Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 156693 dokumen yang sesuai dengan query
cover
Jonathan Elloy S
"Barcode merupakan kumpulan data optik yang dapat dimengerti sebuah mesin dan memiliki fungsi yang sangat luas, sebagai contoh adalah karcis parkir kendaraan. Karcis parkir merupakan penanda sebuah kendaraan agar bisa keluar dan masuk ke dalam parkiran tersebut. Kendaraan dapat keluar dari area parkir dengan memindai barcode yang tertera pada karcis parkir. Namun, seringkali karcis parkir memiliki kerusakan yang menyebabkan barcode yang tertera sulit terbaca dengan alat pemindaian dan kendaraan tidak dapat keluar dari area parkir. Kerusakan bisa disebabkan karena kelalaian manusia (terkena air yang menyebabkan karcis basah, atau terlipat-lipat sehingga lecek) dan juga kesalahan pencetak. Untuk menanggulangi permasalahan tersebut, sistem pembacaan barcode karcis parkir dikembangankan. Sistem tersebut menggunakan Autoencoder dan Conditional Generative Adversarial Network (CGAN) dalam merekonstruksi barcode. Barcode dikatakan berhasil direkonstruksi bila decoder (pyzxing dan pyzbar) dapat decoding gambar barcode rekonstruksi tersebut.
Penelitian ini menunjukan bahwa model CGAN mampu merekonstruksi karcis parkir dunia nyata dengan true recognition rate 16% tanpa super resolution, sedangkan untuk model autoencoder masih belum mampu untuk merekonstruksi barcode dengan baik. Dengan super resolution, performa kedua model menurun dalam merekonstruksi barcode. CGAN juga lebih baik dibandingkan dengan autoencoder dalam rekonstruksi barcode generated dengan 1x augmentasi. Dengan menggunakan pyzxing decoder, Autoencoder mampu merekonstruksi barcode yang tidak terbaca dengan true recognition rate sebesar 95,50% dan CGAN mampu menghasilkan true recognition sebesar 97% dengan durasi prediksi rata-rata autoencoder 0,17 detik dibandingkan dengan CGAN 0,672 detik per 1 gambar.

Barcode is a collection of optical data that can be scanned by a machine and has a broad function, such as a vehicle parking ticket. A parking ticket is a marker for a vehicle to enter and exit the parking lot. Vehicles can exit the parking area by scanning the barcode printed on the parking ticket. However, parking tickets often have damage that cause the barcodes printed are difficult to be scanned and the vehicle cannot exit parking area. Damage can be caused by human error (wet tickets, or it folds up so that it becomes wrinkled) as well as printer error. To overcome this problem, a parking ticket barcode reconstruction system was developed. The system uses Autoencoder and Conditional Generative Adversarial Network (CGAN) in reconstructing barcodes. The barcode is said to be reconstructed successfully if the decoders (pyzxing and pyzbar) can decode the reconstructed barcode image.
This paper shows that the CGAN model can reconstruct real-world parking tickets with a true recognition rate of 16% without super resolution, while the autoencoder model is still unable to reconstruct barcodes properly. With super resolution, the performance of both models decreases in reconstructing barcodes. CGAN is better than autoencoder in reconstructing barcode generated with 1x augmentation. Using the pyzxing decoder, Autoencoder can reconstruct unreadable barcodes with a true recognition rate of 95.50% and CGAN is able to produce true recognition of 97% with an average autoencoder prediction duration of 0.17 seconds compared to CGAN of 0.672 seconds per 1 image.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nafisya Alya Aurelitha
"Indeks Harga Saham LQ45 adalah indeks yang mengukur kinerja harga 45 saham yang memiliki likuiditas tinggi dan kapitalisasi pasar besar yang tercatat di Bursa Efek Indonesia. Prediksi Indeks Harga Saham LQ45 dapat digunakan untuk mengukur kinerja suatu portofolio saham di masa yang akan datang sehingga investor dapat melakukan evaluasi terhadap saham-saham yang dimilikinya. Prediksi Indeks Harga Saham LQ45 merupakan suatu tugas yang sulit karena data indeks harga saham ini cenderung memiliki fluktuasi yang cukup tinggi. Untuk itu, diperlukan suatu teknik yang tepat dalam memprediksi Indeks Harga Saham LQ45. Indeks Harga Saham LQ45 merupakan salah satu jenis data runtun waktu. Beberapa model telah dikembangkan dalam memprediksi data runtun waktu, salah satunya adalah machine learning. Generative Adversarial Network (GAN) merupakan salah satu pendekatan khusus untuk machine learning melalui pemodelan generatif. GAN dapat menghasilkan prediksi yang memiliki keakuratan yang tinggi, karena GAN menggunakan dua jaringan, yaitu generator dan diskriminator. Long Short-Term Memory (LSTM) digunakan sebagai generator untuk mempelajari data dan melakukan prediksi serta Convolutional Neural Network (CNN) digunakan sebagai diskriminator untuk mengklasifikasi data. Oleh karena itu, dalam tugas akhir ini, penulis menerapkan GAN dalam prediksi Indeks Harga Saham LQ45. Penerapan metode ini bertujuan untuk meningkatkan akurasi dalam prediksi sehingga investor dapat mengukur kinerja portofolio sahamnya di masa yang akan datang dengan baik. Data yang digunakan dalam tugas akhir ini adalah harga penutupan atau closing Indeks Harga Saham LQ45 harian dari periode 2 Januari 2019 hingga 30 Desember 2022. Hasil prediksi Indeks Harga Saham LQ45 dapat ditunjukkan dengan nilai MAPE. Untuk data training memiliki nilai MAPE sebesar dan untuk data testing memiliki nilai MAPE sebesar perbandingan 80% data training dan 20% data testing.

The LQ45 Stock Price Index is an index that measures the price performance of 45 stocks that have high liquidity and large market capitalization listed on the Indonesia Stock Exchange. The LQ45 Stock Price Index prediction can be used to measure the performance of a stock portfolio in the future so that investors can evaluate the shares they own. Predicting the LQ45 Stock Price Index is a difficult task because this stock price index data tends to have quite high fluctuations. For this reason, an appropriate technique is needed to predict the LQ45 Stock Price Index. The LQ45 Stock Price Index is a type of time series data. Several models have been developed to predict time series data, one of which is machine learning. Generative Adversarial Network (GAN) is a special approach to machine learning through generative modeling. The GAN method can produce predictions that have high accuracy, because GAN uses two networks, namely generator and discriminator. Long Short-Term Memory (LSTM) is used as generator to study data and make predictions and Convolutional Neural Network (CNN) is used as discriminator to classify data. Therefore, in this thesis, the author applies the GAN method in predicting the LQ45 Stock Price Index. The application of this method aims to increase accuracy in predictions so that investors can measure the performance of their stock portfolio in the future properly. The data used in this thesis is the daily closing price of the LQ45 Stock Price Index from the period 2 January 2019 to 30 December 2022. The prediction results of the LQ45 Stock Price Index can be shown by the MAPE value. For training data, the MAPE value is 20,9340% and for testing data, the MAPE value is 2,3740%. These results use a comparison of 80% training data and 20% testing data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rania Nur Farahiyah
"Retinopati hipertensi merupakan penyakit yang timbul pada retina akibat komplikasi dari hipertensi atau tekanan darah tinggi. Pemeriksaan gejala retinopati hipertensi penting untuk dilakukan supaya penanganan yang tepat dapat diberikan. Gejala retinopati hipertensi terdapat pada pembuluh darah di retina sehingga diagnosis dapat dilakukan melalui citra fundus retina. Penelitian ini memanfaatkan model Data-Efficient Image Transformer (DeiT) untuk mengklasifikasikan citra fundus retina menjadi dua kelas, yaitu kelas retinopati hipertensi dan kelas normal. Data yang digunakan dalam penelitian ini diperoleh dari empat database open-source, yaitu DRIVE, JSIEC, ODIR, dan STARE. Preprocessing berupa resize dan Contrast Limited Adaptive Histogram Equalization (CLAHE) diterapkan untuk menyeragamkan ukuran citra dan meningkatkan kontras citra. Generative Adversarial Network (GAN) digunakan untuk menghasilkan citra sintetis guna mengatasi masalah keterbatasan jumlah data serta meningkatkan variasi data yang dapat dipelajari oleh model DeiT. Penelitian ini menganalisis pengaruh metode GAN terhadap kinerja model DeiT dengan menggunakan metrik evaluasi accuracy, sensitivity, dan specificity. Analisis dilakukan dengan membandingkan tiga skenario: skenario A menggunakan data asli, skenario B menggunakan data hasil augmentasi GAN, dan skenario C menggunakan preprocessing CLAHE dan data hasil augmentasi GAN. Skenario A menunjukkan kinerja yang cukup baik dengan nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 94%, 97,7%, dan 84,6% untuk rasio pembagian data 70:30, serta 95,7%, 97%, dan 92,8% untuk rasio pembagian data 80:20. Skenario B mengungguli skenario sebelumnya dengan nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 96,4%, 97,2%, dan 95,7% untuk rasio pembagian data 70:30, serta 97,5%, 97,9%, dan 97,1% untuk rasio pembagian data 80:20. Pada skenario C, diperoleh nilai rata-rata accuracy, sensitivitiy, dan specificity sebesar 95,7%, 95%, dan 96,2% untuk rasio pembagian data 70:30, serta 95,5%, 94,9%, dan 96,4% untuk rasio pembagian data 80:20. Hasil penelitian menunjukkan bahwa penerapan metode GAN berhasil meningkatkan kinerja model DeiT, khususnya pada nilai specificity. Dari ketiga skenario yang diuji, skenario B yang memanfaatkan data sintetis hasil augmentasi GAN tanpa preprocessing CLAHE memberikan hasil yang paling unggul.

Hypertensive retinopathy is a disease that occurs in the retina due to complications from hypertension or high blood pressure. Examination of hypertensive retinopathy symptoms is important to ensure appropriate treatment can be performed. The symptoms of hypertensive retinopathy are found in the blood vessels of the retina, allowing diagnosis to be performed through retinal fundus images. This study uses the Data-Efficient Image Transformer (DeiT) model to classify retinal fundus images into two classes: hypertensive retinopathy and normal. The data used in this study were obtained from four different open-source databases: DRIVE, JSIEC, ODIR, and STARE. Preprocessing in the form of resizing and Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to standardize the image size and enhance the image contrast. Generative Adversarial Network (GAN) was used to generate synthetic images to address the problem of limited data availability and increase the variety of data that can be learned by the DeiT model. This study analyzes the impact of the GAN method on the performance of the DeiT model using evaluation metrics of accuracy, sensitivity, and specificity. The analysis was conducted by comparing three scenarios: scenario A using the original data, scenario B using GAN-augmented data, and scenario C using CLAHE preprocessing and GAN-augmented data. Scenario A showed fairly good performance with average accuracy, sensitivity, and specificity values of 94%, 97.7%, and 84.6% for a 70:30 data split ratio, and 95.7%, 97%, and 92.8% for an 80:20 data split ratio. Scenario B outperformed the previous scenario with average accuracy, sensitivity, and specificity values of 96.4%, 97.2%, and 95.7% for a 70:30 data split ratio, and 97.5%, 97.9%, and 97.1% for an 80:20 data split ratio. In scenario C, the average accuracy, sensitivity, and specificity values were 95.7%, 95%, and 96.2% for a 70:30 data split ratio, and 95.5%, 94.9%, and 96.4% for an 80:20 data split ratio. The results of the study indicate that the application of the GAN method successfully improved the performance of the DeiT model, particularly in terms of specificity. Out of the three scenarios tested, scenario B, which utilized GAN-augmented synthetic data without CLAHE preprocessing, yielded the best results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rusnanda Farhan
"Penilaian citra embrio manusia memiliki peran yang penting dalam proses Fertilisasi In Vitro (FIV) atau yang dikenal juga sebagai proses bayi tabung. Penilaian citra embrio ini dilakukan secara manual oleh ahli embriologi. Hal ini tentunya membutuhkan waktu yang lama dan konsentrasi yang tinggi dari ahli embriologi sehingga perlu ada sistem yang dapat membantu ahli embriologi dalam melakukan penilaian dengan lebih efisien. Salah satu waktu penilaian embrio yang paling penting yaitu ketika embrio berusia lima hari, dimana ini merupakan tahap penilaian akhir sebelum proses implantasi ke rahim. Penilaian embrio pada hari kelima didasarkan pada tiga aspek yaitu derajat ekspansi, Inner Cell Mass, dan Trophoectoderm, yang menjadi tantangan tersendiri dalam penelitian di bidang ini. Permasalahan lain yang muncul yaitu ketersediaan data yang terbatas dan ketidakseimbangan proporsi kelas atau target pada dataset. Penelitian ini mengusulkan penggunaan augmentasi data berbasis Generative Adversarial Network seperti VanillaGAN, InfoGAN, DCGAN, dan Adversarial Autoencoder sehagai solusi permasalahan ketidakseimbangan data. Penelitian ini juga mengembangkan model klasifikasi berbasis Convolutional Neural Network sebagai klasifikator untuk menilai citra embrio. Penelititan ini menggunakan 10-fold cross validation untuk mengukur kinerja model. Untuk kategori derajat ekspansi, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Untuk kategori Inner Cell Mass, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan VanillaGAN sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Serta untuk kategori Trophoectoderm, model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder memperoleh hasil terbaik dengan nilai f1-score sebesar 0.89.

Assessment of human embryo images has an important role in the process of In Vitro Fertilization (IVF). Evaluation of this embryo image is done manually by the embryologist. This requires a long time and high concentration of embryologists, so it is necessary to create a system that can assist embryologists in making assessments more efficiently. One of the most important parts of human embryo assessment is the embryo on the fifth day after fertilization. Evaluation of embryos on the fifth day is based on three aspects, namely the degree of expansion, Inner Cell Mass, and Trophoectoderm, which is a particular challenge in research in this field. Another problem for this case is the limited availability of data and an imbalanced dataset. This study proposes the use of Generative Adversarial Network-based for data augmentation such as VanillaGAN, InfoGAN, DCGAN, and Adversarial Autoencoder as a solution to imbalanced data problems. This study also developed a classification model based on the Convolutional Neural Network as a classifier for assessing embryo images. This research uses 10-fold cross validation to measure model performance. This study obtained the best results for the degree of expansion category with the Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.92. This study obtained the best results for the Inner Cell Mass category with the Convolutional Neural Network model combined with VanillaGAN as a data augmentation with an f1-score of 0.92. The best result for Trophoectoderm category is Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.89."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sinaga, Marshal Arijona
"Tugas Akhir ini menelaah least square adversarial autoencoder yang menggunakan least square generative adversarial network sebagai diskriminatornya. Diskriminator tersebut meminimalkan fungsi Pearson χ 2 divergence antara distribusi variabel laten dan suatu distribusi apriori. Adanya diskriminator memungkinkan autoencoder untuk membangkitkan data yang memiliki karakteristik yang menyerupai sampel pembelajarannya. Penelitian ini dilakukan dengan membuat program yang memodelkan least square adversarial autoencoder. Program memodelkan dua jenis autoencoder yaitu unsupervised least square adversarial autoencoder dan supervised least square adversarial autoencoder dengan memanfaatkan dataset MNIST dan FashionMNIST. Unsupervised least square adversarial autoencoder menggunakan variabel laten berdimensi 20 sementara supervised least square adversarial autoencoder menggunakan variabel laten masing-masing berdimensi 2, 3, 4, dan 5. Program diimplementasikan menggunakan framework PyTorch dan dieksekusi menggunakan Jupyter Notebook. Seluruh aktivitas pemrograman dilakukan pada environment cloud yang disediakan oleh Floydhub dan Tokopedia-UI AI Center yang masing-masing menggunakan GPU NVIDIA Tesla K80 dan NVIDIA Tesla V100 sebagai perangkat komputasinya. Proses pembelajaran pada unsupervised least square adversarial autoencoder berlangsung selama dua jam sementara pada supervised least square adversarial autoencoder berlangsung selama enam jam. Berdasarkan hasil eksperimen, nilai mean squared error unsupervised least square adversarial autoencoder untuk masing-masing dataset MNIST dan FashionMNIST adalah 0.0063 dan 0.0094. Sementara itu, nilai mean squared error supervised least square adversarial autoencoder pada dataset MNIST sebesar 0.0033. Selanjutnya, nilai Frechet Inception Distance unsupervised least square adversarial autoencoder untuk masing-masing dataset MNIST dan FashionMNIST adalah 15.7182 dan 38.6967. Sementara itu, nilai Frechet Inception Distance supervised least square adversarial autoencoder pada dataset MNIST sebesar 62.512. Hasil tersebut menunjukkan bahwa least square adversarial autoencoder mampu merekonstruksi citra dengan baik, namun kurang mampu membangkitkan citra dengan kualitas sebaik sampel pembelajarannya.

This Final Project (Tugas Akhir) investigates the least square adversarial autoencoder that uses least square generative adversarial network as its discriminator. The discriminator minimizes the Pearson χ 2 divergence between the latent variable distribution and the prior distribution. The presence of discriminator allows the autoencoder to generate data that has characteristics that resemble the original data. Python programs were developed to model the least square adversarial autoencoder. This programs try to model two types of autoencoder namely unsupervised least square adversarial autoencoder and supervised least square adversarial autoencoder by utilizing MNIST dataset and FashionMNIST dataset. The unsupervised least square adversarial autoencoder uses latent variables of dimension 20 while the supervised least square adversarial autoencoder uses latent variables with dimensions of 2, 3, 4, and 5, respectively. This programs were implemented using PyTorch and executed using Jupyter Notebook. All of the programming activities are carried out in the cloud environment provided by Floydhub and Tokopedia-UI AI Center, respectively using NVIDIA Tesla K80 GPU and NVIDIA Tesla V100 GPU as their computing resource. Training time in unsupervised least square adversarial autoencoder lasts for two hours while in supervised least square adversarial autoencoder lasts for six hours. The Results of experiments show that the mean squared error of unsupervised least square adversarial autoencoder for MNIST dataset and FashionMNIST dataset are 0.0063 and 0.0094, respectively. Meanwhile, the mean squared error of supervised least square adversarial autoencoder for MNIST dataset is 0.0033. Furthermore, the Frechet Inception Distance scores of unsupervised least square adversarial autoencoder for MNIST dataset and FashionMNIST dataset are 15.7182 and 38.6967, respectively. Meanwhile, the value of Frechet Inception Distance score of supervised least square adversarial autoencoder in MNIST dataset is 62.512. These results indicate that the least square adversarial autoencoder is able to reconstruct the image properly, but is less able to generate images with the same quality as the learning sample."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Hada Melino Muhammad
"Anomaly-Based Network Intrusion Detection System (ANIDS) memegang peranan yang sangat penting dengan berkembangnya teknologi internet. ANIDS digunakan untuk mendeteksi trafik jaringan yang membahayakan pengguna internet. Metode tradisional yang digunakan untuk membuat ANIDS masih sulit untuk mengekstrak fitur dari trafik yang banyak dan berdimensi tinggi. Selain itu, jumlah sampel yang sedikit pada beberapa jenis trafik menyebabkan ketidakseimbangan dataset dan mempengaruhi performa deteksi ANIDS. Ketidakseimbangan dataset dapat diatasi dengan oversampling dan atau undersampling. Penulis mengusulkan metode oversampling menggunakan modifikasi dari Deep Convolutional Generative Adversarial Network (DCGAN) yang dapat mengekstrak fitur trafik data secara langsung dan menghasilkan sampel baru untuk menyeimbangkan dataset. Modifikasi DCGAN bertujuan untuk menghindari adanya pemetaan data tabular menjadi data gambar sebelum masuk ke DCGAN. Selain itu, modifikasi DCGAN bertujuan untuk menstabilkan pelatihan model untuk data tabular sehingga data yang dihasilkan lebih berkualitas. Pengujian efek modifikasi DCGAN dilakukan dengan melatih model ANIDS yang terdiri dari model Deep Neural Network (DNN) dan Convolutional Neural Network (CNN). Evaluasi performa deteksi dilakukan dengan confusion matrix serta metrik accuracy, precision, recall, dan F1-Score. Hasil yang didapatkan adalah oversampling menggunakan modifikasi DCGAN meningkatkan validation accuracy dari 75.77% menjadi 81.41% pada model DNN dan 73.94% menjadi 80.76% pada model CNN. Peningkatan metrik lain juga terjadi akibat dari peningkatan validation accuracy.

Anomaly-Based Network Intrusion Detection System (ANIDS) plays a very important role with the development of internet technology. ANIDS is used for detecting network traffic that endangers internet users. The traditional methods used to create ANIDS are still difficult to extract features from high-dimensional traffic. In addition, the small number of samples in some types of traffic causes imbalanced dataset and affects ANIDS detection performance. Imbalanced dataset can be overcome by oversampling and or undersampling. The author proposes an oversampling method using a modification of the Deep Convolutional Generative Adversarial Network (DCGAN) which can extract data traffic features directly and generate new samples to balance the dataset. DCGAN modification aims to avoid mapping tabular data into image data before entering DCGAN. In addition, the DCGAN modification aims to stabilize the training model for tabular data so that the resulting data is of higher quality. Testing the effects of the DCGAN modification was carried out by training the ANIDS model consisting of the Deep Neural Network (DNN) and Convolutional Neural Network (CNN) models. Evaluation of detection performance is carried out using a confusion matrix and the metrics of accuracy, precision, recall, and F1-Score. The results obtained are oversampling using the DCGAN modification increases the validation accuracy from 75.77% to 81.41% in the DNN model and 73.94% to 80.76% in the CNN model. Improvements in other metrics also occurred as a result of the increase in validation accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wava Carissa Putri
"Pembuatan dataset emosi wajah membutuhkan sumber daya dan waktu yang banyak. Salah satu solusi menyelesaikan permasalahan ini adalah menggunakan Generative Adversarial Network (GAN) untuk melakukan augmentasi data pada data emosi wajah. Namun, jumlah data yang terbatas membuat GAN belum dapat menghasilkan citra yang beragam. Salah satu pendekatan yang dapat dilakukan untuk mengatasi hal tersebut adalah penggunaan energy function untuk membuat probability function yang lebih detail. Penelitian ini bertujuan untuk merancang sebuah model dengan menggunakan EB-GAN dan attention untuk mengatasi masalah translasi gambar dengan emosi Neutral menjadi gambar dengan emosi dasar. Eksperimen yang dilakukan pada penelitian ini bertujuan untuk melakukan modifikasi terhadap arsitektur DINO dengan menambahkan attention untuk meningkatkan kualitas hasil translasi model. Hasil translasi model dievaluasi menggunakan emotion recognition untuk mengetahui akurasi emosi yang dihasilkan. Pada penelitian ini terlihat bahwa penggunaan attention tidak dapat meningkatkan akurasi DINO dikarenakan terdapat banyaknya fitur pembeda antar emosi yang tersebar pada wajah. Pada penelitian ini DINO pada dataset berwarna menghasilkan akurasi sebesar 96.78% dan DINO pada dataset grayscale menghasilkan akurasi sebesar 94.50%. Dalam pembuatan dataset baru, DINO menghasilkan akurasi sebesar 83% untuk dataset berwarna dan 85.6% untuk dataset grayscale.

Creating a facial emotion dataset requires a lot of resources. To solve this problem, previous research utilizes Generative Adversarial Networks (GANs) to create artificial data. However due to the limited number of available data, this would affect the GANs itself and would result in generating a less diverse data. One way to solve this problem is to use an energy function to create a more detailed probability function. This research aimed to create a model based on EB-GAN and attention to solve problems during translating a neutral image into an image with a basic emotion. This experiment uses a variation of EB-GAN for image translation, DINO, and modify its architecture by adding attention modules to improve the performance of the model during translation. The result of the experiments are evaluated using emotion recognition systems. This results show that the use of attention did not improve the performance of DINO. This is due the fact that each emotion have multiple features and the location of the features are scattered within a face. This experiment shows that DINO obtained the highest accuracy in both colored (RGB) and grayscale data. DINO obtains a 96.78% accuracy for colored (RGB) data and 94.50% for grayscale data. During the creation of new dataset, DINO obtained an accuracy of 83% for colored (RGB) data and 85.6% for grayscale data."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alexander Anindito Setyono
"Transportation has been a significant industry for big cities for hundreds of years. It is a part of our everyday lives and contributes considerably to a country’s economy. As the population of a certain country keep on increasing as time flies by, the demand for the innovation in the transportation world kept on increasing to keep up with the exponential growth of the industry. One of the technology that is used to handle the increasing demand for transportation analytics is by using big data analytics as it can handle humongous amount of data that are too large or complex to be dealt with traditional data processing application software. Big data analytics has been used through many different kind of applications in the modern era and it has achieve a great number of success in different field of work. A traffic data imputation is proposed in order to solve this problem and there are several imputation methods that are available which has their own plus and minuses. There are traditional data imputation methods that are already used from many years ago such as linear interpolation and regression but it has been proved that this traditional methos still have a low accuracy rating. Hence, a more modernized and more accurate method is introduced which is called the Generative Adversarial Network (GAN).

Transportasi telah menjadi industri yang signifikan bagi kota-kota besar selama ratusan tahun. Ini merupakan bagian dari kehidupan kita sheari-hari dan berkontribusi besar terhadap perekonomian suatu negara. Seiring dengan bertambahnya jumlah penduduk suatu negara, permintaan akan inovasi dalam dunia transportasi terus meningkat untuk mengikuti pertumbuhan industri yang eksponensial. Salah satu teknologi yang digunakan untuk menangani peningkatan permintaan ini adalah dengan menggunakan analitik data besar karena dapat menangani data dalam jumlah yang terlalu besar dan kompleks untuk ditangani dengan aplikasi perangkat lunak pengolah data tradisional. Dalam menjalankan Analisa menggunakan analisis data besar, ada masalahnya yang muncul yaiu hadirnya data data yang tidak lengkap. Sebuah metode imputasi data diusulkan untuk mengatasi masalah ini seperti interpolasi linier dan metode yang lebih modern dan akurat digunakan pada skripsi ini yang disebut jaringan berlawanan generatif."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nathaniel Faustine
"Sampai saat ini, sketsa wajah buatan tangan masih secara luas digunakan dalam kepolisian, terutama untuk menggambarkan karakter wajah seseorang dengan cepat pada proses pencarian tersangka maupun orang hilang. Polisi akan menggunakan sketsa wajah tersebut untuk mencari orang yang digambarkan. Telah banyak penelitian yang dilakukan untuk membuat cara ini semakin efektif. Salah satunya adalah membandingkannya dengan Database Pencarian Orang (DPO) ataupun membuat komposit wajah. Namun, pembuatan komposit wajah dengan aplikasi membutuhkan waktu yang cukup lama dan perbandingan dengan DPO secara langsung memiliki tingkat akurasi yang perlu dikembangkan lebih lanjut. Penelitian ini mengaplikasikan Generative Adversarial Networks (GAN) untuk mengubah gambar sketsa menjadi citra berwarna, menerapkan Total Variation (TV) pada loss function untuk meningkatkan performa model, dan menerapkan koreksi warna untuk memperbaiki warna kulit yang dihasilkan. Tujuan penelitian ini yaitu agar dapat menggambarkan karakter orang pada sketsa dengan lebih akurat dan cepat dibandingkan metode terdahulu. GAN sendiri adalah sebuah machine learning framework yang menggunakan dua buah network yaitu, generator dan diskriminator. Generator akan membuat sampel baru berdasarkan pola sampel dataset dan diskriminator akan menentukan apakah sampel yang dihasilkan nyata atau hasil dari generator. Sistem akan mengulang proses ini sampai generator dapat menghasilkan sampel yang sangat mirip dengan sampel dari dataset. Dataset yang digunakan dikumpulkan dari beberapa dataset lain dengan konfigurasi jumlah training 1355, validation 10, dan testing 68. Beberapa skenario dengan parameter berbeda dilakukan dan hasil terbaik didapati dengan menggunakan Lambda L1 sebesar 100 dan Lambda TV sebesar 0.00001 dengan nilai evaluasi SSIM 0.83 dan FID 94.705. Setelah diimplementasikan dengan koreksi warna, GAN menghasilkan citra yang lebih realistis dengan hasil evaluasi yang didapatkan adalah 0.76 dan 78.944 untuk SSIM dan FID. Dengan metode tersebut, GAN dapat menghasilkan citra yang realistis secara visual dari sketsa wajah dan memiliki warna yang sesuai dengan citra aslinya.

Until now, hand-drawn face sketches are still widely used in Indonesia's police force, especially to quickly describe the character of a person's face in the process of searching for suspects and missing persons. Police will use the face sketch to search for the respected person. A lot of research has been done to make this method more effective. One of them is to compare it with the People Search Database (DPO) or create a facial composite. However, making facial composites by application takes quite a long time, and direct comparison with DPO has a level of accuracy that needs to be developed further. This study applies a Generative Adversarial Networks (GAN) to convert a sketch image into a color image, applies a Total Variation (TV) to the loss function to improve model performance, and applies a color correction to improve the resulting skin tone. The purpose of this study is to be able to describe the character of the people on the sketch more accurately and quickly than the previous method. GAN itself is a machine learning framework that uses two networks, namely, generator and discriminator. The generator will create a new sample based on the sample dataset pattern, and the discriminator will determine whether the resulting sample is real or the result of the generator. The system repeats this process until the generator can generate a sample that is very similar to the sample from the dataset. The dataset used is gained from several other datasets with the split configuration of 1355 for training, 10 for validation, and 68 for testing. Several scenarios with different parameters were carried out, and the best results were obtained using Lambda L1 of 100 and Lambda TV of 0.00001 with an evaluation value of SSIM 0.83 and FID 94,705. After being implemented with color correction, GAN produces a more realistic image with the evaluation results obtained are 0.76 and 78.944 for SSIM and FID. GAN can produce visually realistic images from facial sketches and have colors that match the original image with this method."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benny Effendi
"Jumlah mobil di Jakarta bertambah dengan pesat. Lahan parkir, sebagai fasilitas tempat-tempat umum dan perniagaan mulai kesulitan untuk memenuhi kebutuhan pengguna mobil. Alternatif salah satunya adalah parkir vertikal otomatis. Dengan luas lahan yang sama parkir vertikal otomatis ini mampu menampung lebih banyak mobil. Namun biaya masih merupakan kendala. penelitian ini bertujuan untuk menghitung dan membandingkan biaya operasional dan perawatan gedung parkir otomatis dengan gedung parkir konvensional, berdasarkan data gedung parkir RSCM Jakarta dan Pasar Baru. Metode untuk menganalisa biaya perawatan dan operasional gedung parkir adalah Present Worth. Dari hasil perhitungan Didapatkan biaya parkir otomatis lebih mahal dan mencapai Breakeven lebih lama, namun memiliki keuntungan berupa efektivitas lahan dan keuntungan non finansial, serta merupakan investasi yang layak.

Number of cars in Jakarta grows significantly, Parking lots, as core facility for public places and business centers start facing difficulty to meet car users demand. Automated parking is an alternative for such problem. With the same area as conventional parking, it can accommodate more cars. But the problem is the cost, which is higher than conventional one. This study aimed to analyze operational and maintenance cost for both automatic and conventional parking building, based on automated vertical parking building in RSCM Jakarta and Pasar Baru parking building. The method used is Present Worth. The result shows that automated Parking is more expensive and takes longer to reach breakeven, but it has land effectiveness advantage and more non financial profits. Furthermore it?s a feasible investment to make."
2015
S58070
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>