Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 191938 dokumen yang sesuai dengan query
cover
Hari Yurismono
"Kebakaran stasiun pompa bahan bakar umum akibat nyala uap bahan bakar tahun 2020 terekam 38 kali di wilayah Indonesia. Konsentrasi uap bahan bakar yang flamabel pada area diantara batas bawah flamabilitas (Low Flammability Level, LFL) dan batas atas flamabilitas (Upper Flammability Level, UFL) merupakan faktor penyebab kebakaran. Tujuan penelitian: perancangan peralatan pengujian LFL bensin dengan metoda tabung menggunakan evaporasi internal untuk menghasilkan uap bensin. Alat ukur berupa tabung kaca vertikal d= 80 mm t= 300 mm, permukaan atas terbuka dan pemantik api listrik tegangan tinggi 10 J. Dua metoda pengukuran: arah propagasi ke atas (upward propagation) dan propagasi ke bawah (downward propagation) dilakukan terhadap enam sampel pada temperatur 28oC. Hasil pengujian: konsentrasi LFL propagasi ke atas untuk sampel RON_88 adalah 1,63%, RON_90-1; 1,77%, RON_90-2; 1,61%, RON_92; 1,65%, RON_95; 1,61% dan IO_100; 1,05%. Sedangkan arah propagasi ke bawah RON_88 adalah 2,49%, RON_90-1; 2,42%, RON_90-2; 2,4%, RON_92; 2,31%, RON_95; 2,12% dan IO_100; 1,58%.
Pengujian LFL Iso-octane metoda propagasi ke atas 1,15% (tabung d= 5,3 cm) dan 0,98% (tabung d= 2,5 cm) (Coward, 1952)
Angka oktan tidak banyak berpengaruh pada hasil pengujian LFL dengan metoda propagasi ke atas. Akan tetapi pada metoda propagasi ke bawah hasil LFL akan menurun dengan naiknya angka oktan.

Public fuel pump station fires due to fuel vapor flames in 2020 were recorded 38 times in Indonesian. The flammability of the fuel vapor concentration in the area between the lower flammability level (LFL) and the upper flammability level (UFL) is a cause of fire. The purpose of the study: the design of gasoline LFL testing equipment with the tube method using internal vaporization to produce gasoline vapor. The measuring instrument is a vertical glass tube d= 80 mm t= 300 mm, the top surface is open and a high voltage electric lighter 10 J. Two measurement methods: the direction of upward propagation and downward propagation were carried out on six sample at a temperature of 28oC. Test results: the concentration of LFL propagation upwards for samples RON_88 is 1.63%, RON_90-1; 1.77%, RON_90-2; 1.61%, RON_92; 1.65%, RON_95; 1.61% and IO_100; 1.05%. While the downward propagation direction of RON_88 is 2.49%, RON_90-1; 2.42%, RON_90-2; 2.4%, RON_92; 2.31%, RON_95; 2.12% and IO_100; 1.58%.
LFL Iso-octane testing with upward propagation method is 1.15% (tube d= 5.3 cm) and 0.98% (tube d= 2.5 cm) (Coward, 1952)
The octane number does not have much effect on the LFL test results with the upward propagation method. However, in the downward propagation method, the LFL results will decrease with increasing octane number.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Zarkoni Azis
"Konsumsi minyak bensin atau gasoline untuk bahan bakar mesin transportasi dalam negeri selama ini telah melebihi kapasitas unit produksi. Sebagian besar produk gasoline dihasilkan dari unit perengkahan katalitik menggunakan umpan utama fraksi gasoil. Upaya untuk meningkatkan yield dan kualitas oktana gasoline umumnya dilakukan melalui seleksi katalis dan optimalisasi kondisi proses, meskipun demikian sifat umpan juga mempengaruhi produk akhir. Penelitian ini bertujuan untuk menemukan dan mempelajari metode proses alternatif peningkatan yield dan angka oktana gasoline dengan cara modifikasi umpan menggunakan campuran vacuum gasoil dengan trigliserida dan asam lemak jenuh dan tak jenuh berbasis sawit.
Eksperimen reaksi perengkahan dilakukan pada fluid-bed reaktor dengan umpan campuran vacuum gasoil dengan minyak sawit murni, distilat asam lemak dan asam oleat dalam rentang konsentrasi 0 sampai 15% menggunakan katalis zeolite REY pada suhu 530oC dan rasio katalis-umpan 5,5 g/g. Perengkahan umpan menghasilkan produk gas dan cair serta coke yang terdeposit dalam katalis. Produk gas dianalisa menggunakan GC refinery gas analyzer untuk menentukan komposisi gas hidrokarbon C1, C2, C3 & C4 serta H2. Produk cair dianalisa menggunakan GC simulated distillation untuk menentukan yield gasoline, LCO dan bottom. Angka oktana gasoline dianalisa dengan GC DHA. Kadar air dalam produk cair dianalisa dengan metode Karl-Fischer. Analisa coke dengan metode Infrared dan keasaman katalis dengan metode NH3-TPD.
Dari hasil penelitian didapatkan bahwa perengkahan VGO dengan 5%RBDPO meningkatkan yield gasoline dari 42,9% menjadi 46,9% dan angka oktana dari 91,8 menjadi 96,2. Perengkahan VGO dengan 5%(RBDPO_PFAD) dapat meningkatkan yield gasoline menjadi 48,3% dengan angka oktana 97,5. Perengkahan VGO dengan 5%(RBDPO_Oleic acid) dapat meningkatkan yield gasoline menjadi 45,2% dengan angka oktana 98,2. Kandungan asam lemak jenuh dan tak jenuh dalam umpan berperan dalam reaksi-reaksi perengkahan, isomerisasi, transfer hidrogen dan aromatisasi yang mempengaruhi struktur yield produk dan komposisi hidrokarbon n-parafin, iso-parafin, olefin, naften dan aromatik. Penambahan RBDPO, PFAD dan Oleic acid pada umpan VGO menyebabkan kenaikan komposisi hidrokarbon iso-parafin dan olefin dalam gasoline.
The consumption of gasoline for transportation fuel in domestic has exceeded the production unit capacity. Most of gasoline is produced from fluid catalytic cracking unit that proceeds gasoil fraction as main feedstock. Some efforts to upgrade gasoline yield and its octane quality usually is perfomed by catalyst selection and process optimization, eventhough feed nature also influence to the end-product.
This research work was aimed to find out and learn the alternative method in fluid catalytic cracking process to upgrade gasoline yield and octane quality by means of feed modification using mixture of vacuum gasoil with palms triglycerides and fatty acids having single and double-bonds. The experimental catalytic reaction was performed at fluid-bed reactor of advance cracking evaluation unit utilizing mixture of vacuum gasoil with pure palm oil, fatty acid distillate and oleic acid over zeolite REY catalysts at reaction temperature of 530oC and catalyst oil ratio 5.5 g/g.
The cracking of feedstocks under process condition resulted in gaseous and liquid products, as well as coke deposited on catalyst. The gaseous product was analyzed by online gas chromatography to identify dry gas of C1, C2 & H2, and LPG of C3, C4 hydrocarbons. Liquid product was analyzed using gas chromatography of simulated distillation to obtain yields of gasoline, light cycle oil and bottoms. Gasoline octane number was analyzed using GC DHA method. Water contained in liquid product was analyzed by Karl Fischer method. Coke was analyzed by online Infrared analyzer and catalyst acidity was analyzed using NH3 TPD method.
From the reaseach work, it was found that the cracking of VGO with 5%RBDPO could increase gasoline yield from 42.9% to 46.9% and octane number from 91.8 to 96.2. The cracking of VGO with 5%RBDPO PFAD increased gasoline yield to 48.3% and octane number to 97.5 meanwhile cracking of VGO with 5%RBDPO Oleic acid increased gasoline yield to 45.2% and octane number to 98.2. The role of single and double-bonds fatty acids in feedstock appeared to play in reactions of cracking, isomerization, hydrogen transfer and aromatization that influenced the product yields structure and hydrocarbon composition of nparaffins, isoparaffins, olefins, naphthene and aromatics. The addition of RBDPO, PFAD dan Oleic acid in VGO had caused increase of hydrocarbon composition of iso-paraffins and olefin in gasoline"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Anton Pribadi
"Pada program konversi minyak tanah ke LPG, Pemerintah telah berhasil mendistribusikan sekitar 57,19 juta paket perdana, menyusul suksesnya program tersebut, Pemerintah kembali meluncurkan program diversifikasi energi melalui program konversi bensin ke LPG tabung 3 Kg untuk nelayan, program ini kedepannya akan menambah beban subsidi baru. Tujuan penelitian ini untuk mendapatkan perbandingan antara program konversi minyak tanah ke LPG tabung 3 kg dengan program konversi bensin ke LPG tabung 3 kg untuk nelayan dari sisi biaya paket perdana dan subsidi, mendapatkan keunggulan bahan bakar LPG dengan membandingan kinerja mesin, emisi gas buang serta konsumsi bahan bakar terhadap putaran mesin serta analisa dampak penambahan penduduk nelayan terhadap subsidi LPG melalui proyeksi realisasi penyaluran LPG di kota Surabaya. Dalam penelitian ini menggunakan desain penelitian kuantitatif untuk menganalisis variabel-variabel dalam penelitian dengan melakukan analisis perbandingan antara 2 (dua) program konversi, analisis hasil perbandingan torsi, daya dan konsumsi bahan bakar antara LPG dan bensin serta analisis dampak konversi. Dari analisis paket perdana diperoleh selisih biaya yang cukup besar yaitu sebesar Rp, 5,930,923.00,-. Dari sisi subsidi, dengan menghitung nilai keekonomian harga LPG, didapatkan penambahan subsidi yang akan dikeluarkan pemerintah sebesar Rp. 2.706 tiap liternya jika konversi tetap dijalankan. Pada analisa hubungan kinerja mesin, emisi gas buang serta konsumsi bahan bakar terhadap putaran menggambarkan keunggulan LPG dibandingkan bensin. Dari analisis dampak subsidi dengan ukuran proyeksi realisasi 5 tahun kedepan menggunakan metode paired sample t test didapat terjadi perubahan yang signifikan pada penyaluran LPG di kota Surabaya yang sebelumnya rata-rata penyaluran adalah sebesar 115305.7780 MT, setelah program konversi kenaikan penyaluran LPG menjadi 117585.7580 MT.

In the kerosene-to-LPG conversion program, the Government has successfully distributed about 57.19 million packets of LPG, following the success of the program, the Government again launched the energy diversification program through a gasoline conversion program to LPG 3 Kg tube for fishermen, increase the burden of new subsidies. The purpose of this study was to obtain a comparison between the kerosene to LPG 3 kg tube conversion program with the gasoline conversion program to the 3 kg LPG tube for fishermen in terms of the cost of the starter pack and subsidies, obtaining the benefits of LPG fuel by comparing engine performance, exhaust emissions and consumption fuel for engine rotation and analysis of the impact of additional fisherman population on LPG subsidy through projected realization of LPG distribution in Surabaya city. This research uses quantitative research design to analyze the variables in the research by conducting comparative analysis between 2 (two) conversion program, torsion ratio analysis, power and fuel consumption between LPG and gasoline and conversion impact analysis. From the analysis of the initial package obtained a large cost difference of Rp. 5,930,923.00, -. In terms of subsidies, by calculating the economic value of LPG prices, the additional subsidy will be issued by the government of Rp. 2,706 per liter if conversion persists. In the analysis of engine performance relationships, exhaust emissions and fuel consumption of rotation illustrates the benefits of LPG compared to gasoline. From the analysis of subsidy impact with projected realization size 5 years ahead using paired sample t test method there was a significant change in LPG distribution in Surabaya which previously average distribution is 115305.7780 MT, after conversion program of LPG channel increase to 117585.7580 MT."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50817
UI - Tesis Membership  Universitas Indonesia Library
cover
Cicilia
"ABSTRAK
Sistem distribusi BBM di Indonesia tidak berjalan dengan baik sehingga menyebabkan kelangkaan di beberapa wilayah Indonesia. Tujuan pekerjaan ini adalah mendapatkan suatu model sistem dinamik cadangan penyangga BBM agar dapat diketahui berapa volume cadangan penyangga BBM hingga tahun 2025. Penelitian ini dibatasi dengan BBM gasoline dan solar di Indonesia. Variabel-variabel yang berpengaruh adalah jumlah produksi dan konsumsi BBM serta PDB. Simulasi dijalankan dengan perangkat lunak Powersim Studio 7. Hasil yang diperoleh yaitu untuk skenario ketahanan selama 30 hari, cadangan penyangga yang dibutuhkan pada tahun 2025 untuk gasoline sebesar 4,49 Juta Kiloliter dan untuk solar sebesar 1,7 Juta Kiloliter. Untuk skenario ketahanan selama 60 hari, cadangan penyangga yang dibutuhkan pada tahun 2025 untuk gasoline sebesar 9,88 Juta Kiloliter dan untuk solar sebesar 3,4 Juta Kiloliter. Untuk skenario ketahanan selama 90 hari, cadangan penyangga yang dibutuhkan pada tahun 2025 untuk gasoline sebesar 14,8 Juta Kiloliter dan untuk solar sebesar 5,13 Juta Kiloliter. Untuk skenario penurunan PDB pada tahun 2009 dan 2019 akan menurunkan cadangan penyangga gasoline sekitar 22 % dari skenario dasar. Untuk skenario konversi terhadap energi alternatif, cadangan penyangga BBM jenis gasoline dan solar menurun 73 % dari skenario dasar.

ABSTRACT
The fuel distribution system in Indonesia is not going well causing fuel?s scarcity in some region of Indonesia. The purpose of this work is to get a system dynamic model of buffer stock of fuel in order to know how much volume of buffers stock of fuel until 2025. This research is limited by the gasoline and diesel fuel in Indonesia. The variables that influence are the amount of production and consumption of fuel, and Growth Domestic Product. Simulation run with Powersim Studio 7 software. The results obtained for scenarios that resistance for 30 days, the required buffer stock in 2025 amounted to 4,49 million kiloliters of gasoline and diesel by 1,7 Million for Kiloliter. For scenarios that resistance for 60 days, the required buffer stock in 2025 amounted to 9,88 million kiloliters of gasoline and for diesel by 3,4 million kiloliters. For scenarios that resistance for 90 days, the required buffer stock in 2025 amounted to 14,8 million kiloliters of gasoline and diesel by 5,13 Million for Kiloliter. For scenario GDP decline in 2009 and 2019 will reduce buffer stock of gasoline approximately 22 % of the basic scenario. For conversion to alternative energy scenarios, buffer stock of gasoline and diesel fuel types declined 73 % from the base scenario."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36117
UI - Tesis Membership  Universitas Indonesia Library
cover
Chandra Hadiwijaya
"ABSTRAK
Bahan bakar berkualitas memberikan sifat anti ketukan. Salah satu metode pengukuran kualitas bahan bakar adalah dengan angka oktana. Penentuan angka oktana di Indonesia menggunakan mesin CFR. Mesin CFR di Indonesia memiliki kendala jumlah unit terbatas dan usia tua. Penelitian ini menggunakan model kinetika pembakaran untuk mencari data waktu tunda ignisi BBRU (bahan bakar rujukan utama) dan bahan bakar komersial. Angka oktana bahan bakar komersial diketahui apabila waktu tunda ignisi bahan bakar tersebut sama dengan waktu tunda ignisi BBRU yang memiliki persen volume iso-oktana tertentu. Model menghasilkan angka oktana TOTAL 92,5, Shell 94,5, Premium 89, Petronas 90,5, Pertamax 91,5.

ABSTRACT
Quality fuel will provided anti-knocking properties. One of fuel quality measuring method is use octane number. Indonesia using CFR machine to determine octane number. CFR machine in Indonesia is limit of unit number and over age. This research use combustion kinetic model to look for PRF (primary reference fuel) and commercial fuel ignition delay time. Octane number is known if ignition delay time of commercial fuel is same as PRF that has certain iso-octane volume percent. Model output is octane number of several fuel merk. TOTAL 92.5, Shell 94.5, Premium 89, Petronas 90.5, Pertamax 91.5.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42938
UI - Skripsi Open  Universitas Indonesia Library
cover
Akhmad Saekhu
"Untuk meningkatkan kemampuan kilang minyak dalam negeri, khususnya dalam rangka penyediaan reformulated gasoline (RFG) dan Low Sulphur Diesel (LSD) sesuai dengan perkembangan penerapan standar emisi gas buang kendaraan bermotor, diperlukan analisis kebijakan penyediaan RFG dan LSD dengan membuat perencanaan peningkatan mutu RFG dan LSD melalui penambahan unit proses (upgrading) kilang minyak dalam negeri, pembangunan kilang minyak baru dan impor serta analisis investasi dan biaya penyediaannya. Dalam analisis kebijakan penyediaan RFG dan LSD ini, dibuat time frame peningkatan kualitas RFG dan LSD berdasarkan penerapan standar emisi gas buang yang diharmonisasikan dengan perkembangan mutu bahan bakar di Asean khususnya maupun di kawasan Asia Pasifik, selanjutnya dibuat alternatifalternatif penyediaannya serta analisa biaya investasi, biaya penyediaan dan impor. Hasil analisa diperoleh alternatif penyediaan RFG dan LSD yang paling murah dan 'security of supply'nya terjamin yaitu penyediaan RFG dan LSD melalui upgrading kilang existing dengan membangun kilang baru untuk mencukupi kebutuhannya.

Improving Oil Refinery Capability to produce reformulated gasoline (RFG) and Low Sulphur Diesel (LSD) that suitable with progress of emission standart, needs a policy analysis of RFG and LSD supply. This policy can be done with program of RFG and LSD quality development through upgrading of existing refinery, built new refineries, import and an analysis of investment cost of supply. Time frame of RFG and LSD quality development proposed is harmonised with fuel quality improvement in Asean and Asia Pacific region. Analysis of RFG and LSD supply with some alternatives was in term of calculated investment, cost of supply and import. The result of study shows that supply of reformulated gasoline (RFG ) and low sulphur diesel (LSD) by an alternative of existing refinery upgrading and built new refinery to fulfill the demand. This alternative gave cheapest cost of investment, cost of supply and cost of import, also security of supply can be guaranteed."
Depok: Fakultas Teknik Universitas Indonesia, 2007
T40864
UI - Tesis Membership  Universitas Indonesia Library
cover
Idwandi Fedori
"

Berdasarkan arahan dari pemerintah melalui Peraturan Menteri Energi dan Sumber Daya Mineral, mengeluarkan Permen ESDM No.12/2015 mengenai pemanfaatan Bioetanol (E100) sebagai campuran BBM diproyeksikan akan mencapai 5% pada tahun 2020 dan 20% pada tahun 2025 khususnya pada bidang transportasi. Perlu dilakukan penelitian yang akan dicari nilai Research Octane Number (RON) paling optimal sebagai dasar untuk menentukan kombinasi persentase fuel grade bioetanol dengan bahan bakar yang telah tersedia di pasaran. Fokus utama penelitian ini yaitu optimasi unjuk kerja mesin empat langkah bervolume 150cc dengan bahan bakar bioetanol menggunakan engine control module (ECM). Dalam penelitian ini pengujian mesin dilakukan dengan bantuan engine dynamometer test dimana mesin terpasang pada perangkat dyno. Bahan bakar yang digunakan dalam penelitian ini merupakan bahan bakar campuran antara bensin oktan 88 dengan ethanol bervolume 40% sampai 60% (E40, E50 dan E60). Hasil uji dari campuran bahan bakar tersebut memilki tren naik dikarenakan nilai oktan yang juga naik. Namun kenaikkan pada hasil uji masih belum maksimal, upaya optimasi menggunakan Engine Control Module (ECM) keluar menjadi solusi tanpa harus mengubah spesifikasi atau komponen yang ada pada mesin. Percobaan yang dilakukan menggunakan ECM yaitu dengan mengubah derajat pengapian dan durasi injeksi pada mesin. Pengubahan pada perangkat Engine Control Module bertujuan untuk mendapatkan hasil performa yang lebih baik. Hal ini berdasarkan karakter mesin yang diubah titik pengapiannya akan mengakibatkan bahan bakar yang terbakar akan semakin banyak. Dari fenomena tersebut, daya dan torsi yang dihasilkan akan semakin tinggi. Pengujian emisi dilakukan menggunakan AVL Compact Diagnostic System. Hasil pengujian emisi menunjukkan pembakaran yang mendekati stoikiometri yaitu ketika kadar karbon dioksida dan nitrogen oksida maksimum, sedangkan kadar karbon monoksida dan hidrokarbon minimum. Berdasarkan hasil penelitian, bahan bakar campuran yang menghasilkan torsi dan daya maksimum yaitu Bensin RON 88 E40 dengan pengaturan pengaturan ignition timing +8°bTDC dan injection duration -10%. Specific fuel consumption mencapai minimum pada bahan bakar Bensin RON 88 E60 dengan pengaturan ignition timing +8°bTDC dan injection duration -10%. Kadar karbon dioksida dan nitrogen oksida mencapai maksimum pada bahan bakar Bensin RON 88 E40 dengan pengaturan ignition timing +8°bTDC dan injection duration -15% serta pengaturan ignition timing +8°bTDC dan injection duration -10%. Sedangkan kadar karbon monoksida mencapai nilai minimum pada Bensin RON 88 E50 pengaturan ignition timing +8°bTDC serta injection duration -15% dan hidrokarbon mencapai minimum pada Bensin RON 88 E60 pengaturan ignition timing +4°bTDC serta injection duration -10%.

 


Based on appeals from the government through the Minister of Energy and Mineral Resources Regulation, ESDM Regulation No.12 / 2015 regarding the use of Bioethanol (E100) as a gasoline fuel mixture is projected to reach 5% in 2020 and 20% in 2025 especially in the transportation sector. Mixing fuel grade bioethanol with gasoline fuel will increase the Research Octane Number (RON) value. Research needs to be done to find the value of the most optimal Research Octane Number (RON) value will be sought as a basis for determining the percentage combination of fuel grade bioethanol with gasoline fuels that are already available on the market. The main focus of this thesis is to optimize the performance of a 150cc engine with bioethanol fuel using Engine Control Module (ECM). In this research, the performance test is done by using the engine dynamometer test where the engine is attached to the dynamometer components. The fuel that are used in this research is a mixture between RON 88 gasoline and bioethanol with 40% - 60% volume (E40, E50, and E60). The performance from this mixture has an increase because of the mixtures octane number is also increase. But that result still not reach the optimum value. A solution using Engine Control Module (ECM) is carried out because we can optimize the engine without changing any parts or specification. The performance test using the Engine Control Module (ECM) is done by changing the ignition angle and the injection duration. The final result in this research consist of power, torque, specific fuel consumption (SFC), and exhaust gas emissions. Emission testing is carried out using the AVL Compact Diagnostic System. The results of emission tests show that the combustion approaching stoichiometry is when the levels of carbon dioxide and nitrogen oxides are maximum, while the levels of carbon monoxide and hydrocarbons are minimum. Based on the results of the research, a gasoline-bioethanol fuel mixture that produces maximum torque and power is RON 88 E40 Gasoline with ignition timing +8°bTDC and injection duration of -10%. Specific fuel consumption reaches a minimum in RON 88 E60 Gasoline with ignition timing +8°bTDC and -10% injection duration. The levels of carbon dioxide and nitrogen oxides reach maximum in RON 88 E40 Gasoline with ignition timing +8°bTDC and injection duration -15% and ignition timing +8°bTDC and injection duration -10%. While the levels of carbon monoxide reach a minimum in RON 88 E50 Gasoline with ignition timing +8°bTDC and injection duration -15%, and hydrocarbons reach a minimum in RON 88 E60 with ignition timing +4°bTDC and injection duration -10%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"To make a sound policy of gasoline prices and its impact trnasportation sector that consume a lot of gasoline, one need to know price elasticity to gasoline demand...."
Artikel Jurnal  Universitas Indonesia Library
cover
Reza Hargiyanto
"Hal utama yang menjadi fokus penelitian ini adalah optimasi unjuk kerja mesin empat langkah bervolume 150 cc dengan bahan bakar bioethanol menggunakan engine control module (ECM). Dalam penelitian ini pengujian mesin dilakukan dengan bantuan dynoengine test dimana mesin terpasang pada perangkat dyno. Bahan bakar yang digunakan dalam penelitian ini merupakan bahan bakar campuran antara bensin dengan ethanol bervolume 10% sampai 20% (E0, E10, E20, E30, dan E40). Hasil uji dari campuran bahan bakar tersebut memilki tren naik dikarenakan nilai oktan yang juga naik. Namun kenaikkan pada hasil uji masih belum maksimal, upaya optimasi menggunakan Engine Control Module (ECM) keluar menjadi solusi tanpa harus mengubah spesifikasi atau komponen yang ada pada mesin. Percobaan yang dilakukan menggunakan ECM yaitu dengan mengubah derajat pengapian dan durasi injeksi pada mesin. Pengubahan pada perangkat Engine Control Module bertujuan untuk mendapatkan hasil performa yang lebih baik. Hal ini berdasarkan karakter mesin yang diubah titik pengapiannya akan mengakibatkan bahan bakar yang terbakar akan semakin banyak. Dari fenomena tersebut, daya dan torsi yang dihasilkan akan semakin tinggi.

The main focus of this thesis is to optimize the performance of a 150 cc engine with bioethanol fuel using Engine Control Module (ECM). In this research, the performance test is done by using the dynoengine test where the engine is attached to the dynamometer components. The fuel that are used in this research is a mixture between gasoline and bioethanol with 10% - 40% volume (E0, E20, E30, and E40. The performance from this mixture has an increase because of the mixtures octane number is also increase. But that result still not reach the optimum value. A solution using Engine Control Module (ECM) is carried out because we can optimize the engine without changing any parts or specification. The performance test using the Engine Control Module (ECM) is done by changing the ignition angle and the injection duration. The final result in this research consist of power, torque, specific fuel consumption (SFC), and exhaust gas emissions."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Monasari
"ABSTRAK
Bioethanol saat ini banyak dikembangkan untuk penggunaan bahan bakar kendaraan bermotor. Pemanfaatan low grade bioethanol merupakan awal mula penelitian ini dilakukan. Berawal dari pembuatan compact distillator pada mesin SI karburator untuk memperoleh high grade bioethanol dengan memanfaatkan gas buang sampai pada penelitian terbaru mengenai penggunaan zat aditif yang dicampurkan pada bahan bakar ethanol dengan bensin untuk mendapatkan performa dan emisi yang lebih baik. Pengujian dilakukan pada mesin SI 125cc pada engine dyno dengan menggunakan 7 variasi bahan bakar diantaranya, E0, E5, E10, E15, E5 aditif, E10 aditif, dan E15 aditif. Hasil pengujian diperoleh bahwa penambahan ethanol umumnya dapat meningkatkan performa motor uji yang dihasilkan, dan dengan penambahan zat aditif oxygenated cyclohexanol pada beberapa variasi bahan bakar dihasilkan kenaikan torsi dan daya yang dihasilkan. Sama halnya dengan performa, emisi gas buang CO dan HC pun mennurun akibat pengunaan ethanol sebagai campuran bahan bakar, dan sebaliknya nilai CO2 meningkat oleh karena molekul ndash;OH yang terkandung dalam campuran bahan bakar dengan aditif akan bereaksi dengan CO. CO2 juga dinilai sebagai salah satu indikator pembakaran yang sempurna. Penelitian ini bertujuan untuk melihat pengaruh zat aditif terhadap performa dan emisi gas buang yang dihasilkan oleh motor uji.

ABSTRACT
Bioethanol is currently widely developed for the use of vehicle fuel. Utilization of low grade bioethanol is the beginning of this research conducted. Starting from the manufacture of compact distillator on carburetor SI engine to obtain high grade bioethanol by utilizing exhaust gas up to the latest research on the use of additives in fuel mixture ethanol and gasoline to get better performance and emission gas. The test was performed in a 125 cc SI engine on engine dynamometer using 7 variants of fuel, E0, E5, E10, E15, E5 adfitive, E10 additive, and E15 additive. The results obtained that the addition of ethanol can generally improve the performance, and with the addition of oxygenated cyclohexanol additive in some variations of fuel produces increased torque and power generated. Same with performance, CO, and HC exhaust emissions are reduced due to the use of ethanol as a fuel mixture, and the value of CO2 increases because the ndash OH molecules contained in the fuel mixture with the additive will react with CO. CO2 is also rated as one of the perfect burning indicators. This study aims to see the effect of additives on the performance and exhaust emission produced by the motor test."
2018
T51548
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>