemic plague infectives, pneumonic plague infective. Furthermore, the models that have been built are then analyzed analytically and numerically. Analytical studies carried out to find and analyze the equilibrium point, determine the basic reproduction number , and investigate the existence of a bifurcation of the built model. The results of the analysis show that to reduce the outbreak of a disease, interventions parameter needed, which is in this thesis it can be concluded that the flea death rate due to dusting and the rodent death rate due to fumigation are effective ways for government to reduce the spread of plague.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alethea Yuwanda Murtiningrum
"Model penyebaran penyakit DBD akan dibahas dalam tugas akhir ini. Berbagai intervensi mulai dari vaksin terhadap manusia dewasa, vaksin terhadap bayi baru lahir, penggunaan insektisida, larvasida, dan mechanical control akan menjadi pertimbangan dalam menganalisa model DBD. Terdapat tiga jenis titik keseimbangan yang terbentuk dari model penyebaran penyakit DBD dengan berbagai intervensi ini yaitu: Mosquito-Free Equilibrium, Disease-Free Equilibrium (dengan dan tanpa kompartemen vaksin), dan Endemic Equilibrium. Dari model ini akan diperoleh nilai basic reproduction number yang menjadi faktor dimana penyakit ini dikatakan epidemik atau tidak dalam suatu populasi. Melalui kajian analitik dan numerik, diperoleh hasil bahwa penggunaan insektisida, vaksinasi terhadap manusia dewasa, dan pelaksanaan mechanical control merupakan intervensi yang paling signifikan dalam mengurangi penyebaran infeksi penyakit DBD oleh nyamuk, dibandingan dengan penggunaan larvasida, dan vaksin pada bayi baru lahir.

Mathematical model of dengue diseases transmission will be discussed in this undergraduate thesis. Various interventions such as adult and newborn vaccine, the used of insecticide and larvacide treatment, also enforcement of mechanical control will be considered when analyzing the mathematical model. There are 3 types of equilibrium points that will be built upon the dengue model. In this thesis those points are Mosquito-Free Equilibrium, Disease-Free Equilibrium (with and without vaccinated compartment), and Endemic Equilibrium. From this dengue model, basic reproduction number will be obtained as the main value factor whether the disease will become epidemic in a population or not. Based on the analytical and numerical analysis, insecticide treatment, adult vaccine, and enforcement of mechanical control are the most significant interventions when reducing the spread of dengue disease infection that caused by mosquitoes, rather than larvacide treatment and newborn vaccine."
Depok: Universitas Indonesia, 2016
S64195
UI - Skripsi Membership  Universitas Indonesia Library
cover
Monica Larasati
"Tuberkulosis TB merupakan penyakit menular yang disebabkan oleh bakteri Mycobatrium Tuberculosis. Penularan penyaki TB dari individu terinfeksi ke individu sehat atau rentan dapat melalui bersin, batuk, dan kontak langsung dengan individu terinfeksi. Hingga saat ini, TB adalah salah satu penyakit yang belum dapat disembuhkan. Salah satu penyebab yang membuat kasus TB terus meningkat adalah koinfeksinya dengan penyakit diabetes. Diabetes merupakan penyakit kronis yang muncul saat pankreas tidak dapat memproduksi cukup insulin atau saat tubuh tidak dapat menggunakan insulin yang dihasilkan secara efektif. Diabetes dapat disebabkan oleh faktor keturunan atau muncul karena pola hidup individu itu sendiri. Beberapa studi epidemiologi menunjukan bahwa diabetes berhubungan positif dengan TB, diabetes membuat risiko seseorang terkena TB tiga kali lebih besar.
Dalam skripsi ini, untuk memahami pengaruh diabetes terhadap penyebaran TB dapat dianalisis melalui model epidemi SEIR dengan membagi populasi antara yang memiliki diabetes dan yang tidak memiliki diabetes. Dari model ini diperoleh nilai bilangan reproduksi dasar yang menjadi faktor untuk TB dapat dikatakan endemic atau tidak dalam suatu populasi. Melalui kajian sensitivitas bilangan reproduksi dasar dan simulasi numerik, dapat disimpulkan bahwa penyakit diabetes berpengaruh besar dalam penyebaran TB.

Tuberculosis TB is an infectious disease caused by the bacteria Mycobacterium tuberculosis. Until now, TB is one of the diseases that cannot be cured. One of the factors that make TB cases continue to increase is co infection with Diabetes. Diabetes is a chronic disease that occurs when the pancreas does not produce enough insulin or when the body cannot efficiently use the insulin it produces. Diabetes can be caused by hereditary factors or appear because of the individual rsquo s lifestyle. Several epidemiological studies have shown that Diabetes is positively associated with TB, where Diabetes makes a person rsquo s risk of getting TB three times bigger.
In this thesis, to understand the effect of diabetes on the spread of TB, will be analyzed SEIR epidemic model by dividing the population between those who have diabetes and who does not have diabetes. From this model obtained the value of Basic Reproduction Number that becomes a factor for TB can be said to be endemic or not in a population. Through analysis of sensitivity of basic reproduction number and numerical simulation, it can be concluded that diabetes disease has a big effect on the spread of TB.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sheryl Nathania Salim
"Limfatik filariasis atau yang lebih dikenal dengan penyakit kaki gajah adalah salah satu penyakit yang endemik di wilayah Papua. Penyakit ini disebabkan oleh cacing filaria yang menyerang saluran dan kelenjar getah bening pada manusia dan ditularkan oleh nyamuk. Penyakit ini disebabkan oleh tiga jenis cacing filaria, yaitu Wuchereria bancrofti, Brugia malayi, dan Brugia timori yang ditularkan oleh nyamuk dengan genus Anopheles, Culex, Aedes, dan Mansonia. Pemerintah telah melakukan banyak upaya dalam menanggulangi penyakit ini, salah satunya adalah melalui pengobatan, yaitu BELKAGA (Bulan ELiminasi Kaki Gajah). Penelitian ini menggunakan model matematika untuk membahas bagaimana penanggulangan penyakit limfatik filariasis dengan mempertimbangkan beberapa intervensi, yaitu penggunaan repellent, proses screening, pengobatan bersaturasi, dan fumigasi. Model dikonstruksi dengan menggunakan pendekatan sistem persamaan diferensial nonlinier berdimensi sembilan dengan dua populasi. Populasi manusia dibagi ke dalam enam kompartemen dan populasi nyamuk dibagi ke dalam tiga kompartemen. Selanjutnya, dilakukan kajian analitik terhadap model yang telah dikonstruksi, yaitu menentukan eksistensi dan menganalisis kestabilan titik kesetimbangan, menentukan bilangan reproduksi dasar (R0), dan menyelidiki eksistensi bifurkasi dari model yang terbentuk. Kemudian, dilakukan simulasi numerik pada model yang diajukan dalam penelitian ini. Hasil-hasil kajian analitik maupun numerik pada akhirnya akan dianalisis agar diperoleh interpretasi yang dapat memberi manfaat dalam pemahaman penanggulangan penyakit limfatik filariasis.

Lymphatic filariasis or better known as elephantiasis, is a disease that is endemic to Papua. This disease is caused by filarial worms that attack the ducts and lymph nodes in humans and are transmitted by mosquitoes. Three types of filarial worms cause this disease, namely Wuchereria bancrofti, Brugia malayi, and Brugia timori. Mosquitoes that transmit it are from the genus Anopheles, Culex, Aedes, and Mansonia. The government has made various efforts to overcome this disease, one of which is through treatment, namely BELKAGA (Bulan Eliminasi Kaki Gajah). This thesis use a mathematical model to discuss how to treat lymphatic filariasis by considering several interventions, namely repellents, the screening process, saturation treatment, and fumigation. The model will use a nine-dimensional nonlinear differential equation system approach with two populations. The human population will divide into six compartments, and the mosquito population divides into three compartments. Furthermore, an analytical study will be carried out on the model that has been built, namely determining the existence and analyzing the stability of the equilibrium point, determining the basic reproduction number R0, and investigating the existence of the bifurcation of the model. Then a numerical simulation will be carried out on the model proposed in this study. This thesis will analyze the results of analytical and numerical studies to obtain interpretations that can help understand the prevention of lymphatic filariasis."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>