Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 66473 dokumen yang sesuai dengan query
cover
Kinanthy Dwi Pangesty
"Manajemen rumah sakit yang baik dapat meningkatkan kualitas pelayanan medis. Rumah sakit merupakan institusi pelayanan kesehatan yang menyelenggarakan pelayanan kesehatan perorangan secara paripurna yang menyediakan pelayanan rawat inap, rawat jalan, dan gawat darurat. Rumah sakit diharuskan untuk mengelola berbagai jenis sumber daya untuk meningkatkan efisiensi manajemen secara keseluruhan, seperti mengelola jadwal tim dan staf medis, manajemen tempat tidur, dan jalur perawatan. Penyakit jantung merupakan penyakit penyebab kematian tertinggi di dunia yang sangat membutuhkan penanganan medis dengan segera. Penyakit jantung membutuhkan salah satu pelayanan pada rumah sakit yaitu pelayanan rawat inap. Pelayanan rawat inap melibatkan sumber daya yang berkaitan dengan biaya dan waktu. Dengan adanya prediksi durasi rawat inap pada pasien penyakit jantung akan membantu pihak pasien dalam menyiapkan kebutuhan yang diperlukan serta pihak rumah sakit dalam manajemen tempat tidur rawat inap pasien penyakit jantung. Pada penelitian ini, dilakukan prediksi durasi rawat inap pasien penyakit jantung dengan menggunakan pendekatan ensemble machine learning dengan tujuan untuk mendapatkan metode terbaik dalam memprediksi dengan membandingkan dua metode ensemble machine learning yaitu random forest dan extreme gradient boosting, serta metode logistic regression sebagai baseline. Kemudian tujuan lainnya yaitu untuk mengetahui faktor yang paling berpengaruh terhadap durasi rawat inap. Ketiga metode yang digunakan merupakan bagian dari supervised machine learning. Selain itu, dilakukan optimasi hyperparameter untuk meningkatkan performa dari hasil model prediksi. Setelah membuat model prediksi dan melakukan evaluasi terhadap model, didapatkan metode terbaik yaitu random forest dengan optimasi hyperparameter yang mendapat hasil akurasi sebesar 83,9% dan nilai AUROC sebesar 92,86% serta faktor-faktor yang paling berpengaruh terhadap durasi rawat inap antara lain jumlah limfosit total, urea, trombosit, hemoglobin, glukosa, usia, kreatinin, peptida natriuretik otak, fraksi ejeksi dan hipertensi.

Good hospital management can improve the quality of medical services. The hospital is a health service institution that provides complete individual health services in inpatient, outpatient, and emergency services. Hospitals are required to manage various types of resources to improve overall management efficiency, such as managing medical team and staff schedules, bed management, and clinical pathways. Heart disease is the leading cause of death in the world and requires immediate medical treatment. Heart disease requires one of the services at the hospital, namely inpatient services. Inpatient services involve resources related to cost and time. Predicting the duration of hospitalization in heart disease patients will help the patient prepare for the necessary needs and the hospital in managing inpatient beds for heart disease patients. In this study, the prediction of the duration of hospitalization for heart disease patients using an ensemble machine learning approach was carried out with the aim of getting the best method of predicting by comparing two ensemble machine learning methods, namely random forest and extreme gradient boosting, as well as the logistic regression method as a baseline. Then another goal is to find out the most influential factors on the duration of hospitalization. The three methods used are part of supervised machine learning. In addition, hyperparameter optimization is carried out to improve the performance of the prediction model results. After making a predictive model and evaluating the model, the best method was obtained, namely random forest with hyperparameter optimization which obtained an accuracy of 83.9% and an AUROC value of 92.86% and the factors that most influence the duration of hospitalization include the number of total lymphocytes, urea, platelets, hemoglobin, glucose, age, creatinine, brain natriuretic peptide, ejection fraction and hypertension.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iryanti Djaja
"Budidaya udang vaname (Litopenaeus vannamei) sangat diminati sehingga permintaan udang ini meningkat setiap tahunnya. Masalah terberat para petambak adalah kegagalan panen yang berakibat kepada keberlangsungan usaha mereka. Perlu adanya usaha perbaikan untuk meningkatkan keberhasilan panen. Penelitian ini bertujuan untuk lebih menggali mengenai penggunaan machine learning dalam prediksi hasil panen dari data kualitas air. Hasil prediksi ini selanjutnya dipakai dan digunakan dalam proses bisnis sehingga dapat meningkatkan produktivitas. Analisis yang digunakan pada penelitian ini adalah analisis kuantitatif dan kualitatif serta perbaikan proses bisnis. Analisis kuantitatif dengan metode big data dan machine learning. Model yang dipakai adalah k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Analisis kualitatif dilakukan dengan observasi dan interview untuk memperbaiki proses bisnis. Proses bisnis diperbaiki mengikuti BPM Lifecycle dengan memasukan hasil analisis kuantitatif. Dari penelitian ini didapatkan bahwa prediksi machine learning dengan model Decision Tree dari variabel rasio bakteri merugikan dan NH4+ memberikan akurasi tertinggi mencapai 96%. Setelah didapatkan model dan variabel dengan akurasi tertinggi, penelitian ini juga melakukan penerapan ke dalam proses bisnis dengan pendekatan BPM Lifecycle sehingga hasil tersebut dapat diimplementasi dan memberikan hasil yang lebih produktif.

Interest in Vaname shrimp (Litopenaeus vannamei) farming is growing every year. The biggest problem for shrimp farming was the unsuccessful harvest that affected their business sustainability. So, there should be an improvement made to increase the chance of a successful harvest and its productivity. Past research mentioned that vaname shrimp harvest result can be predicted by machine learning approach from water quality data. It gave good accuracy and can be used to have faster decision making. The objective of this research is to deep dive into the utilization of machine learning to predict the successful harvest from water quality data. The predicted result will be utilized in the business process to improve productivity. Analysis that used at this research are quantitative and qualitative with business process improvement. Quantitative analysis used big data methode and machine learning. Models that have been applied are k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Data that is used for analysis are pH, salinity, NOx, NH4+, and harmful bacteria index. Qualitative analysis was applied by observation and interview with the focus to improve business process. Business processes will be improved using BPM Lifecycle with the utilization of quantitative result. This research showed that prediction machine learning with Decision Tree model from harmful bacteria index and NH4+ giving the best accuracy until 96%. The next step was utilizing the quantitative result at the business process with BPM Lifecycle approach so the result can be implemented and gave more productive result."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Richie Ghifari
"Rancang campur beton merupakan proses bertahap dan kompleks untuk mencoba menemukan komposisi bahan terbaik guna menghasilkan beton dengan performa terbaik. Kuat tekan beton merupakan sifat terpenting dalam kualitas beton dibandingkan sifat-sifat lain. Dalam proses pembuatannya, banyak variabel terutama jumlah komposisi material penyusun yang dapat memengaruhi kuat tekan beton. Terdapat beberapa metode konvensional dalam memprediksi beton yang terkadang memberikan hasil prediksi lebih atau kurang dari kuat tekan yang ditargetkan. Diperlukan metode yang akurat dalam memprediksi kuat tekan beton agar dapat memberikan keuntungan secara signifikan terhadap penggunaan bahan. Oleh karena itu, penelitian ini menggunakan Deep Neural Network (DNN) sebagai subbidang dari Machine Learning (ML) dan Artificial Intelligence (AI), untuk memprediksi kuat tekan beton berdasarkan komposisi campuran dan properti materialnya. Penelitian ini menghasilkan formula matematika berupa persamaan yang dihasilkan dari model DNN terbaik dengan melihat aspek error model dan grafik model loss. Terdapat total 2048 model yang dianalisis dengan variasi jumlah variabel input (feature) yang berbeda-beda. Model 280 pada kasus 1 dan model 23 pada kasus 5 merupakan model terbaik yang dihasilkan penelitian ini, dengan masing-masing nilai error model 43,8028 dan 5778,5850 untuk Mean Squared Error (MSE) serta 5,0073 dan 59,8225 Maen Absolute Error (MAE).

Concrete mix design is a gradual and complex process of trying to find the best ingredient composition to produce the best performing concrete. The compressive strength of concrete is the most important property in concrete quality compared to other properties. In the manufacturing process, many variables, especially the amount of material composition, can affect the compressive strength of concrete. There are several conventional methods of predicting concrete that sometimes give predictive results more or less than the targeted compressive strength. An accurate method of predicting the compressive strength of concrete is needed in order to significantly benefit the use of materials. Therefore, this research utilizes Deep Neural Network (DNN), a subfield of Machine Learning (ML) and Artificial Intelligence (AI), to predict the compressive strength of concrete based on its mix composition and material properties. This research produces mathematical formulas in the form of equations generated from the best DNN model by looking at the aspects of model error and model loss graphs. There are a total of 2048 models analyzed with different variations in the number of input variables (features). Model 280 in case 1 and model 23 in case 5 are the best models produced by this study, with model error values of 43.8028 and 5778.5850 for Mean Squared Error (MSE) and 5.0073 and 59.8225 Maen Absolute Error (MAE), respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rebala, Gopinath
"Just like electricity, Machine Learning will revolutionize our life in many ways-some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with."
Switzerland: Springer Nature, 2019
e20506268
eBooks  Universitas Indonesia Library
cover
Eria Tri Utamy
"Jaringan optik adalah jaringan telekomunikasi berkapasitas tinggi dengan menggunakan teknologi dan komponen optik. Di Indonesia, CWDM biasanya digunakan pada jaringan optik di daerah urban, hal ini dikarenakan CWDM memiliki bandwidth yang lebar dan sesuai dengan kebutuhan daerah urban yang hanya butuh jarak yang pendek. Machine learning (ML) merupakan salah satu cabang kecerdasan buatan yang sangat cocok untuk menangani masalah kompleks yang sulit dijawab dalam waktu yang wajar. Prediksi Quality of Transmission (QoT) yang akurat sebelum pembentukan koneksi sangat penting untuk penyediaan layanan dan pemanfaatan sumber daya jaringan. Model Coarse Wavelength Division Multiplexing (CWDM) yang digunakan jaringan sesuai dengan standar ITU-T G.694.2 yaitu splitting sebesar 20nm, pada wavelength yang terdaftar pada standar yaitu 1551 nm, 1571 nm, 1591 nm, dan 1611 nm. Pendekatan yang digunakan adalah algoritma jenis linear regression dengan akurasi 82,47%, k-nearest neighbor regression dengan akurasi 77,18%, support vector regression dengan akurasi 83,88%, random forest regression 91,44%, dan deep learning ANN regression dengan akurasi 94,52%. Algoritma machine learning yang paling baik dalam memprediksi kualitas transmisi adalah random forest regressor. Algoritma ini tidak lebih baik dari deep learning yaitu, ANN regression. Namun waktu komputasi pada ANN regression cenderung lebih lama yaitu 12,451 ms sedangkan pada random forest regression hanya 1,9098 ms.

An optical network is a high-capacity telecommunications network using optical technology and components. In Indonesia, CWDM is usually used on optical networks in urban areas, this is because CWDM has a wide bandwidth and is in accordance with the needs of urban areas that only need a short distance. Machine learning (ML) is a branch of artificial intelligence that is very suitable for dealing with complex problems that are difficult to answer in a reasonable time. Accurate Quality of Transmission (QoT) prediction prior to connection establishment is critical for service provision and utilization of network resources. The Coarse Wavelength Division Multiplexing (CWDM) model used by the network complies with the ITU-T G.694.2 standard, which is 20nm splitting, the wavelengths registered in the standard are 1551 nm, 1571 nm, 1591 nm, and 1611 nm. The approach used is a linear regression type algorithm with an accuracy of 82.47%, k-nearest neighbor regression with an accuracy of 77.18%, support vector regression with an accuracy of 83.88%, random forest regression of 91.44%, and ANN deep learning regression. With an accuracy of 94.52%. The best machine learning algorithm for predicting transmission quality is the random forest regressor. This algorithm is no better than deep learning i.e., ANN regression. However, the computational time for ANN regression tends to be longer, namely 12.451 ms, while for random forest regression it is only 1.9098 ms. "
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Livia Meristya Fitriani
"Diabetes melitus merupakan peningkatan kadar gula darah disertai dengan gangguan metabolisme karbohidrat, lipid, dan protein sebagai akibat fungsi insulin yang tidak mencukupi. Pada tahun 2021 jumlah kematian akibat diabetes melitus di Indonesia mencapai 236.711 orang, menempati urutan keenam dunia dan pertama di Asia Tenggara. Di Indonesia penyakit ini meningkat sebesar 8,5% di tahun 2014 pada orang berusia di atas 18 tahun. Banyak faktor yang menjadi pemicu antara lain umur, jenis kelamin, serta diagnosa dokter terhadap penyakit bawaan. Meningkatnya jumlah kasus kematian akibat diabetes melitus setiap tahunnya membuat perusahaan asuransi harus mengantisipasi keadaan tersebut, termasuk menghitung cadangan klaim. Tulisan ini bertujuan untuk menghitung prediksi klaim yang dapat disiapkan dengan menggunakan batasan variabel umur, jenis kelamin, dan diagnosa dokter terhadap penyakit bawaan lainnya dengan melakukan klasifikasi menggunakan K-Modes clustering dan Metode Heuristik. Setelah mengklasifikasikan data, dilanjutkan dengan menghitung prediksi klaim menggunakan algoritma Random Forest, Naïve Bayes, dan Support Vector Machine. Hasil penelitian ini menunjukkan bahwa prediksi model terbaik diperoleh dengan menggunakan algoritma Naive Bayes, sedangkan kelompok klasifikasi terbaik menggunakan model Heuristik. Hasil penelitian ini diharapkan dapat menjadi pedoman bagi perusahaan asuransi dalam menentukan estimasi jumlah klaim yang mungkin terjadi.

Diabetes mellitus is an increase blood sugar levels accompanied by impaired metabolism of carbohydrates, lipids, and proteins as a result of insufficient insulin function. In 2021 the number of deaths due to diabetes mellitus in Indonesia reached 236,711 people, this is ranked sixth in the world and first in Southeast Asia. This disease increased by 8.5% in 2014 people over 18 years of age. Many factors influence this disease, including age, gender, also the doctor's diagnosis of congenital diseases. The increasing number of death from diabetes mellitus every year causes insurance companies anticipate the situation calculating claim reserves. This paper aims to calculate prediction of claims that can be generated using the variable limits of age, gender, and doctor's diagnosis of other congenital diseases by doing classification using K-Modes clustering and Heuristic Method. After that we calculate claim predictions using Random Forest, Naïve Bayes, and Support Vector Machine algorithms. The results of this study indicate that the best model predictions are using the Naive Bayes algorithm, while the best classification group uses the Heuristic model. The results of this study are expected to be a guideline for insurance companies in determining the estimated amount of claims that may occur."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Cha Zhang, editor
"This volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike. "
New York: [, Springer], 2012
e20418625
eBooks  Universitas Indonesia Library
cover
Ananda Fauzia Sabban
"Rumah menjadi tempat tinggal yang memiliki fungsi untuk memberikan rasa aman dan nyaman bagi penghuninya. Oleh sebab itu, pemilihan lokasi tempat tinggal menjadi penting, terutama bagi penduduk Jakarta, dimana Jakarta termasuk daerah rawan terhadap banjir. Banjir di Jakarta berdampak pada keamanan dan keselamatan hingga memberikan kerugian secara materil. Oleh karena itu, penelitian ini mengestimasikan property value harga rumah dengan mempertimbangkan lokasi tempat tinggal. Namun, penelitian ini juga akan menggunakan faktor penentu lokasi dalam pemilihan rumah lainnya, seperti atribut aksesibilitas dan atribut struktutal. Dalam pembuatan model estimasi ini akan menggunakan machine learning (ML) sebagai metodenya, yaitu Gradient Boosting Decision Trees (GBDT) dan Random Forest (RF), dengan optimasi Genetic Algorithm (GA) untuk meningkatkan kinerja model. Hasil penelitian ini menunjukkan GBDT dan RF memiliki performa sama baiknya dalam mengestimasi model property value rumah. Serta, penggunaan GA untuk meningkatkan kinerja model berhasil dengan meningkatnya nilai R2, serta menurunnya nilai MAPE dan RMSE. Penelitian ini juga melihat faktor – faktor yang berpengaruh terhadap model, dengan luas tanah dan luas bangunan menjadi faktor paling berpengaruh, yang diikuti oleh MRT, rumah sakit, pusat perbelanjaan, tol, SMP, dan lokasi rawan.

A home serves as a place of residence that provides a sense of safety and comfort for its occupants. Therefore, the selection of the location for a residence is crucial, especially for residents of Jakarta, as Jakarta is prone to flooding. Flooding in Jakarta impacts security, safety, and even material losses. Hence, this research aims to estimate the property value of houses by considering the location of the residence. Additionally, the research will incorporate other factors that influence housing selection, such as accessibility attributes and structural attributes. The estimation model will utilize machine learning (ML) techniques, specifically Gradient Boosting Decision Trees (GBDT) and Random Forest (RF), with Genetic Algorithm (GA) optimization to enhance the model's performance. The research findings indicate that both GBDT and RF perform equally well in estimating the property value model. Moreover, the use of GA to improve the model's performance is successful, as evidenced by an increase in the R2 value and a decrease in the MAPE and RMSE values. The research also examines the factors that influence the model, with land area and building area being the most influential factors, followed by proximity to the MRT, hospitals, shopping centres, toll roads, junior high schools, and flood-prone areas."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Amrializzia
"Pipa transmisi adalah cara teraman dan paling efektif untuk mengangkut gas alam dalam jumlah besar dalam jarak jauh. Meskipun transportasi menggunakan pipa adalah yang paling aman, kegagalan pipa transmisi dapat menyebabkan kerusakan, kerugian finansial, dan cedera. Kegagalan pipa perlu diprediksi untuk untuk menentukan prioritas pemeliharaan pipa sebagai salah satu strategi membuat jadwal pemeliharaan prefentif yang tepat sasaran dan efisien agar pipa dapat diperbarui atau direhabilitasi pipa sebelum terjadi kegagalan. Metode yang ditawarkan pada studi ini adalah machine learning, dimana metode merupakan bagian dari insiatif transformasi digital (Hajisadeh, 2019). Model dikembangkan berdasarkan data kegagalan historis dari jaringan pipa transmisi gas darat sekitar 2010-2020 yang dirilis oleh Departemen Transportasi AS dengan karakteristik data yang tidak terstruktur dan kompleks. Proses pembelajaran mesin dapat dibagi menjadi beberapa langkah: pra-pemrosesan data, pelatihan model, pengujian model, pengukuran kinerja, dan prediksi kegagalan. Pengembangan model pada studi ini dilakukan menggunakan dua algoritma yaitu regresi logistik dan random forest. Pola perilaku dari faktor-faktor yang paling berpengaruh adalah usia dan panjang segmen pipa meiliki korelasi positif terhadap kegagalan pipa. Kedalaman pipa, ketebalan, dan diameter pipa memiliki korelasi negatif. Kegagalan pipa paling sering terjadi pada pipa dengan class location 1 dan class location 4, pipa yang ditempatkan di bawah tanah, serta pipa dengan tipe pelapis coal tar. Hasil pengembangan model menggunakan machine learning menunjukan hasil performa model akurasi prediksi 0.949 dan AUC 0.950 untuk model dengan algoritma regresi logistik. Sedangkan akurasi prediksi 0.913 dan AUC 0.916 untuk model dengan algoritma random forest. Berdasrkan hasil uji performa kita dapat menyimpulkan bahwa machine learning adalah metode yang efektif untuk memprediksi kegagalan pipa. Berdasarkan model yang dilatih pada dataset nyata pipa transmisi gas, hasil prediksi pada studi kasus dapat menghindari 29% dari kegagalan pipa pada 2025, 53% kegagalan pipa pada tahun 2030, dan 64% pada tahun 2035.

Transmission pipe is the safest and most effective way to transport large amounts of natural gas over long distances. Although transportation using pipelines is the safest, transmission pipeline failures can cause damage, financial losses, and injuries. Pipeline failures need to be predicted to determine the priority of pipeline maintenance as one of the strategies to create a schedule of maintenance targets that is right on target and efficient so that the pipeline can be rehabilitated before a failure occur. The method offered in this study is machine learning, where the method is part of the digital transformation initiative (Hajisadeh, 2019). The model was developed based on historical failure data from the onshore gas transmission pipeline around 2010-2020 released by the US Department of Transportation with unstructured and complex data characteristics. The machine learning process can be divided into several steps: data pre-processing, model training, model testing, performance measurement, and failure prediction. The development of the model in this study was carried out using two algorithms namely logistic regression and random forest. The correaltion of the factors that most influence the failure of an onshore gas transmission pipeline is the age and length of the pipe segment has a positive correlation with pipe failure. Depth of cover, thickness, and diameter of pipes have a negative correlation with pipe failures. Pipe failures most often occur in pipes with class location 1 and class location 4, undersoil, and pipes with coal tar coating types. The results of the development of the model using machine learning showed the results of the model performance prediction accuracy is 0.949 and AUC is 0.950 for models with logistic regression algorithms. Whereas the accuracy of prediction is 0.913 and AUC is 0.916 for models using the random forest algorithm. Based on the results of performance tests we can conclude that machine learning is an effective method for predicting pipe failures. Based on the model trained on a real dataset of gas transmission pipelines, the prediction results in case studies can avoid 29% of pipe failures in 2025, 53% of pipe failures in 2030, and 64% in 2035. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>