Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 82244 dokumen yang sesuai dengan query
cover
Yahya Muhammad
"Pada beberapa orang difabel mengalami kesulitan pada saat bergerak dalam aktivitas sehari-harinya. Penggunaan prostetik dapat mengurangi keterbatasan tersebut. Pada penggunaan prostetik dapat dimodifikasi dengan alat bantu gerak (aktuator) yang dikendalikan oleh brain computer interface (BCI) guna mengontrol prostetik dengan gelombang otak. Aktivitas membayangkan melakukan gerak motorik yang disebut motor imagery (MI) apabila dapat di-recognition dapat memudahkan pada difabel untuk mengendalikan prostetik miliknya. Tulisan ini bertujuan untuk menjelaskan bagaimana me-recognition sinyal elektroensefalografi (EEG) dengan mencoba mengklasifikasikan sinyal MI EEG. Simulasi dilakukan pada bahasa Python pada framework Tensorflow, Keras. Jenis machine learning yang dipilih adalah Convolutional Neural Network (CNN). Dataset diperoleh dari PhysioNet.org, diolah dengan metode Continuous Wavelet Transformation (CWT) dengan library MNE.

Some people with disabilities have trouble doing their daily activities. Prosthetics could reduce the difficulties to some degree. The use of a prosthetic can be modified by the addition of an actuator (generate of motion) driven by BCI (brain computer interface) to control prosthetic by brain waves. If we could make the recognition of the brain wave in imaginary activities of motoric movement called motor imagery (MI), it would help people with disabilities to better control their prosthetics. This article’s aim to describe how to do the recognition of EEG signals (electroencephalography) by trying to classify the MI EEG signals. The simulation was run in Phyton on a Tensorflow framework, with a keras wrapper. Convolutional Neutral Network (CNN) was chosen in this research as the machine learning. The datasets gathered from PhysioNet.org were transformed using the library MNE with the Continuous Wavelet Transformation (CWT) method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ester Fatmawati
"Telah dirancang prototype motor imagery dengan memanfaatkan perintah sinyal otak yang dihasilkan oleh Electroencephalography EEG . Sinyal EEG digunakan untuk memberikan informasi sinyal motorik. Bentuk unik dari sinyal EEG menggambarkan perintah untuk menggerakkan lengan. Pada kondisi lumpuh sekalipun, informasi motorik pada sinyal EEG masih akan ditemukan saat seseorang membayangkan menggerakkan lengannya. Dalam penelitian ini informasi motorik pada sinyal EEG digunakan sebagai umpan balik dengan menggabungkan 4 elektrode input F3, F4, FC5, FC6 . Akuisisi sinyal EEG menggunakan Emotiv EPOC portable. Probabilistic Neural Network PNN berfungsi sebagai pemrosesan sinyal. Fungsi ini digunakan untuk pengenalan sinyal motor imagery membayangkan gerakan lengan tangan . Karakteristik komputasi yang dilakukan oleh PNN secara parallel mampu mempersingkat waktu pemrosesan sinyal. Hasil pengolahan PNN adalah power maksimum sinyal mu, Power maksimum sinyal beta, frekuensi mu dan frekuensi beta. Kombinasi keempat fitur ini memberikan nilai akurasi yang cukup tinggi. Hasil percobaan menunjukkan bahwa akurasi untuk training rata-rata adalah 85,49 - 91,32 sedangkan nilai untuk testing 82,6 - 87,6 . Alat terapi yang digunakan nBETTER Upper Limb Feedback. Alat terapi akan aktif, bila nilai testing sinyal EEG lebih besar dari 80 . Ke depan, prototype motor imagery ini dapat dikembangkan sebagai alat terapi pasien stroke yang mampu mengurangi ketergantungan pada seorang fisioterapis saat proses terapi.

A modeling arms post stroke therapy used command brain signals generated by Electroencephalography EEG has been designed. EEG signals used to provide motorics information. The unique form of signal EEG describe commands to move the limbs. On condition paralyzed, motorics information on the EEG signals will still be found when someone tried to move his limbs. In this research, we aim used the motorics information on the EEG signals as neuro feedback with combine 4 input electrode F3, F4, FC5, FC6 . EEG signal acquisition using the Emotiv EPOC portable. Probabilistic Neural Network PNN function as signal processing. This function was applied to the recognition research of motor imagery EEG signals imagining arms movement . The parallel computing characteristic of PNN not only improved the generation ability for network, but also shorted the operation time. The result of PNN are maximum mu power, maximum beta power, mu frequency and beta frequency that provided value to calculate classification accuracy. The experimental results show that the accuracy for training on average is 85.49 91.32 while the value for testing is 82.6 87.6 . Therapy tool used nBETTER Upper Limb Feedback. The therapeutic tool will be active, when the value of the EEG signal testing is greater than 80 . In the future, this modeling post stroke therapy can be reduced dependency from physiotherapist."
Universitas Indonesia, 2017
T47558
UI - Tesis Membership  Universitas Indonesia Library
cover
Tusty Nadia Maghfira
"Menangis merupakan bahasa pertama yang dikuasai oleh bayi yang baru lahir. Tangisan bayi ini menjadi sinyal untuk orang tua atau pengasuh agar memberikan perlindungan dan kenyamanan yang dibutuhkan oleh bayi. Umumnya bayi membutuhkan pertolongan pengasuhnya ketika merasa haus, mengantuk, tidak dapat bersendawa, mengalami masalah perut dan merasa tidak nyaman. Apabila pertolongan tidak segera diberikan maka dapat membahayakan bayi tersebut. Namun terdapat faktor psikologis dan pengetahuan orang tua yang kurang dalam memahami setiap tangisan bayi. Berdasarkan masalah tersebut, studi klasifikasi arti tangisan bayi menjadi salah satu domain yang mulai dikembangkan agar dapat membantu orang tua dan pengasuh dalam memahami bayi. Berbagai metode diusulkan untuk memberikan hasil terbaik namun terdapat tantangan dalam studi ini yaitu sinyal suara tangis bayi yang susah dikenali karakteristiknya dibandingkan suara verbal dewasa. Oleh karena itu, penelitian ini mengusulkan pengembangan metode gabungan dari CNN dan RNN untuk mengatasi tantangan dan permasalahan pada studi pengenalan tangisan bayi. Hasil akurasi terbaik metode usulan CRNN mencapai 87,31%.

Crying is the first communication language of newborns. Infant cries can be considered as a cue that hopefully motivate parents and caregivers to give affection, safety, and protection to their infants. Generally, infant cries can be caused by many different reasons, for example when they feel hungry, sleepy, uncomfortable, want to burp, and have a stomachache. If the caregivers do not give their need immediately, it may get worse and harm their safety. But there are some psychological factors and lack of knowledge in understanding each infant’s cries. Based on these problems, the study of infant cry classification becomes one of the studies that began to be developed in order to help parents and caregivers understand their infants. Various methods have been proposed to provide the best result, but there is a challenge in this study which is infant cries signal is difficult to recognize compared to adult speech. Therefore, this study proposes the development CNN and RNN combination methods to overcome challenges and problems in the study of infant cry classification. We obtain best result of CRNN performance up to 87,31%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hasbullah
"Survei Kesehatan Indonesia (SKI) tahun 2023 yang dilakukan oleh Kementerian Kesehatan (Kemenkes) ada sekitar 70 juta perokok aktif di Indonesia. Apabila dihitung dari populasi penduduk Indonesia ada 28,62% penduduk yang merokok di tahun 2023 dan persentase ini meningkat dari tahun sebelumnya sebanyak 0,36%. Perilaku merokok ini menyebabkan berbagai penyakit seperti penyakit paru-paru kronis, kerusakan gigi, penyakit mulut, stroke, serangan jantung, kanker rahim, gangguan mata, dan kerusakan pada rambut. Untuk menekan jumlah perokok di Indonesia, diperlukan sistem untuk deteksi perokok. Deteksi perokok saat ini memakan biaya yang mahal, bantuan ahli, dan sistem yang kompleks. Oleh karena itu, deep learning dengan algoritma Convolutional Neural Network hadir sebagai solusi untuk mengatasi masalah tersebut. Skripsi ini membahas bagaimana merancang sistem deep learning dengan Convolutional Neural Network (CNN) untuk keperluan deteksi wajah perokok. Skripsi ini juga membahas bagaimana pengaruh berbagai skenario jumlah data pelatihan dan data pengujian serta penambahan ekstraksi fitur wajah terhadap metrik evaluasi . Hasil dari rancangan dievaluasi dengan metrik evaluasi kalkulasi loss function, akurasi, dan F1 score. Hasil simulasi menunjukan skenario data pelatihan 70% dan data pengujian 30% adalah skenario terbaik dengan nilai metrik evaluasi pengujian pada skenario ini sebesar 2.236 untuk loss, 54.5% untuk akurasi, dan 34.9% untuk F1 score. Skenario ini diimprovisasi dengan adanya penambahan ekstraksi fitur perokok pada awal preprocessing yang ditandai dari penurunan loss sebesar 65.65%, peningkatan akurasi sebesar 19%, dan peningkatan F1 score sebesar 24.08%.

The 2023 Indonesian Health Survey (SKI) conducted by the Ministry of Health (Kemenkes) reported that there are approximately 70 million active smokers in Indonesia. This accounts for 28.62% of the Indonesian population in 2023, representing a 0.36% increase from the previous year. Smoking behavior leads to various diseases such as chronic lung disease, tooth damage, oral diseases, stroke, heart attacks, uterine cancer, eye disorders, and hair damage. To reduce the number of smokers in Indonesia, a smoker detection system is necessary. Current smoker detection methods are expensive, require expert assistance, and involve complex systems. Therefore, deep learning with Convolutional Neural Network (CNN) algorithms presents a solution to address these issues. This thesis discusses how to design a deep learning system using Convolutional Neural Networks (CNN) for smoker face detection. It also examines the impact of different training and testing data scenarios and the addition of facial feature extraction on evaluation metrics. The designed system is evaluated using metrics such as loss function calculation, accuracy, and F1 score. The simulation results show that a scenario with 70% training data and 30% testing data is the best scenario, yielding evaluation metric values of 2.236 for loss, 54.5% for accuracy, and 34.9% for F1 score. This scenario was improved with the addition of smoker feature extraction in the preprocessing stage, resulting in a 65.65% reduction in loss, a 19% increase in accuracy, and a 24.08% increase in F1 score."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricad Ragapati Prihandini
"Kemajuan di bidang teknologi dan kecerdasan buatan memungkinkan inspeksi otomatis dapat dilakukan. Sebuah drone dilengkapi kamera yang dapat mengidentifikasi permasalahan struktur kapal seperti korosi akan membuat proses inspeksi kapal menjadi lebih efisien dari segi waktu dan biaya yang dibutuhkan sekarang. Pada studi ini dibuat model yang dilatih untuk dapat mengidentifikasi korosi secara otomatis dengan algoritma Convolutional Neural Network memanfaatkan metode transfer learning. MobileNetV2 dipilih sebagai artsitektur model klasifikasi yang memanfaatkan transfer learning dari ImageNet ke dalam dataset yang digunakan. Berdasarkan model yang telah dibuat model mencapai nilai akurasi training sebesar 92,86% dengan loss sebesar 0.0578 dan akurasi validasi sebesar 90,66% dengan loss sebesar 0.0091. Secara keseluruhan, model mempunyai performa yang baik dalam proses training maupun validasi dataset. Tidak ada indikasi overfitting berdasarkan kurva akurasi dan loss.

Advancements in technology and artificial intelligence make automated inspections become possible to do. A drone which is mounted with a camera identifying ship structural issues such as corrosion will make ship inspections become more efficient for a fraction of time and cost that is currently needed. In this study, a trained model is made in order to automatically identify corrosion using Convolutional Neural Network employing transfer learning method. MobileNetV2 is chosen as a classification model architecture which leverages transfer learning from ImageNet to the dataset. According to the data, the model achieved a training accuracy of 92,86% with loss 0.0578 and a validation accuracy of 90,66 with loss 0.0091. Overall, the model performs well on both the training and validation datasets. There is not any indication of overfitting based on their accuracy and loss curves."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutagalung, Dwight J.O.
"Penyakit kardiovaskular, khususnya aritmia, merupakan salah satu penyebab utama kematian di dunia. Aritmia terjadi akibat gangguan irama jantung yang dapat dideteksi menggunakan Elektrokardiogram (EKG), yang dideteksi dengan menganalisa perubahan atau kejanggalan dari sinyal EKG yang dilihat oleh pengamat. Namun, sinyal EKG seringkali tidak akurat karena bersifat non-linear dan memiliki amplitudo rendah, sehingga perubahan kecil mungkin dilalaikan oleh mata telanjang manusia. Oleh karena itu, diperlukan metode yang lebih efektif dalam mengklasifikasikan aritmia. Penelitian ini mengusulkan penggunaan metode Bidirectional Recurrent Convolutional Neural Network (BiRCNN) untuk klasifikasi sinyal EKG. Metode BiRCNN menggabungkan Convolutional Neural Network (CNN) yang mengekstraksi fitur morfologi sinyal EKG dan Recurrent Neural Network (RNN) yang menangkap informasi temporal dari detak jantung. Gabungan kedua metode ini diharapkan dapat memberikan hasil yang akurat dan konsisten. Data yang digunakan dalam penelitian ini berasal dari Basis Data MIT-BIH Arrhythmia, yang terdiri dari ribuan rekaman detak jantung normal dan aritmia. Data yang digunakan melalui tahap praproses dengan memilih segmen sinyal EKG dengan 187 titik waktu, dengan normalisasi pada semua data agar berada dalam rentang amplitudo yang sama. Untuk mengatasi ketidakseimbangan kelas dalam dataset, metode SMOTE digunakan untuk meningkatkan jumlah sampel kelas minoritas hingga mencapai 100% dari jumlah sampel kelas mayoritas, sehingga memastikan distribusi data yang lebih seimbang. Evaluasi kinerja model dilakukan menggunakan metrik akurasi, sensitivitas, spesifisitas, dan nilai AUC-ROC. Hasil penelitian dari lima simulasi pembangunan model menunjukkan bahwa metode BiRCNN memiliki kinerja yang baik dalam klasifikasi aritmia, dengan rata-rata nilai akurasi sebesar 98.25%, sensitivitas sebesar 94.67%, spesifisitas sebesar 98.70%, dan AUC-ROC sebesar 99.44%. Berdasarkan hasil penelitian tersebut, metode ini mampu mengidentifikasi aritmia secara konsisten dengan ketepatan yang cukup baik.

Cardiovascular disease, particularly arrhythmia, is one of the leading causes of death in the world. Arrhythmias occur due to heart rhythm disturbances that can be detected using an Electrocardiogram (ECG), detected by analyzing the changes or irregularities in the ECG signal seen by the observer. However, ECG signals are often inaccurate because they are non-linear and have low amplitude, so small changes may be overlooked by the naked human eye. Therefore, a more effective method of classifying arrhythmias is needed. This research proposes the use of Bidirectional Recurrent Convolutional Neural Network (BiRCNN) method for ECG signal classification. The BiRCNN method combines a Convolutional Neural Network (CNN) that extracts morphological features of ECG signals and a Recurrent Neural Network (RNN) that captures temporal information of the heartbeat. The combination of these two methods is expected to provide accurate and consistent results. The data used in this study comes from the MIT-BIH Arrhythmia Database, which consists of thousands of normal and arrhythmic heartbeat recordings. The data used went through a preprocessing stage by selecting ECG signal segments with 187 time points, with normalization on all data to be in the same amplitude range. To overcome the class imbalance in the dataset, the SMOTE method was applied to increase the number of minority class samples to 100% of the number of majority class samples, thus ensuring a more balanced data distribution. Model performance evaluation was performed using accuracy, sensitivity, specificity, and AUC-ROC value metrics. The results of five model fitting simulations showed that the BiRCNN method performed well in arrhythmia classification, with an average accuracy value of 98.25%, sensitivity of 94.67%, specificity of 98.70%, and AUC-ROC of 99.44%. Based on the results, this method is able to identify arrhythmias consistently with fairly good accuracy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jason Albert Natanael
"Kopi telah menjadi komoditas ekspor non migas yang memberikan kontribusi terhadap devisa negara dalam jumlah yang tidak sedikit. Nilai ekspor kopi sendiri pada kancah internasional bergantung kepada 2 faktor utama, yaitu jenis atau varietas biji kopi dan tingkat kelayakan atau kualitas dari biji kopi. Upaya untuk mengklasifikasikan kedua faktor tersebut masih cenderung dilakukan secara manual oleh para petani kopi. Atas pertimbangan inilah, penulis hendak menggunakan metode lain, yakni penggunaan model CNN (Convolutional Neural Network) dengan basis masukan berupa citra normal (spektrum RGB) dan citra multispektral (spektrum OCN). Selain itu, penulis juga hendak membandingkan performa dari 2 arsitektur model CNN yang berbeda, yakni ResNet18 terhadap SqueezeNet. Input dari kedua arsitektur ini berupa kombinasi dari citra normal, citra multispektral, atau citra yang telah diregistrasikan (1 citra dengan 6 channel berbeda). Hasil akurasi tertinggi dicapai oleh arsitektur ResNet18 dengan input citra normal (RGB) yang memberikan akurasi sebesar 89% untuk klasifikasi varietas biji kopi hijau, serta 97% untuk klasifikasi tingkatan kualitas biji kopi. Meski demikian, arsitektur ini mampu untuk melakukan klasifikasi multi-output secara bersamaan walaupun terdapat sedikit pengurangan pada tingkat akurasi yang didapatkan.

Coffee has become one of the non-oil and gas export commodity, providing numerous amount of Indonesia’s foreign income. Within the international market, the export value of coffee beans rely on 2 aspects, its variety and its quality. The attempts to classify coffee beans are done manually by the farmers. Therefore, the writer attempts to design a new method, using convolutional neural networks with normal (RGB spectrum image) and multispectral images (OCN spectrum image) as its inputs. The writer also wishes to analyze and compare 2 different CNN architectures performance in this case; ResNet18 towards SqueezeNet. Considering the combination of the inputs; normal images, multispectral images, or the registered images (images with 6 different channels). The highest accuracy acquired from the ResNet18 CNN model architecture using normal images (RGB) is as following: 86% for green coffee beans varieties classification, and 96% for green coffee beans. These architectures are also capable of performing multi-class output classification despite the trade-off in accuracy gained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahesa Oktareza
"Kanker kolorektal adalah kanker yang berkembang pada usus besar dan/atau rektum. Berdasarkan survei GLOBOCAN 2012, insidens kanker kolorektal di seluruh dunia menempati urutan ketiga dan menduduki peringkat keempat sebagai penyebab kematian. Dalam proses diagnosis kanker kolorektal, telah diterapkan pendekatan medis dengan digital rectal examination menggunakan colonoscopy untuk menilai keadaan tumor dan mobilitas tumor. Namun, seiring berkembangnya teknologi, para ilmuwan mencoba pendekatan lain untuk pendeteksian kanker kolorektal salah satunya menggunakan penggunaan artificial intelligence khususnya machine learning. Terdapat beberapa penelitian yang lalu mengenai pengaplikasian machine learning dalam kasus klasifikasi kanker kolorektal dengan berbagai model dan tingkat akurasi. Pada penelitian ini, penulis menggunakan pendekatan Convolutional Neural Network (CNN) dengan arsitektur You Only Look Once (YOLO) untuk mengklasifikasi kanker kolorektal tipe ganas dan jinak. Data yang digunakan pada penelitian ini adalah Lung and Colon Cancer Histopathological Image Dataset oleh Borkowski AA, dkk. dengan mengambil dataset kanker kolorektal yaitu 5000 kanker ganas dan 5000 kanker jinak. Model akan dibangun melalui data tersebut, yang dilatih menggunakan metode CNN dengan arsitektur YOLO. Data di split dengan perbandingan data latih dan data uji 70:30 dan 80:20. Kinerja model dievaluasi dengan nilai accuracy, recall, loss dan running time. Accuracy dan Recall yang didapatkan pada masing-masing split data sebesar 100% dengan running time 3 jam 7 menit 43 detik pada split data 70:30 dan 3 jam 30 menit 6 detik pada split data 80:20.

Colorectal cancer is cancer that develops in the colon and/or rectum. Based on the 2012 GLOBOCAN survey, the incidence of colorectal cancer worldwide ranks third and ranks fourth as a cause of death. In the process of diagnosing colorectal cancer, a medical approach has been applied with digital rectal examination using colonoscopy to assess the state and mobility of the tumor. However, as technology develops, scientists try other approaches to detect colorectal cancer, one of which is using artificial intelligence, especially machine learning. There have been several past studies regarding the application of machine learning in the case of colorectal cancer classification with various models and levels of accuracy. In this study, the authors used a Convolutional Neural Network (CNN) approach with You Only Look Once (YOLO) architecture to classify malignant and benign types of colorectal cancer. The data used in this study was the Lung and Colon Cancer Histopathological Image Dataset by Borkowski AA, et al. by taking the colorectal cancer dataset, namely 5000 malignant cancers and 5000 benign cancers. The model will be built using the data, which is trained using the CNN method with the YOLO architecture. The data is split with a comparison of training data and test data of 70:30 and 80:20. The performance of the model is evaluated with the values of accuracy, recall, loss and running time. Accuracy and Recall obtained in each data split is 100% with a running time of 3 hours 7 minutes 43 seconds on a 70:30 data split and 3 hours 30 minutes 6 seconds on an 80:20 data split."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chelvian Aroef
"ABSTRAK
Pada era modern ini, semakin banyak jenis penyakit yang baru dengan gejala yang berbeda beda juga. Teknologi dituntut bisa memainkan peran untuk membantu penelitian pada bidang kesehatan. Stroke merupakan salah satu penyakit yang memiliki angka kematian tertinggi di dunia. Stroke terjadi karena terganggunya pasokan darah menuju otak sehingga otak mengalami kekurangan oksigen dan nutrisi. Stroke bisa dibagi menjadi berdasarkan bagaimana stroke terjadi, stroke hemoragik dan stroke iskemik. Stroke hemoragik terjadi karena pecahnya pembuluh darah yang menuju otak, sedangkan stroke iskemik terjadi karena terjadinya penyumbatan yang mengganggu pasokan darah ke otak. Jika penyumbatan terjadi pada daerah otak, maka disebut infark serebri. Dalam studi ini digunakan metode Convolutional Neural Network untuk mengklasifikasikan data gambar infark serebri yang nantinya akan dibandingkan dengan metode Neural Network. Didapatkan dari hasil performa metode Convolutional Neural Network lebih baik jika dibandingkan dengan metode Neural Network untuk pengklasifikasian data gambar infark serebri."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Aditya Apsari
"

Meningkatnya angka prevalensi gangguan depresi, terutama di generasi muda, membawa urgensi tentang pentingnya menjaga kesehatan mental. Terlebih lagi, adanya gangguan depresi pada seseorang telah terbukti untuk meningkatkan risiko dan keparahan (severity) penyakit kardiovaskular. Seringkali, depresi luput atau salah didiagnosis sebagai penyakit lain, karena gejala-gejalanya yang mirip dengan penyakit non-mental lainnya. Karena itu, kebutuhan untuk membuat suatu sistem berbasis sinyal elektroensefalografi (EEG) yang dapat membantu diagnosis gangguan mental ini menjadi semakin penting. Tujuan penelitian ini adalah membuat program analisis spektral dan klasifikasi sinyal EEG untuk membantu diagnosis gangguan depresi yang berbasis Machine Learning. Untuk melengkapinya, dibuat juga aplikasi MATLAB dengan Graphical User Interface agar mempermudah pengguna. Sinyal EEG diproses menggunakan dua metode, yaitu wavelet dan Power Spectral Density (PSD). Relative Power Ratio dan Average Alpha Asymmetry dihitung sebagai fitur klasifikasi. Untuk mereduksi jumlah fitur, dilakukan perhitungan dominansi. Fitur akan diurutkan sesuai dominansinya, sehingga fitur dengan dominansi tertinggi akan digunakan untuk klasifikasi Machine Learning. Pengklasifikasi yang digunakan adalah feedforward neural network dengan cross validation. Hasil akurasi tertinggi yang dicapai adalah 83,6% menggunakan metode wavelet dan 77,5% menggunakan metode PSD. Selain itu, di bagian Frontal dan Parietal subyek depresi, ditemukan aktivitas alfa bagian otak kanan yang lebih dominan. Hal tersebut konsisten dengan penemuan dari riset-riset sebelumnya yang menunjukkan bahwa subyek depresi memiliki asimetri aktivitas otak yang dominan di bagian kanan.


The increasing prevalence of depressive disorder (also known as major depressive disorder or MDD), especially in the younger generations, has brought urgency upon the importance of keeping good mental health. Moreover, depression has proven to increase risks of cardiovascular diseases, along with their severities. Depressive disorders are oftentimes not diagnosed or misdiagnosed, because some of the symptoms are similar with those of other non-mental illnesses. Because of that, the necessity to build a system based on electroencephalographic (EEG) signals that could help diagnose this mental illness has been increasing in importance. The goal of this research is to make a Machine Learning-based classification program that implements EEG spectral analysis to aid for the diagnostics of depression. A MATLAB application with a Graphical User Interface was made as an addition to the program so that users can operate it easily. EEG signals were processed using two different signal processing methods, which are wavelet and Power Spectral Density (PSD). Relative Power Ratio and Average Alpha Asymmetry were calculated for feature extraction. As a feature-reducing method, feature dominance was calculated and ranked so that the highest ranked features will be used as input for the Machine Learning classification. The classifier used was feedforward neural network with cross validation. The highest achieved results were 83,6% accuracy using the wavelet method and 77,5% accuracy using the PSD method. Other than that, depressed subjects also showed a dominant right-hemisphere alpha activity in the Frontal and Parietal region, which is consistent with previous research that reveals the right-dominated asymmetry in the depressed brain.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>