Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130348 dokumen yang sesuai dengan query
cover
Alif Ahmadsyah Gibran
"Biosolar™ adalah salah satu produk bahan bakar diesel di Indonesia dengan kandungan sulfur hingga 2.500 ppm. Kandungan ini masih jauh di atas standar low-sulfur diesel (LSD) dengan batas maksimal 500 ppm sulfur maupun standar ultra-low-sulfur diesel (ULSD) dengan batas maksimal 15 ppm sulfur. Kerugian yang diakibatkan oleh tingginya kadar sulfur dalam bahan bakar ialah memperpendek umur mesin dan pencemaran lingkungan. Salah satu mekanisme pengurangan kandungan sulfur yang telah banyak dilakukan oleh penelitian lainnya adalah reaksi desulfurisasi oksidatif atau oxidative desulfurization (ODS) yang dikombinasikan dengan ekstraksi pelarut polar. Penelitian ini berfokus pada pengaruh suhu terhadap performa oksidasi dengan mengadopsi beberapa penelitian terdahulu. Titik sampel adalah pada suhu oksidasi 30oC, 50oC, dan 70oC. Proses ODS dilakukan dengan oksidator hidrogen peroksida, katalis asam asetat, dan pelarut polar metanol. Untuk mengetahui kadar sulfur sebelum dan setelah perlakuan, digunakan instrumen FTIR yang dinormalisasi dengan ASTM D 4294. Metode FTIR ternormalisasi ini teruji cukup akurat dengan penyimpangan sebesar 5,9%. Secara umum, performa desulfurisasi meningkat dari suhu 30oC menuju 50oC, namun berangsur turun ketika melewati 50oC hingga 70oC. Performa desulfurisasi terbaik didapat pada suhu oksidasi 50oC, rasio volumetrik pelarut:sampel 1:4, dan waktu ekstraksi 40 menit dengan desulfurisasi sebesar 28,2%.

Biosolar™ is a diesel fuel in Indonesia with sulfur content up to 2,500 ppm. This number is still far above low-sulfur diesel (LSD) standard with 500 ppm maximum limit of sulfur and ultra-low-sulfur diesel (ULSD) standard with 15 ppm maximum limit of sulfur. Disadvantages gained due to usage of high-sulfur content fuel are shortening of the machine lifetime and environmental pollution. One of the mechanisms for reducing sulfur content in fuel that has been carried out by other studies is oxidative desulfurization (ODS) reaction. This study focuses on the effect of temperature on oxidation performance by adopting several previous studies. The sample points are at the oxidation temperature of 30oC, 50oC, and 70oC. The ODS process was carried out with hydrogen peroxide as an oxidizing agent, acetic acid catalyst, and methanol as a polar solvent. To determine the sulfur content before and after treatment, the FTIR instrument normalized with ASTM D 4294 was used. This normalized FTIR method was tested to be quite accurate with a deviation of 5.9%. In general, the desulfurization performance increased from 30oC to 50oC, but gradually decreased as it passed 50oC to 70oC. The best desulfurization performance was obtained at an oxidation temperature of 50oC, a volumetric ratio of solvent:sample 1:4, and an extraction time of 40 minutes with desulfurization of 28.2%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yandy
"Biosolar merupakan salah satu bahan bakar diesel yang paling banyak dimanfaatkan di Indonesia. Biosolar memiliki kandungan senyawa sulfur yang sangat tinggi. Senyawa sulfur dalam Biosolar dapat menyebabkan dampak negatif bagi mesin, lingkungan, dan kesehatan manusia sehingga perlu diturunkan untuk memenuhi standar internasional maupun untuk efisiensi penggunaan mesin diesel. Salah satu metode untuk menurunkan kadar sulfur adalah desulfurisasi oksidatif katalitik (Cat-ODS) yang memiliki keunggulan dapat dilakukan pada suhu dan tekanan rendah dan tidak membutuhkan biaya yang besar. Pada penelitian ini, proses Cat-ODS terhadap senyawa sulfur di dalam Biosolar menggunakan oksidator hidrogen peroksida dan katalis Co-Fe/γ-Al2O3. Proses Cat-ODS dilakukan pada wadah berpengaduk menggunakan Biosolar 25 mL, katalis dengan loading inti aktif 24,63%, promotor 0 sampai 6,64%, dan penyangga katalis 72,05% serta rasio molar oksidator dengan sulfur (O/S) 120:1. Kondisi operasi Cat-ODS dilakukan pada waktu oksidasi 30 menit dan dioksidasi pada suhu 40 sampai 70°C. Setelah proses oksidasi, senyawa sulfur dalam Biosolar berubah menjadi senyawa sulfone yang dipisahkan menggunakan metode sentrifugasi. Kandungan senyawa sulfur pada Biosolar setelah Cat-ODS dianalisis menggunakan spektroskopi FTIR. Persen desulfurisasi terbaik pada penelitian ini didapat pada suhu 50°C, katalis Co-Fe/γ-Al2O3 5 gram, waktu reaksi oksidasi selama 30 menit, dan rasio O/S 120:1 dengan nilai sebesar 9,787%.
.....Biodiesel is one of the most widely used diesel fuels in Indonesia. Biodiesel contains very high sulfur compounds. Sulfur compounds in biodiesel can cause negative impacts on engines, the environment, and human health, so they need to be reduced to meet international standards and for the efficiency of using diesel engines. One method to reduce sulfur content is catalytic oxidative desulfurization (Cat-ODS) which has the advantage that it can be carried out at low temperatures and pressures and does not require large costs. In this study, the Cat-ODS process for sulfur compounds in biodiesel used hydrogen peroxide as an oxidant and a Co-Fe/γ-Al2O3 catalyst. The Cat-ODS process was carried out in a stirred container using 25 mL biodiesel, a catalyst with an active core loading of 24.63%, a promoter of 0 to 6.64%, and a catalyst support of 72.05% and a molar ratio of oxidizing agent to sulfur (O/S) 120:1. Cat-ODS operating conditions were carried out at an oxidation time of 30 minutes and oxidized at a temperature of 40 to 70°C. After the oxidation process, the sulfur compounds in biodiesel turn into sulfone compounds which are separated using the centrifugation method. The content of sulfur compounds in biodiesel after Cat-ODS was analyzed using FTIR spectroscopy. The best desulfurization percentage in this study was obtained at a temperature of 50°C, 5 grams of Co-Fe/γ-Al2O3 catalyst, an oxidation reaction time of 30 minutes, and an O/S ratio of 120:1 with a value of 9.787%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Fitri Widyasari
"Kandungan senyawa sulfur pada bahan bakar Biosolar dapat menyebabkan berbagai dampak buruk seperti kerusakan mesin. Kadar sulfur pada bahan bakar Biosolar di Indonesia masih sangat tinggi sehingga perlu diturunkan untuk memenuhi regulasi internasional dan meningkatkan efisiensi penggunaan mesin diesel. Penelitian ini bertujuan untuk menurunkan kadar sulfur dengan menghilangkan senyawa sulfur aromatik pada bahan bakar Biosolar menggunakan metode Oxidative desulfurization (ODS). Hidrogen peroksida (H2O2) digunakan sebagai oksidator dengan katalis molibdenum oksida sebagai inti aktif berpenyangga gamma alumina (MoO3/γ-Al2O3). Proses ODS dilakukan pada wadah berpengaduk pada suhu 40°C sampai 70°C dengan loading inti aktif katalis 5% sampai 20%, waktu oksidasi 15 menit sampai 60 menit, dan rasio molar oksidator dengan sulfur (O/S) 90:1 sampai 240:1. Setelah proses oksidasi, senyawa sulfur dalam Biosolar berubah menjadi senyawa sulfone kemudian dipisahkan dari Biosolar menggunakan metode sentrifugasi. Kandungan senyawa sulfur pada Biosolar setelah melewati proses ODS dianalisis menggunakan metode FTIR. Nilai desulfurisasi terbaik pada penelitian ini didapat pada suhu 50°C, loading inti aktif katalis 10%, waktu reaksi oksidasi 30 menit, dan rasio O/S 120:1 dengan desulfurisasi sebesar 7,7%.

The content of sulfur compounds in biodiesel fuel can cause various bad effects such as diesel engines damage. Sulfur content in biodiesel fuel in Indonesia is still very high, so it needs to be reduced to meet international regulations and improve the efficiency of diesel engines. This study aims to reduce sulfur content by removing aromatic sulfur compounds in biodiesel fuel using Oxidative desulfurization (ODS) method. Hydrogen peroxide (H2O2) will be used as an oxidizing agent with molybdenum oxide as an active core supported by gamma alumina (MoO3/γ-Al2O3). The ODS process is carried out in a stirred vessel at a temperature of 40 to 70°C with an active catalyst loading from 5 to 20%, oxidation time 15 to 60 minutes, and molar ratio of oxidator with sulfur (O/S) 90:1 to 240:1. After the oxidation process, the sulfur compounds in the biodiesel will turn into sulfone compounds which will be separated using the centrifugation method. The content of sulfur compounds in biodiesel after passing through the ODS process will be analyzed using the FTIR method. The best desulfurization rate in this study was obtained at temperature of 50°C, 10% active catalyst loading, oxidation reaction time of 30 minutes, and O/S ratio of 120:1 with desulfurization of 7.7%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iva Ayu Ardiyanti
"Kandungan sulfur pada biosolar menyebabkan menyebabkan dua kerugian, yaitu menurunkan umur mesin dan pencemaran lingkungan. Salah satu proses yang telah banyak dilakukan oleh para peneliti untuk mengurangi kandungan sulfur adalah reaksi desulfurisasi oksidatif atau oxidative desulfurization (ODS). Metode yang umum digunakan dalam proses ODS terdiri dari dua tahap, yaitu oksidasi dan ekstraksi menggunakan senyawa polar. Pada penelitian ini, proses ODS dilakukan dengan oksidator hidrogen peroksida, katalis asam format dan asam sulfat, dan pelarut polar metanol. Proses oksidasi dilakukan pada wadah berpengaduk dengan variasi jumlah oksidator, suhu oksidasi, dan waktu oksidasi. Variasi rasio oksidator dengan Biosolar™ adalah 1:15, 1:45, 1:56, 1:67, 1:89, dan 1:112 (mol/mol). Variasi suhu oksidasi adalah 35°C dan 60°C, dan variasi waktu oksidasi dilakukan pada 30 menit, 45 menit, dan 60 menit. Setelah itu, dilakukan ekstraksi cair-cair untuk memisahkan biosolar dari sulfur yang telah teroksidasi. Hasil penelitian diuji dengan metode FTIR untuk menentukan kandungan sulfur total dalam biosolar. Hasil desulfurisasi tertinggi adalah 20,07% dengan rasio molar oksidator 1:89 (mol/mol), suhu 35°C, dan waktu reaksi 60 menit.

The contained of sulfur in biosolar can caused two disadvantages. These are decreased the term of a machine and environmental pollution. One of process that all researchers did to decreased the contain of sulfur is oxidative desulfurization (ODS). The common method used in ODS consists of two steps, there are oxidation and extraction using the polar compound. In this research, ODS process will be done with hydrogen peroxide as oxidizing agent, formic acid and sulfuric acid as a catalyst, and methanol as a solvent. Oxidation process carried out in agglomerated reactor with variations in the amount of oxidizing agent, the temperature of oxidation, and the time of oxidation. The variation of oxidant ratio with biosolar is 1:15, 1:45, 1:56, 1:67, 1:89, and 1:112 (mol/mol). The variant temperature of oxidation is 35°C and 60°C, and the oxidation time variant occur in 30 minutes, 45 minutes, and 60 minutes. After that, the extraction will be done to separate biosolar from the oxidized sulfur. The result of the research tested by FTIR method to examine total content of sulfur in biosolar. The highest desulfurization result is 20,07% in 60 minutes with the molar ratio of oxidant 1:89 (mol/mol) in 35°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Hafizabiyan Shahab
"Dalam era dunia digital yang sekarang banyak sekali penggunaan perangkat elektronik di dunia sangat tinggi, terutama di Indonesia. Banyak perangkat elektronik yang sudah using dan ketinggalan zaman menghasilkan limbah elektronik (e-waste) yang memiliki logam-logam berharga didalamnya terutama pada komponen Printed Circuit Board (PCB) yang dapat didaur ulang. Penelitian ini akan membahas tentang studi elektrokimia pada proses pelindian tembaga dengan menggunakan larutan asam klorida atau HCl yang di tambahkan aditif Hidrogen Peroksida (H2O2) pada konsentrasi 0,1M, 0,2M, dan 0,5M. Sampel yang berupa PCB akan dilakukan pengujian polarisasi dan Electrochemical Impedance Spectroscopy (EIS) dengan membandingkan hasil dengan lembaran Tembaga sebagai pembanding  untuk mengetahui proses pelindian yang terjadi dalam larutan. Laju pelindian pada PCB maupun pada tembaga semakin meningkat dengan bertambahnya konsentrasi Larutan, penggunaan peningkatan pada konsentrasi larutan 0,5 M pada PCB menghasilkan produk korosi dari unsur logam lain yang menghambat proses pelindian. Penelitian ini ditujukan untuk mencari larutan yang efektif dalam pengolahan limbah elektronik,dan juga menentukan Konsentrasi yang baik dalam proses pelindiannya.

In the era of the digital world, there are now very many uses of electronic devices in the world, especially in Indonesia. And electronic devices that are outdated and outdated are not used to produce electronic waste (e-waste) that has precious metals in it, especially on printed circuit board (PCB) components that can be recycled. This study will discuss electrochemical studies in the copper leaching process using a solution of chloride or HCL from which add hydrogen hydrogen peroxide (H2O2) at concentrations of 0.1M, 0.2M and 0.5M. Samples in the form of PCB will be tested for polarization and Electrochemical Impedance Spectroscopy (EIS) by comparing the results with Copper sheets as a comparison to determine the leaching process that occurs in solutions. The leaching rate on the PCB as well as on copper increases with increasing concentration of the solution, the use of an increase in the concentration of 0.5 M solution in the PCB produces corrosion products from other metal elements which inhibit the leaching process. This research is intended to find effective solutions in electronic waste processing, and also determine good concentration in the leaching process."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firman Akbar Reza
"Elektrolisis plasma menjadi metode sintesis green hydrogen dan hidrogen peroksida yang memisahkan air menjadi gas H2 dan O2 dengan plasma katodik pada tegangan di atas elektrolisis konvensional akibat rekombinasi radikal H• dan •OH. Laju erosi elektroda akibat suhu plasma yang tinggi menjadi keterbatasan pada proses ini sehingga Stainless Steel SS – 201 yang memiliki laju erosi lebih kecil dibandingkan tungsten (Lukkes, et al. 2006) diteliti efektivitasnya dari jumlah mmol produk, energi spesifik (Wr), dan laju erosi. Penelitian dilakukan dengan melakukan uji rancang bangun reaktor elektrolisis plasma dan karakterisasi arus tegangan untuk menentukan kondisi operasi menggunakan elektrolit NaOH 0,02 M dan Na2SO4 pada konduktivitas serupa, serta konsentrasi aditif metanol sebagai scavenger radikal •OH.
Hasil penelitian menunjukkan bahwa SS – 201 memiliki erosi yang lebih kecil sebesar 0,07 gram dibandingkan tungsten sebesar 1,05 gram setelah 60 menit proses. Pembentukan lapisan oksida pasif SS – 201 menambah luas kontak elektroda dan menghasilkan gas H2 sebanyak 104,55 mmol dibandingkan tungsten sebanyak 94,95 mmol. Penelitian ini juga membandingkan pengaruh penggunaan NaOH dan Na2SO4 dengan konduktivitas serupa yang menunjukkan NaOH menghasilkan lebih banyak H2 dibandingkan Na2SO4 sebanyak 97,55 mol karena cenderung mengarah pada produksi hidrogen peroksida karena komposisi elektrolit yang mendorong pembentukan radikal •OH. Selain itu, pengaruh variasi metanol diuji yang menunjukkan bahwa penambahan aditif metanol tidak hanya berperan sebagai scavenger radikal •OH namun terdekomposisi akibat plasma menghasilkan gas hidrogen dan radikal H•.

Plasma electrolysis is a green hydrogen and hydrogen peroxide synthesis method that separates water into H2 and O2 gases with cathodic plasma at a voltage above conventional electrolysis due to the recombination of H• and •OH radicals. The electrode erosion rate due to high plasma temperature is a limitation in this process so that Stainless Steel SS – 201 which has a lower erosion rate than tungsten (Lukkes, et al. 2006) was examined for its effectiveness from the number of mmol of product, specific energy (Wr), and rate of erosion. The research was carried out by conducting design tests for plasma electrolysis reactors and characterizing current voltages to determine operating conditions using electrolytes of 0.02 M NaOH and Na2SO4 with similar conductivity, as well as the concentration of methanol additive as an •OH radical scavenger.
The results showed that SS-201 had less erosion of 0.07 gram compared to 1.05 gram of tungsten after 60 minutes of process. The formation of the SS-201 passive oxide layer increased the contact area of the electrodes and produced 104.55 mmol of H2 gas compared to 94.95 mmol of tungsten. This study also compared the effect of using NaOH and Na2SO4 with similar conductivity which showed that NaOH produced more H2 than Na2SO4 of 97.55 mmol because it tends to produce of hydrogen peroxide due to the electrolyte composition which encourages the formation of •OH radicals. In addition, the effect of methanol variations was tested which showed that the addition of additive methanol did not only act as an •OH radical scavenger but decomposed due to plasma to produce hydrogen gas and H• radicals.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febriadi Rosmanato
"Latar Belakang: Melihat potensi tingginya jumlah virus didalam rongga mulut, dengan bukti bahwa SARS-CoV-2 ditemukan pada reseptor ACE2, perlu upaya untuk mencegah penularan dari pasien ke praktisi melalui saliva yang terkontaminasi. Virus ini menyebar lebih cepat karena SARS-CoV-2 bereplikasi disaluran pernapasan bagian atas dengan melepaskan patogen yang berpindah dari satu orang ke orang lain saat bersin dan batuk melalui penyebaran pernapasan. Diperkirakan waktu penularan bisa terjadi sebelum gejala muncul (sekitar 2,5 hari lebih awal dari munculnya gejala). Berkumur dengan hidrogen peroksida dapat menghilangkan lapisan permukaan epitel pada mukosa mulut yang diketahui terdapat reseptor ACE2 tempat terikatnya SARS- CoV-2 dan dapat menginaktivasi virus tersebut. Pedoman sementara American Dental Association (ADA) menyarankan penggunaan 1,5% Hidrogen peroksida sebagai pilihan untuk pembilasan mulut preoperatif sebagai obat kumur antiseptik. Nilai cycle threshold yang diperoleh RT – PCR bersifat semi-kuantitatif dan mampu membedakan antara viral load tinggi dan rendah.
Tujuan Penelitian: Mengevaluasi perbedaan pengaruh penggunaan obat kumur diantara berkumur hidrogen peroksida 1,5% dan hidrogen peroksida 3% terhadap nilai cycle threshold RT-PCR pada pasien COVID - 19.
Metode Penelitian: 42 subjek penelitian diambil dari pasien RSUP Persahabatan yang terinfeksi SARS-CoV-2 sesuai dengan kriteria inklusi dan ekslusi. Setelah dilakukan informed consent, subjek penelitian dibagi menjadi 3 kelompok, yaitu kelompok hidrogen peroksida 1,5%, kelompok hidrogen peroksida 3% dan kelompok kontrol. Subjek penelitian berkumur 30 detik di rongga mulut dan 30 detik di tenggorokan belakang dengan 15 ml sebanyak 3 kali sehari selama 5 hari. Analisis menggunakan nilai cycle threshold pada pemeriksaan RT-PCR pada hari ke-1, hari ke-3 dan hari ke-5 setelah berkumur.
Hasil: Terdapat perbedaan bermakna pada hasil uji Friedman dan peningkatan nilai cycle threshold RT-PCR dari awal, hari ke-1, hari ke-3 dan hari ke-5 di keseluruhan kelompok dan masing – masing kelompok perlakuan. Peningkatan tertinggi nilai cycle threshold RT-PCR awal hingga hari ke-1 ditemukan pada kelompok hidrogen peroksida 3%, kemudian antara hari ke-1 hingga ke-3 dan hari ke-3 hingga hari ke-5 ditemukan pada kelompok hidrogen peroksida 1,5%.
Kesimpulan: Berkumur hidrogen peroksida 1,5% dan hidrogen peroksida 3% berpengaruh terhadap peningkatan nilai cycle threshold RT-PCR SARS-CoV-2. Kedua konsentrasi hidrogen peroksida 1,5% dan hidrogen peroksida 3% memberikan pengaruh positif dalam menurunkan jumlah virus di rongga mulut, sehingga pilihan penggunaan konsentrasi hidrogen peroksida yang lebih kecil bisa menjadi pilihan untuk digunakan untuk berkumur.

Background: Given the potential high number of viruses in the oral cavity, with evidence that SARS-CoV-2 is found at the ACE2 receptor, efforts are needed to prevent transmission from patient to practitioner through contaminated saliva. This virus spreads faster because SARS-CoV-2 replicates in the upper respiratory tract by releasing pathogens that are passed from one person to another when sneezing and coughing through respiratory spread. It is estimated that the time of transmission can occur before symptoms appear (about 2.5 days earlier than the onset of symptoms). Mouth rinse and gargling with hydrogen peroxide can remove the epithelial surface layer on the oral mucosa which is known to have ACE2 receptors where SARS-CoV-2 binds and can inactivate the virus. Interim guidelines of the American Dental Association (ADA) recommend the use of 1.5% hydrogen peroxide as an option for preoperative oral rinse as an antiseptic mouth rinse. The cycle threshold value obtained by RT-PCR is semi-quantitative and able to distinguish between high and low viral loads.
Objective: To evaluate the difference in the effect of using mouth rinse between 1.5% hydrogen peroxide and 3% hydrogen peroxide mouth rinse and gargling on the RT-PCR cycle threshold value in COVID-19 patients.
Methods: 42 subjects were patients recruited from Persahabatan General Hospital infected with SARS-CoV-2 according to the inclusion and exclusion criteria. Following informed consent procedure, the research subjects were divided into 3 groups, namely the 1.5% hydrogen peroxide group, the 3% hydrogen peroxide group and the control group. The subjects were instructed to rinse their mouths for 30 seconds and gargle for 30 seconds at the back of the throat with 15 ml of the mouth rinse 3 times a day for 5 days. Analysis of cycle threshold values was carried out using RT-PCR on day 1, day 3 and day 5 after mouth rinse and gargling.
Results: There were significant differences in the results of the Friedman test and an increase in the RT-PCR cycle threshold value starting from the beginning, day 1, day 3 and day 5 in the whole group and each treatment group. The highest increase RT-PCR cycle threshold value at day 1 was found in the 3% hydrogen peroxide group, while the increase between day 1 to 3 and day 3 to day 5 was found in the 1.5% hydrogen peroxide group.
Conclusion: Mouth rinse and gargling with 1.5% hydrogen peroxide and 3% hydrogen peroxide has an effect on increasing the cycle threshold value of the SARS-CoV-2 RT-PCR. Both 1.5% and 3% hydrogen peroxide concentration have a positive effect in reducing the number of viruses in the oral cavity, so the choice of using a lower hydrogen peroxide concentration can be an option to use for mouth rinse and gargling.
"
Jakarta: Fakultas Kedokteran Gigi Universitas Indonesia, 2021
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Catharina Candra Pratita
"

Polutan yang terdapat di udara, khususnya gas buang yang berasal dari sisa-sisa pembakaran, salah satunya mengandung unsur Oksida Nitrogen (NOx). Dimana gas tersebut dapat menyebabkan kerusakan pada lapisan ozon, menghasilkan efek rumah kaca, hujan asam dan kabut fotokimia. Untuk mengatasi agar kandungan gas tersebut tidak mengakibatkan pencemaran udara yang berlebih, perlu dilakukan penelitian untuk menurunkan kadar emisi gas NOx. Eksperimen ini bertujuan untuk mengeliminasi NOx dari udara melalui penyerapan menggunakan campuran larutan H2O2 dan HNO3 sebagai penyerap dalam modul membran. Proses absorpsi berlangsung dengan mempertemukan gas NOx dengan absorben yang merupakan campuran oksidator yaitu H2O2 dan HNO3 . Variabel independen yang diuji adalah laju aliran gas NOx antara 100 mL/mnt, 125 mL/mnt, 150 mL/mnt, 175 mL/mnt dan 200 mL/mnt dengan konsentrasi gas NOx 600 ppm dan variasi H2O2 (0,5%, 5%, 10% wt) dengan campuran 0,5 M HNO3. Nilai efisiensi penghilangan NOx tertinggi, koefisien perpindahan massa, fluks dan NOx Loading  yang dicapai dalam percobaan adalah  95,61%, 9,6x10-8 mmol/cm2 , 1,3x10-2 cm/s, 9x10-3. Semua jenis aliran gas ialah turbulen berdasarkan nilai b trendline bilangan Reynold yang didapatkan yaitu 0,9542 ; 0,9608 ; 0,9419.

 


Pollutants found in the air, especially exhaust gases from combustion residues, one of which contains Nitrogen Oxide (NOx). Where gas can cause damage to the ozone layer, resulting in a greenhouse effect, acid rain and photochemical fog. To overcome the problems, it necessary to conduct a research to reduce the level of NOx gas emissions. This experiment aims to eliminate NOx from the air through absorption using a mixture of H2O2 and HNO3 solutions as absorbers in the membrane module. The absorption process takes place by combining NOx gas with absorbent which is a mixture of oxidizers namely H2O2 and HNO3. The experiment started with the absorbent were at static phase inside shell of membrane while the feed gas flowing inside the tube of membrane. The independent variables tested were NOx gas flow rate between 100 mL/min, 125 mL/min, 150 mL/min, 175 mL/min and 200 mL/min with NOx gas concentration of 600 ppm and H2O2 variation (0,5%, 5%, 10% wt) reacted with 0,5 M HNO3. The highest values of NOx removal efficiency, mass transfer coefficient, flux and NOx Loading achieved in the experiment were 95.61%, 9.6x10-8 mmol/cm2 , 1.3x10-2 cm/s, 9x10-3 respectively. All gas flow types based on the Reynold value obtained are 0.9542, 0.9608, 0.9419.

 

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christina Angel Mutiara
"Kandungan maksimum sulfur pada jenis solar dengan angka setana 51 di Indonesia adalah sebesar 300 ppm. Kandungan sulfur tersebut masih jauh di bawah standar internasional berdasarkan standar Euro VI, yaitu mencapai hingga 10 ppm, atau dikenal sebagai ultralow-sulfur diesel. Senyawa sulfur pada solar harus diturunkan karena memiliki dampak negatif terhadap mesin, lingkungan, maupun kesehatan manusia. Salah satu metode yang dapat digunakan untuk mengurangi kandungan sulfur pada solar adalah dengan menggunakan desulfurisasi oksidatif katalitik (Cat-ODS). Metode Cat-ODS dapat mengoksidasi sulfur menjadi sulfon yang lebih polar sehingga dapat lebih mudah dihilangkan pada proses pemisahan berikutnya, yaitu sentrifugasi. Selama ini, proses Cat-ODS dan sentrifugasi dilakukan di dalam alat yang terpisah. Pada penelitian ini, proses Cat-ODS akan dilakukan di dalam prototipe reaktor-sentrifugasi yang merupakan gabungan dari CSTR (Continuous Stirred Tank Reactor) dan sentrifugal ekstraktif sehingga proses dapat berlangsung secara kontinu. Penelitian ini dilakukan untuk menguji ODS pada prototipe reaktor-sentrifugasi dengan menggunakan solar Pertamina Dex, katalis asam asetat, dan oksidator kalium permanganat. Variabel yang akan divariasikan pada penelitian ini adalah suhu oksidasi 30, 50, 70 oC, rasio volume solar dengan katalis (V/V) 5:1, 10:1, 15:1, 20:1, kecepatan pengadukan 200, 300, 400, 500 rpm, serta waktu tinggal 2, 3, 4, 5 menit. Setelah itu, solar akan dianalisis kandungan sulfurnya dengan menggunakan metode Fourier Transform Infrared (FTIR). Hasil persentase desulfurisasi terbaik pada penelitian ini adalah 19,67% yang diperoleh pada kondisi suhu oksidasi 70 oC, rasio volume solar dengan katalis 20:1, kecepatan pengadukan 300 rpm, dan waktu tinggal 5 menit.

The maximum sulfur content in diesel fuel with a cetane number of 51 in Indonesia is 300 ppm. That sulfur content is still far below international standards based on Euro VI standards, which reach up to 10 ppm, otherwise known as ultralow-sulfur diesel. Sulfur compounds in diesel fuel must be reduced because they have a negative impact on engines, the environment, and human health. One method that can be used to reduce the sulfur content in diesel fuel is by using catalytic oxidative desulfurization (Cat-ODS). The Cat-ODS method can oxidize sulfur to become a more polar sulfone so that it can be more easily removed in the next separation process, which is centrifugation. So far, the Cat-ODS and centrifugation processes have been carried out in separate equipment. In this study, the Cat-ODS process will be carried out in a prototype centrifugation reactor which is a combination of a CSTR (Continuous Stirred Tank Reactor) and an extractive centrifuge so that the process can take place continuously. This research was conducted to test the ODS on a prototype centrifugation reactor using Pertamina Dex diesel fuel, acetic acid catalyst, and potassium permanganate oxidizer. Variables that will be varied in this research are the oxidation temperature of 30, 50, 70 oC, volume ratio of diesel fuel and catalyst (V/V) 5:1, 10:1, 15:1, 20:1, stirring speed of 200, 300, 400, 500 rpm, and residence times of 2, 3, 4, 5 minutes. After that, diesel fuel will be analyzed for its sulfur content using the Fourier Transform Infrared (FTIR) method. The best desulphurization percentage result in this study was 19.67% which was obtained at an oxidation temperature of 70 oC, a volume ratio of diesel fuel and catalyst of 20:1, a stirring speed of 300 rpm, and a residence time of 5 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mona Oktarina
"ABSTRAK
Latar Belakang: Tujuan dari penelitian ini adalah untuk mengetahui pengaruh stres oksidatif pada ketahanan hidup spermatozoa manusia melalui peningkatan ekspresi caspase 3 dan aktivasi Akt. Informasi ini berhubungan dengan infertilitas laki-laki yang menurunkan viabilitas dan parameter kinetik spermatozoa.
Metode: Spermatozoa manusia diperoleh dari donor normozoospermia. Spermatozoa dimurnikan menggunakan larutan percoll. Spermatozoa dari seminal plasma dilarutkan dalam media Bigger, Whitter, dan Whittingham (BWW). Kemudian, spermatozoa diinkubasi dengan hidrogen peroksida (H2O2) 50 M, 100 M, 150 M, 200 M dan 250 M selama 2 jam. Stres oksidatif diuji dengan uji malondialdehid (MDA). Viabilitas diperiksa dengan larutan eosin Y. Parameter motilitas diukur dengan Computer Assisted Sperm Analyzer (CASA). Deteksi protein western blot akan dilakukan dengan antibodi anti-caspase-3 untuk mengenali caspase-3 dan antibodi phosphodetect yang mengenali fosforilasi Akt.
Hasil: Setelah inkubasi H2O2 selama 2 jam, terdapat efek H2O2 terhadap penurunan viabilitas dan motilitas (VAP, VSL, VCL) secara signifikan. Selain itu, viabilitas dan motilitas memiliki hubungan positif dengan proses apoptosis dan ketahanan hidup spermatozoa dengan menggunakan caspase 3 (meningkat) dan fosforilasi Akt (menurun) secara signifikan.
Kesimpulan: Stres oksidatif dapat menurunkan viabilitas dan kinetik spermatozoa melalui peningkatan ekspresi caspase-3 dan penurunan aktivitas Akt

ABSTRACT
Background: The purposes of this study was to evaluate the effect of oxidative stress on survival of human spermatozoa through releasing apoptotic process, This information has correlated with idiopathic infertility that decrease viability and motility parameters spermatozoa.
Methods: Human spermatozoa were obtained from normozoospermic volunteer donors. Spermatozoa was purified using discontinuous Percoll. Spermatozoa from the plasma seminal dissolved in Bigger, Written, and Whittingham (BWW) medium. Then, spermatozoa were incubated with 50 M, 100 M, 150 M, 200 M dan 250 M hydrogen peroxide (H2O2) for 2-h. Oxidative stress were assed by malondialdehyde (MDA) assay. Viability was examined by eosin Y solution. Kinectic parameters were assessed by Computer Assisted Sperm Analyzer (CASA). Detection of perotein in the western blot was examined with anti-caspase-3 antibodies to recognize caspase-3 activity and phsophodetect antibody that recognizes the phosphorylation of Akt.
Results: After 2-h incubation H2O2, there was dose dependent effect of H2O2 on viability and motility parameters significantly decrease. Therefore, viability and kinetic were positive relationship on apoptotic and survival effect by using caspase-3 activation (increase) and akt (decrease) significantly.
Conclusions: Oxidative stress can decreases viability and kinetic spermatozoa through increase caspse 3 and decrease Akt activation"
Depok: Fakultas Kedokteran Universitas Indonesia, 2019
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>