Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 185029 dokumen yang sesuai dengan query
cover
Safira Salmadewi
"Pada perkembangan teknologi terbaru dilakukan penambahan nanopartikel ke dalam media quench untuk meningkatkan konduktivitas termal dalam perpindahan panas yang disebut sebagai nanofluida. Pembuatan nanofluida diawali dengan milling partikel biomassa karbon batok kelapa selama 15 jam dengan kecepatan 500 rpm untuk mereduksi ukuran, kemudian nanopartikel tersebut dengan konsentrasi 0,1%w/v, 0,3%w/v dan 0,5%w/v didispersikan ke dalam fluida dasar oli 5W-40 menggunakan ultrasonikasi, baik tanpa penambahan surfaktan maupun dengan penambahan surfaktan Sodium Dodecylbenzene Sulfonate (SDBS), Cetyl Trimethyl Ammonium Bromide (CTAB), atau Polyethylene glycol (PEG) sebanyak 3%w/v untuk meningkatkan stabilitas. Proses perlakuan panas dilakukan dengan memanaskan baja karbon S45C hingga suhu 900 ̊C kemudian di quench menggunakan media quench berupa nanofluida karbon batok kelapa. Karakterisasi nanopartikel dilakukan dengan SEM, EDS dan PSA, selanjutnya karakterisasi nanofluida dilakukan dengan pengujian zeta potensial, viskositas dan konduktivitas termal, sedangkan Baja S45C dikarakterisasi dengan OES, kekerasan dan struktur mikro. Secara garis besar terjadi penurunan konduktivitas termal nanofluida dengan meningkatnya konsentrasi nanopartikel. Konduktivitas termal tertinggi dimiliki oleh nanofluida dengan konsentrasi 0,3%w/v dengan penambahan surfaktan CTAB dengan nilai 0,173 W/mK. Setelah dilakukan heat treatment pada baja S45C menggunakan media quench nanofluida dapat diamati peningkatan kekerasan, namun penggunaan konsentrasi nanopartikel yang berlebih dapat menyebabkan terjadinya aglomerasi sehingga saat nanofluida tersebut digunakan sebagai media quench dapat menurunkan kekerasan baja S45C. Kekerasan tertinggi dimiliki oleh baja S45C yang di quench menggunakan nanofluida dengan konsentrasi 0,1%w/v serta penambahan surfaktan SDBS maupun PEG dengan nilai kekerasan keduanya 0,36 HRC. Nanofluida dengan konduktivitas termal tertinggi sebagai media quench tidak menunjukan hasil kekerasan yang tertinggi pada baja S45C.

In the latest technological developments, nanoparticles are added to the quench media to increase thermal conductivity in heat transfer, which is known as nanofluid. The fabrication of nanofluids starts with milling coconut shell carbon biomass nanoparticles for 15 hours at 500 rpm to reduce their particle size, then the nanoparticles with concentrations of 0.1%w/v, 0.3%w/v, and 0.5%w/v respectively are dispersed into 5W-40 as base fluid using ultrasonication, either without the addition of surfactants or with the addition of the surfactant Sodium Dodecylbenzene Sulfonate (SDBS), Cetyl Trimethyl Ammonium Bromide (CTAB), Polyethylene glycol (PEG) with a concentration of 3%w/v to increase the stability. The heat treatment process is carried out by heating S45C carbon steel to a temperature of 900°C and then quenched with coconut shell carbon nanofluid as a quench media. Nanoparticles are characterized with SEM, EDS, and PSA, then the nanofluids are characterized by testing the zeta potential, viscosity, and thermal conductivity, while S45C steel was characterized by OES, hardness and microstructure observations. In general, the thermal conductivity of nanofluids decreases with the increasing concentration of nanoparticles. The highest thermal conductivity value was obtained by nanofluids with a concentration of 0.3%w/v with the addition of CTAB surfactant, which the value is 0.173 W/mK. After heat treatment of S45C steel using nanofluid as media quench, an increase of hardness in S45C steel can be observed, but the use of an excessive concentration of nanoparticles can cause agglomeration of nanoparticles in nanofluid so that when nanofluid is used as a quenching medium it can reduce the hardness of S45C steel. S45C steel which is quenched using nanofluid with a concentration of 0.1% w/v with the addition of SDBS or PEG surfactants has the highest hardness and the value is 0.36 HRC. The highest thermal conductivity in nanofluid didn’t show the highest hardness value of S45C steel after quench."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eddie Susanto
"Peningkatan kekerasan pada material baja karbon dapat dilakukan dengan perlakuan panas quenching, pada baja karbon menengah hanya sedikit waktu yang diizinkan untuk mencapai fasa martensit sehingga medium quench dengan konduktivitas termal tinggi dibutuhkan. Multi wall carbon nanotube (MWCNT) memiliki konduktivitas termal yang sangat tinggi dikarakterisasi menggunakan Scanning Electron Microscope (SEM) dan Energy Dispersive X-Ray Spectroscopy (EDAX), lalu disintesis menjadi nanofluida dengan penambahan surfaktan Polyethylene Glycol (PEG) dan dilarutkan dalam air distilasi. Nanofluida di ultrasonikasi selama 15 menit untuk mencegah aglomerasi dan dilakukan pengujian konduktivitas termal serta zeta potensial yang bertujuan untuk mengukur kestabilan nanofluida. Variasi konsentrasi nanopartikel sebesar 0.1%, 0.3%, dan 0.5% dan untuk surfaktan sebesar 0%, 3%, 5%, dan 7%. Setelahnya, nanofluida digunakan sebagai medium quench dengan waktu pencelupan 4 menit dan sampel pada baja S45C dilakukan pengujian mikrostruktur dan kekerasan. Pada hasil didapatkan data bahwa penambahan nanopartikel tidak berpengaruh secara signifikan terhadap konduktivitas termal dan surfaktan PEG cenderung menurunkan nilai konduktivitas termal. Pada semua sampel yang telah dilakukan perlakuan panas diikuti dengan quench terbentuk martensite, tetapi nilai konduktivitas termal juga tidak berbanding lurus dengan kemampuan medium quench untuk meningkatkan kekerasan. Konsentrasi MWCNT 0,3% dengan surfaktan 0% menunjukan nilai konduktivitas tertinggi, sedangkan untuk hasil kekerasan tertinggi dicapai oleh media quench air.

Hardening on carbon steel material can be achieved with heat treatment quenching, for medium carbon steel only a little time is allowed to attain martensite phase therefore high thermal conductivity quench medium is needed. Multi wall carbon nanotube (MWCNT) has very high thermal conductivity was characterized with Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDAX), then it synthesized as nanofluids by adding some polyethylene glycol (PEG) surfactant and dissolved in distilled water. Nanofluids were ultrasonicated for 15 minutes to prevent agglomeration and tested for thermal conductivity also for zeta potential to measure nanofluids stability. Nanoparticle concentration varies from 0.1%, 0.3%, and 0.5% and for surfactants varies from 0.0%, 3%, 5%, and 7%. Afterward, nanofluids were used as a quench medium with immersion time of 4 minutes and for S45C steel samples were tested for its microstructure and hardness. The results show nanoparticle addition not significantly affecting the thermal conductivity and PEG as surfactant tends to decrease thermal conductivity. On all heat-treated samples followed by quench martensite phase are obtained, however thermal conductivity values are also not directly proportional to quench medium ability to increase the hardness. 0,3% MWCNT along with 0% PEG concentration give the highest thermal conductivity result, while for hardness achieved by using water quench medium."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amir Hossein Mohammadi Nasrabadi
"Seiring dengan perkembangan teknologi, cairan pendingin konvensional menjadi kurang efektif untuk teknologi baru terutama dalam hal pendinginan saluran mikro. Oleh karena itu, para ilmuwan mencoba memanfaatkan nanofluida yang merupakan campuran nanopartikel dan cairan dasar. Ada begitu banyak penelitian terhadap konduktivitas termal nanofluida tetapi madih sedikit studi eksperimen untuk menyelidiki perpindahan panas konvektif dari fluida baru ini. Dengan demikian, simulasi numerik aliran nanofluida sangat penting dan tujuan dari penelitian ini adalah untuk menguji apa yang terjadi pada koefisien perpindahan panas konveksi dan bilangan Nusselt di bawah kondisi batas yang berbeda dengan bantuan pendekatan CFD. Untuk memahami sepenuhnya fenomena ini, simulasi CFD dilakukan untuk aliran satu fase dan aliran dua fase. studi menunjukkan bahwa koefisien perpindahan panas konvektif Al2O3/Air selalu lebih tinggi daripada air murni dan nilai ini menjadi lebih tinggi dengan meningkatnya konsentrasi Al2O3 terutama dalam kasus aliran dua fase yang memberikan koefisien konveksi tertinggi. Penelitian ini juga menemukan bahwa bilangan Nusselt nanofluida aliran dua fase lebih rendah daripada air dan celah ini menjadi lebih besar karena konsentrasi Al2O3 menjadi lebih tinggi, menunjukkan bahwa peningkatan konduktivitas lebih tinggi daripada konveksi.

The technology is advancing day by day and conventional fluids are becoming less effective for the new technologies especially in the case of microchannel cooling. Due to this issue scientists have come up with the idea of nanofluids which is a mixture of nanoparticles and a base fluid. There are so many attentions toward the thermal conductivity of nanofluids but there is lack of experiment to investigate the convective heat transfer of these new fluids. Thus, Numerical simulation of nanofluid flows is of great importance and the aim of this study is to examine that what happens to the convective heat transfer coefficient and Nusselt number under different boundary condition by the help of CFD approaches. In order to fully understand this phenomenon, the CFD simulations are carried out for both Single – phase flow and two – phase flow. the study shows that the convective heat transfer coefficient of Al2O3/ Water is always higher than pure water and this value becomes higher as the concentration of Al2O3 increases especially in the case of two – phase flow which gives the highest convection coefficient. This study also found that the Nusselt number of two – phase flow nanofluids is lower than water and this gap becomes larger as the concentration of Al2O3 becomes higher, indicating that the enhancement in conductivity is higher than convection."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatih Abdul Syauqi
"Penelitian terkait nanofluida berbasis Graphene Oxide (GO) telah banyak dilakukan akhir-akhir ini terkait dengan sifat konduktivitas termalnya. Pada penelitian ini digunakan Metode Hummers termodifikasi untuk mensintesis GO. Nanopartikel GO kemudian dilakukan karakterisasi melalui pengujian EDS, SEM, serta XRD. Nanopartikel GO kemudian didispersikan ke dalam air sebagai fluida dasar dengan konsentrasi 0,01%, 0,03%, dan 0,05%. Surfaktan Sodium Dodecyl Benzene Sulfonate (SDBS) ditambahkan dengan konsentrasi sebesar 10% dan 20% dimana diharapkan dapat meningkatkan stabilitas dari nanofluida. Pencampuran nanofluida dilakukan dengan ultrasonikasi selama 2 jam. Kemudian Nanofluida dilakukan karakterisasi dengan pengujian Particle Size Analyzer (PSA), zeta potensial, dan konduktivitas termal.  Pada hasil PSA ukuran partikel masih diatas 100nm sehingga fluida ini disebut fluida terdispersi partikel mikro. Hasil penelitian menunjukkan penambahan konsentrasi mikropartikel GO dari 0,01% ke 0,03% tanpa surfaktan mengalami peningkatan konduktivitas termal dan pada konsentrasi 0,05% mengalami penurunan konduktivitas termal dimana aglomerasi dimungkinkan terjadi. Penambahan konsentrasi surfaktan SDBS pada setiap fluida GO mengalami penurunan nilai konduktivitas termal dimana kestabilan dari fluida juga menurun yang tunjukkan pada hasil uji zeta potensial. Sifat dari mikropartikel GO yang hidrofilik dan penambahan surfaktan anionik SDBS memiliki muatan yang sama menyebabkan gaya repulsi elektrostatik sehingga menurunnya kestabilan fluida serta efektifitas transfer panas.

Research regarding Graphene Oxide (GO) based nanofluids was done in this present day because of its thermal conductivity. In this study, modified Hummers Method selected to synthesize GO. GO nanoparticle then characterized by EDS, SEM, and XRD. GO nanoparticle then dispersed in water as its base fluid with concentration of 0,01%, 0,03%, and 0,05%. Sodium Dodecyl Benzene Sulfonate (SDBS) surfactant was added with the concentration of 10% and 20% for a better stability. The mixing process is done by ultrasonication for 2 hours. Nanofluids then characterized by Particle Size Analyzer (PSA), zeta potential, and thermal conductivity. The PSA characterization showed the size of particle is more than 100nm so this fluid is still categorized as microparticles dispersed in fluid. Results showed that increasing of GO microparticle without surfactant at 0,01% to 0,03% enhanced the thermal conductivity of fluids, but at 0,05% the value was decreased with possibility of agglomeration. The increase of SDBS concentration at all fluids showed the decrease of thermal conductivity value. The property of GO microparticle which hydrophilic and anionic SDBS surfactant have a mutual charge which tend to make electrostatic repulsive force so the stability of the fluid and its heat transfer effectivity was decreased."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoga Dautama
"Nanofluida adalah fluida penghantar panas yang mengandung partikel berukuran nano ( 1 – 100 nm). Penelitian yang dilakukan membahas karakterisasi nanofluida berbahan dasar fraksi non-logam dari limbah elektronik Printed Circuit Board (PCB) yang didominasi kandungan SiO2. Karakterisasi berfokus pada pengaruh konsentrasi partikel (0; 0,1; 0,3; dan 0,5%) dan surfaktan Cetyltrimethylammonium bromida (CTAB) (0; 3; 5; dan 7%) terhadap kondktivitas termal, viskositas, dan zeta potensial nanofluida. Hasil pengujian Particle Size Analyzer (PSA) pada partikel menunjukkan terjadinya peningkatan ukuran partikel dari 268,7 d.nm menjadi 1035,6 d.nm (milling 10 jam) dan 572,6 d.nm (milling 20 jam), sehingga partikel tidak mencapai ukuran nano dan tergolong kedalam micro-dispersed thermal fluid. Nilai konduktivitas termal mengalami penurunan seiring meningkatnya konsentrasi partikel dan surfaktan dengan nilai tertinggi pada sampel 0,5% partikel dan 0% CTAB sebesar 0,764 W/mK. Nilai viskositas mengalami peningkatan linear seiring dengan penambahan konsentrasi partikel dan surfaktan dengan nilai tertinggi pada sampel 0,5% partikel dan 7% CTAB sebesar 2,658 mPa.s. Nilai zeta potensial mengalami peningkatan seiring penambahan konsentrasi partikel dan surfaktan hingga titik optimumnya pada sampel 5% CTAB dengan hasil zeta potensial 43 mV.

Nanofluids are heat transfer fluids that contain nano-sized particles (1-100 nm). The conducted research discusses the characterization of nanofluids based on the non-metallic fraction of Printed Circuit Board (PCB) electronic waste, predominantly containing SiO2. The characterization focuses on the influence of particle concentration (0, 0.1, 0.3, and 0.5%) and Cetyltrimethylammonium bromide (CTAB) surfactant (0, 3, 5, and 7%) on the thermal conductivity, viscosity, and zeta potential of the nanofluids. Particle Size Analyzer (PSA) testing results on the particles indicate an increase in particle size from 268.7 d.nm to 1035.6 d.nm (after 10 hours of milling) and 572.6 d.nm (after 20 hours of milling), indicating that the particles do not reach the nano size and belong to the category of micro-dispersed thermal fluid. The thermal conductivity value decreases with increasing particle and surfactant concentrations, with the highest value observed in the sample with 0.5% particles and 0% CTAB, amounting to 0.764 W/mK. The viscosity value shows a linear increase with the addition of particle and surfactant concentrations, reaching the highest value in the sample with 0.5% particles and 7% CTAB, at 2.658 mPa.s. The zeta potential value increases with increasing particle and surfactant concentrations until reaching the optimum point in the sample with 5% CTAB, resulting in a zeta potential of 43 mV."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Handi Widiansyah
"Meningkatnya penelitian tentang nanofluida sebagai media pendingin akhir-akhir ini meningkat. Hal ini mendorong penelitian untuk mengembangkan nanofluida alternatif sebagai media quenching dengan biaya yang lebih rendah, salah satunya menggunakan partikel non logam dari limbah PCB. Penelitian ini dilakukan untuk mempelajari kondisi optimum dari nanofluida berbasis partikel non logam dari limbah PCB sebagai media pendingin melalui kestabilan, konduktivitas termal, dan viskositas. Pada penelitian ini, nanofluida disintesis melalui metode dua tahap dengan sintesis partikel terlebih dahulu kemudian partikel didispersikan ke dalam 100 ml air distilasi dengan penambahan surfaktan CAPB untuk meningkatkan kestabilan. Sintesis partikel dimulai dengan penghancuran PCB, kemudian leaching dengan HCl 1 M selama 24 jam. Setelah itu, partikel diberi perlakuan pirolisis dengan gas flow 5l/min menggunakan argon dan temperatur holding 500oC selama 45 menit. Setelah pirolisis, partikel di-milling dengan kecepatan 500 rpm selama 20 jam. Partikel kemudian didispersikan ke dalam 100 ml air distilasi untuk sintesis nanofluida dengan variasi partikel 0%w/v; 0,1%w/v; 0,3%w/v; dan 0,7%w/v; dan penambahan variasi surfaktan CAPB 0%v/v; 3%v/v; 5%v/v; dan 7%v/v. Partikel PCB dikarakterisasi dengan pengujian XRF sebelum dan setelah leaching, XRD sebelum dan setelah pirolisis, dan PSA sebelum dan setelah milling. Nanofluida dikarakterisasi dengan pengujian konduktivitas termal, zeta potensial, dan viskositas. Hasil pengujian XRF menunjukkan bahwa PCB memiliki komposisi terbesar SiO2. Hasil pengujian PSA setelah milling selama 20 jam didapat partikel dengan ukuran 572,6 d.nm, sehingga fluida disebut dengan thermal fluids. Secara keseluruhan peningkatan konsentrasi partikel mampu meningkatkan nilai konduktivitas termal dan viskositas. Sementara itu, peningkatan surfaktan CAPB mampu meningkatkan kestabilan, viskositas dan kestabilan dengan penambahan yang optimum. Nilai konduktivitas termal, zeta potensial dan viskositas thermal fluids tertinggi pada penelitian ini adalah 0,764 W/mC; 17,7 mV; dan 1,185 mPa.s masing-masing.

The increasing research on nanofluids as coolant media has led to the development of alternative nanofluids with lower costs, such as using non-metallic particles from PCB waste. This research aims to study the optimum conditions of non-metallic particle-based nanofluids from PCB waste as coolant media through stability, thermal conductivity, and viscosity. In this study, nanofluids were synthesized through a two-step method, starting with particle synthesis followed by dispersion of the particles into 100 ml of distilled water with the addition of CAPB surfactant to enhance stability. Particle synthesis began with PCB crushing, followed by leaching with 1 M HCl for 24 hours. After that, the particles underwent pyrolysis treatment with a gas flow of 5 L/min using argon and a holding temperature of 500°C for 45 minutes. Following pyrolysis, the particles were milled at a speed of 500 rpm for 20 hours. The particles were then dispersed into 100 ml of distilled water to synthesize the nanofluids, with particle variations of 0% w/v, 0.1% w/v, 0.3% w/v, and 0.7% w/v, and CAPB surfactant variations of 0% v/v, 3% v/v, 5% v/v, and 7% v/v. The PCB particles were characterized by XRF testing before and after leaching, XRD testing before and after pyrolysis, and PSA testing before and after milling. The nanofluids were characterized by thermal conductivity testing, zeta potential, and viscosity. The XRF testing results showed that PCB had the highest SiO2 composition. The PSA testing results after 20 hours of milling yielded particles with a size of 572.6 nm, hence the fluid was referred to as thermal fluids. Overall, increasing particle concentration was able to enhance the thermal conductivity and viscosity values. Meanwhile, increasing the CAPB surfactant content improved stability, viscosity, and stability with optimum addition. The highest values of thermal conductivity, zeta potential, and viscosity of the thermal fluids in this study were 0.764 W/mC, 17.7 mV, and 1.185 mPa.s, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Naufalino
"Fluida terdispersi partikel mikro merupakan salah satu metode terbaru yang digunakan sebagai media pendingin. Fluida ini dikenal memiliki keunggulan dibandingkan dengan media pendingin lainnya, diantaranya adalah memiliki nilai konduktivitas termal yang tinggi. Nilai konduktivitas termal yang tinggi dapat digunakan sebagai media pendingin dalam proses rekayasa mikrostruktur material. Fluida terdispersi partikel mikro adalah fluida dasar yang di dalamnya terdispersi partikel berskala mikrometer. Fluida terdispersi partikel mikro dapat diproduksi dengan mendispersikan partikel logam maupun non-logam berukuran mikrometer ke dalam fluida dasar. Partikel berukuran mikrometer digunakan dengan tujuan untuk meningkatkan kemampuan konduktivitas termal dengan memanfaatkan luas permukaan partikel itu sendiri. Pada penelitian ini, menggunakan grafit lab-grade sebagai partikel yang didisperdikan ke fluida. Proses mereduksi ukuran grafit agar mencapai skala mikrometer dilakukan dengan menggunakan metode mechanical milling. Proses mechanical milling menggunakan alat berupa planetary ball-mill dengan durasi penggilingan selama 15 jam pada kecepatan 500 rpm serta dengan menambahkan polyvinyl alcohol (PVA) sebagai milling additive sebanyak 5 ml. Surfaktan polyethylene glycol (PEG) digunakan pada penelitian ini untuk membantu partikel grafit dapat terdispersi dengan baik. Penelitian ini menggunakan variabel berupa kandungan grafit dan surfaktan. Variabel kandungan karbon menggunakan variasi partikel 0,1; 0,3; dan 0,5%. Variabel surfaktan menggunakan konsentrasi berupa 0, 10, atau 20%. Karakterisasi yang dilakukan pada penelitian ini berupa Field-Emission Scanning Electron Microscope (FESEM), dan Energy Dispersive X-Ray Spectroscopy (EDS) digunakan untuk menganalisis komposisi partikel, morfologi partikel, dan perubahan permukaan. Particle Size Analyzer (PSA), Zeta Potensial, dan Uji Konduktivitas Termal digunakan untuk menganalisis ukuran partikel, konduktivitas termal fluida, dan stabilitas dari fluida

Microparticle dispersed fluid is one of the newest methods used as a cooling medium. This fluid is known to have advantages compared to other cooling media, including having a high thermal conductivity value. High thermal conductivity values can be used as a cooling medium in the microstructure engineering process of the material. Microparticle dispersed fluids are basic fluids in which micrometer-scale particles are dispersed. Microparticle dispersed fluids can be produced by dispersing micrometer-sized metal and nonmetallic particles into the base fluid. Micrometer-sized particles are used in order to increase the ability of thermal conductivity by utilizing the surface area of the particles themselves. In this study, using lab-grade graphite as particles dispersed into the fluid. The process of reducing the size of graphite to reach a micrometer scale is carried out using the mechanical milling method. The mechanical milling process uses a tool in the form of a planetary ball-mill with a grinding duration of 15 hours at a speed of 500 rpm and by adding polyvinyl alcohol (PVA) as a 5 ml milling additive. Polyethylene glycol (PEG) surfactant was used in this study to help graphite particles be well dispersed. This study uses variables in the form of graphite and surfactant content. Variable carbon content using particle variations of 0.1; 0.3; and 0.5%. The surfactant variable uses a concentration of 0, 10, or 20%. Characterization carried out in this research in the form of Field-Emission Scanning Electron Microscope (FESEM), and Energy Dispersive X-Ray Spectroscopy (EDS) is used to analyze particle composition, particle morphology, and surface changes. Particle Size Analyzer (PSA), Zeta Potential, and Thermal Conductivity Test are used to analyze particle size, fluid thermal conductivity, and stability of the fluid"
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Tri Vanindita
"Meningkatnya penelitian akan nanofluida berbasis karbon mengakibatkan adanya dorongan untuk mengembangkan nanofluida alternatif yang memiliki harga yang relatif lebih rendah, yaitu nanofluida berbasis partikel karbon yang berasal dari karbon biomassa. Penelitian ini dilakukan untuk mempelajari kondisi optimum pada proses pendinginan baja S45C dengan melihat pengaruh media quench nanofluida berbasis partikel karbon dari arang batok kelapa hasil dry milling menggunakan parameter waktu milling dan kecepatan milling yang bervariasi. Variasi waktu milling yang digunakan yaitu 10, 15, dan 20 jam, sedangkan variasi kecepatan milling yaitu 250, 500, dan 750 rpm. Nanofluida disintesis melalui metode dua tahap, yaitu dengan memproduksi partikel terlebih dahulu melalui proses dry milling, kemudian 0.1% w/v partikel hasil milling didispersikan ke dalam 100 ml air distilasi dengan menambahkan 3% w/v surfaktan SDBS. Pada penelitian ini partikel karbon dikarakterisasi menggunakan pengujian SEM, EDS, dan PSA. Nanofluida dikarakterisasi menggunakan pengujian konduktivitas termal, zeta potensial, dan viskositas. Sampel baja S45C dikarakterisasi menggunakan pengujian OES, uji kekerasan Rockwell, dan pengamatan mikrostruktur. Hasil yang didapatkan dari penelitian bahwa ukuran partikel mengalami peningkatan seiring dengan peningkatan waktu milling pada kecepatan milling 250 dan 500 rpm. Sedangkan pada kecepatan milling 750 rpm mengalami penurunan ukuran partikel. Ukuran partikel terendah diperoleh oleh sampel dengan parameter milling 10 jam/500 rpm, yaitu sebesar 700.5 d.nm. Ukuran partikel tersebut tidak masuk dalam rentang nanopartikel sehingga fluida pendingin yang difabrikasi dikategorikan sebagai thermal fluids. Nilai konduktivitas termal dan viskositas mengalami peningkatan secara tidak linear seiring dengan menurunnya ukuran partikel. Nilai konduktivitas dan viskositas tertinggi secara berurutan adalah sebesar 0.75 W/m.℃ dan 1.12 mPa.s pada thermal fluids 500 rpm/10 jam. Hasil pengamatan mikrostruktur dan kekerasan Rockwell menunjukkan bahwa sampel baja 250 rpm/10 jam dan 500 rpm/10 jam memiliki kekerasan tertinggi sebesar 52 HRC dengan fasa yang didominasi oleh martensite dan bainite.

The increased research on carbon-based nanofluids has resulted in an impetus to develop alternative nanofluids with relatively lower prices, namely nanofluids based on carbon nanoparticles derived from biomass carbon. This research was conducted to study the optimum conditions in the cooling process of S45C steel by looking at the effect of quench nanofluids based on carbon particles from dry milled coconut shell charcoal using various milling times and milling speed parameters. The variation of milling times used are 10, 15, and 20 hours, while the variation of milling speeds are 250, 500, and 750 rpm. Nanofluid was synthesized through a two-step method, first by producing particles through a dry milling process, then 0.1% w/v milled particles were dispersed into 100 ml of distilled water by adding 3% w/v SDBS surfactant. In this study, carbon particles were characterized using SEM, EDS, and PSA. Nanofluids were characterized using thermal conductivity, zeta potential, and viscosity. S45C steel samples were characterized using OES, Rockwell hardness test, and microstructural observations. The results obtained from the research show that the particle size will increase with increasing milling time at milling speeds of 250 and 500 rpm. Meanwhile, at a milling speed of 750 rpm, the particle size decreases with increasing milling time. The sample obtained the smallest particle size with a parameter of 10 hours/500 rpm, which was 700.5 nm. The particle size is not included in the nanoparticle range, therefore the fabricated cooling fluids are categorized as thermal fluids. The thermal conductivity and viscosity value increase non-linearly as the particle size decreases. The highest conductivity and viscosity values, respectively, were 0.75 W/m.℃ and 1.12 mPa.s at 500 rpm/10 hour thermal fluids. The results of microstructures and hardness observations showed that the steel sample at 250 rpm/10 hours and 500 rpm/10 hours had the highest hardness of 52 HRC with a phase dominated by martensite and bainite."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasution, Arvie Anugerah Putri
"Perkembangan teknologi pendinginan sangat berpengaruh terhadap hasil dari perlakuan panas yang dilakukan pada sebuah material. Media pendingin yang efektif dinilai mampu menghasilkan kecepatan pendinginan yang cepat sehingga dapat menghasilkan baja dengan kekerasan yang tinggi. Penelitian ini bertujuan untuk memanfaatkan grafit dan oli 5W-40 untuk membuat nanofluida sebagai media pendingin. Grafit yang digunakan terlebih dahulu digerus sebelum dicampurkan dengan oli 5W-40. Pada penelitian ini juga dilihat pengaruh dari penambahan surfaktan berupa sodium dodecylbenzenesulfonate (SDBS), cetyltrimethylammonium-bromide (CTAB), dan polyethylene glycol (PEG) untuk membandingkan efektivitas nanofluidanya. Konsentrasi grafit yang digunakan juga beragam, yaitu 0.1%w/v, 0.3%w/v, dan 0.5%w/v sehingga dapat dilihat pengaruh yang dihasilkan dari perubahan konsentrasi tersebut. Berdasarkan hasil penelitian, didapatkan bahwa penambahan surfaktan dapat meningkatkan nilai konduktivitas termal dari nanofluidanya. Diketahui bahwa penambahan CTAB dengan konsentrasi partikel 0.1%w/v menghasilkan nanofluida dengan nilai konduktivitas tertinggi, yaitu 0.173 W/mK. Sementara itu, kekerasan baja tertinggi dihasilkan oleh nanofluida dengan penambahan PEG dan konsentrasi partikel 0.1%w/v, yaitu sebesar 38 HRC dan diikuti oleh nanofluida dengan penambahan CTAB dan konsentrasi partikel 0.1%w/v, yaitu sebesar 36 HRC. Hal ini disebabkan karena adanya mekanisme penyerapan yang berbeda-beda dari surfaktan pada lingkungan yang berbeda.

The development of quenching technology will highly influence the results of materials’ heat treatment process. An effective quenchant obtained fast cooling rate during the quenching process so that the steel’s hardness increased. This study aims to utilize graphite as nanoparticles and 5W-40 engine oil as the base fluid to make a nanofluid quenchant. The graphite was being milled before mixed with the oil. This study also studied the effect of surfactants addition in the form of sodium dodecylbenzenesulfonate (SDBS), cetyltrimethylammonium-bromide (CTAB), and polyethylene glycol (PEG) to compare the effectiveness of the nanofluids. The graphite concentration varies as well, namely 0.1%w/v, 0.3%w/v, and 0.5%w/v to see the effect resulting from the change in concentration. Based on the results of the study, it was found that the addition of surfactants affects the nanofluids’ thermal conductivity sufficiently. It is known that the addition of CTAB with particle concentration of 0.1%w/v produces the highest conductivity value, which is 0.173 W/mK. Meanwhile, the highest steel hardness was produced by nanofluid with the addition of PEG with particle concentration of 0.1%w/v, which was 38 HRC and followed by nanofluid with the addition of CTAB with particle concentration of 0.1%w/v, which was 36 HRC. The discrepancy happened because of the surfactants’ different absorption mechanism in different environments."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reinaldy Nazar
"Hasil beberapa penelitian menunjukan bahwa nanofluida memiliki karakteristik termal yang lebih baik dibandingkan dengan fluida konvensional (air). Berkaitan dengan hal tersebut, saat ini sedang berkembang pemikiran untuk menggunakan nanofluida sebagai fluida perpindahan panas alternatif pada sistem pedingin reaktor. Sementara itu, konveksi alamiah di dalam pipa anulus vertikal merupakan salah satu mekanisme perpindahan panas yang penting dan banyak ditemukan pada reaktor riset TRIGA, reaktor daya generasi baru dan alat konversi energi lainnya. Namun disisi lain karakteristik perpindahan panas nanofluida di dalam pipa anulus vertikal belum banyak diketahui. Oleh karena itu penting dilakukan secara berkesinambungan penelitian-penelitian untuk menganalisis perpindahan panas nanofluida di dalam pipa anulus vertikal. Pada penelitian telah dilakukan analisis numerik menggunakan program computer CFD (computational of fluids dynamic) terhadap karakteristik perpindahan panas konveksi alamiah aliran nanofluida Al2O3-air konsentrasi 2% volume di dalam pipa anulus vertikal. Hasil kajian ini menunjukkan terjadi peningkatan kinerja perpindahan panas (bilangan Nuselt- NU) sebesar 20,5% - 35%. Pada moda konveksi alamiah dengan bilangan 2,4708e+09 £ Ra £ 1,9554e+13 diperoleh korelasi empirik untuk air adalah dan korelasi empirik untuk nanofluida Al2O3-air adalah"
620 JTRN 18:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>