Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 161179 dokumen yang sesuai dengan query
cover
Merlin Wijaya
"Penyakit glaukoma ditandai dengan hilangnya serabut saraf optik dan astrosit. Kehilangan ini dapat diperiksa dengan mengukur ketebalan neuro-retinal rim dan ukuran optic cup sehubungan dengan optic disc. Namun, penentuan glaukoma masih membutuhkan pemeriksaan mata lengkap oleh dokter mata. Beberapa metodologi otomatis berdasarkan transfer learning deep convolutional neural network untuk klasifikasi glaukoma telah dikembangkan. Untuk meningkatkan akurasi dari penelitian sebelumnya, digunakan metode transfer learning dari metode klasifikasi skin cancer. Arsitektur Inception-v3 dan ResNet50 serta pengklasifikasi serial dari kedua arsitektur tersebut dikembangkan untuk klasifikasi glaukoma otomatis menggunakan citra fundus. Selain arsitektur, variasi splitting dataset dengan metode train-test-split validation serta k-fold cross validation dibandingkan untuk mendapatkan nilai akurasi tertinggi. Berdasarkan hasil penelitian, model terbaik yang didapatkan berupa Inception-v3 dengan metode validasi train-valid-test rasio 80:20 dengan akurasi 95%, presisi 96%, sensitivitas 95%, dan skor-f1 95%. Pembagian 80:20 dipilih karena cocok dengan ukuran dataset yang digunakan. Performa model ini lebih baik dari metode yang telah ada sebelumnya, yaitu Xception dengan peningkatan akurasi sebanyak 2%.

Glaucoma is characterized by loss of optic nerve fibers and astrocytes. This loss can be checked by measuring the thickness of the neuro-retinal rim and the size of the optic cup in relation to the optic disc. However, the determination of glaucoma still requires a complete eye examination by an ophthalmologist. Several automated methodologies based on transfer learning deep convolutional neural networks for glaucoma classification have been developed. To increase the accuracy of previous research, transfer learning method is used from the skin cancer classification method. The Inception-v3 and ResNet50 architectures also the serial classifiers of the two architectures were developed for automatic glaucoma classification using fundus images. In addition to the architecture, variations of splitting datasets using the train-test-split validation method and k-fold cross validation were compared to get the highest accuracy value. Based on the results of the study, the best model obtained was Inception-v3 with a train-valid-test ratio validation method of 80:20 with 95% accuracy, 96% precision, 95% sensitivity, and 95% f1-score. The 80:20 division was chosen because it matches the size of the dataset used. The performance of this model is better than the previous method, namely Xception with an increase in accuracy of 2%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Nindiana Pertiwi
"Deteksi progresi glaukoma penting untuk menentukan efektivitas terapi, dan inisiasi atau eskalasi terapi glaukoma sering kali bergantung pada penilaian progresi. Meskipun demikian, tingkat kesepakatan (agreement) di antara para ahli dalam mengidentifikasi progresi glaukoma bervariasi antar penelitian. Penelitian ini membandingkan agreement dan waktu interpretasi progresivitas glaukoma oleh dokter spesialis mata menggunakan dua metode: perangkat lunak FORUM® dan printouts hasil pemeriksaan OCT dan Humphrey. Sebanyak 36 sample cases yang masing-masing terdiri dari minimal 3 laporan OCT dan 5 laporan Humphrey dinilai oleh 12 dokter spesialis mata non-glaukoma (observers). Agreement terhadap status progresi glaukoma antara observers dan konsensus spesialis glaukoma dan dinyatakan dalam nilai Kappa. Waktu interpretasi merupakan total waktu yang dibutuhkan oleh observers untuk menilai progresivitas glaukoma pada seluruh kasus (n=36). Tingkat agreement terhadap status progresi glaukoma ketika menggunakan FORUM® dan ketika menggunakan metode konvensional (printouts) sama baik, dengan nilai Kappa rata-rata 0,62±0,16 vs. 0,63±0,22 (p=0,928). Metode FORUM® memiliki waktu interpretasi rata-rata yang lebih singkat dibandingkan dengan metode printouts, namun tidak bermakna secara statistik (29,1±9,5 vs. 38,8±13,6 menit, p=0,055). Studi ini menunjukkan bahwa penilaian progresi glaukoma menggunakan perangkat lunak FORUM® Glaucoma Workplace tidak memiliki keunggulan dibandingkan metode printouts dalam hal agreement terhadap status progresi dan waktu interpretasi.

Detecting glaucoma progression is crucial for determining whether current therapy is effective, and the initiation or escalation of glaucoma therapy often depends on progression status. However, the level of agreement among experts in identifying glaucoma progression varies across studies. This study aims to compare the agreement and interpretation time of glaucoma progression assessment using two methods: the FORUM® software and printouts of OCT and Humphrey reports, as assessed by ophthalmologists. A total of 36 sample cases comprising minimum 3 OCT and 5 Humphrey reports were assessed by 12 ophthalmologists. Agreement on glaucoma progression between observers and standard reference was presented as Kappa value. Interpretation time was defined as the total time required by observers to assess glaucoma progression across all sample cases (n=36). The level of agreement on progression status between the observers when they used FORUM® and conventional (printouts) method were both good, with mean Kappa value 0.62±0.16 vs. 0.63±0.22 respectively (p=0.928). The FORUM® method had a shorter mean interpretation time compared to printouts method, but not statistically significant (29.1±9.5 vs. 38.8±13.6 minutes, p=0.055). This study showed that the assessment of glaucoma progression using FORUM® Glaucoma Workplace software has no superiority to printouts method in terms of agreement on progression status and interpretation time."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ferry Valentino
"ABSTRAK
Glaukoma merupakan penyakit multifaktorial dan penyebab kematian terbesar kedua di dunia. Riskesdas 2007, menyatakan sekitar 4.6 penduduk Indonesia menderita glaukoma. Baku emas penegakkan diagnosis glaukoma menggunakan nilai rerata RNFL. Tujuan penelitian ini untuk melihat korelasi nilai rim area dengan rerata RNFL sebagai alat diagnostik glaukoma primer sudut terbuka. Penelitian ini menggunakan metode studi potong-lintang dengan jumlah sampel sebanyak 55 subjek yang diambil dari total data rekam medis bulan februari 2015 hingga juni 2016. Hasil penelitian menunjukkan sebagian besar pasien glaukoma primer sudut terbuka berusia >58 tahun 56.4 , laki-laki 61.8 , cup-disk rasio >0.7 63.6 , nilai rerata RNFL 60.76 19.86 ?m, dan nilai rim area 0.73 0.56 mm2. Hasil uji korelasi pearson antara Rim area dengan rerata RNFL didapatkan nilai r 0,734 dan nilai p< 0,05 yang menyatakan kedua variabel memiliki korelasi kuat dan secara statistik bermakna. Pengukuran menggunakan ROC curve didapatkan nilai cut-off rim area sebasar 1.049 dengan nilai sensitivitas 81.8 dan spesifisitas 95.5 . Berdasarkan hasil tersebut dapat disimpulkan bahwa nilai Rim area memiliki korelasi dengan nilai rerata RNFL dan dapat digunakan sebagai alat diagnostik glaukoma primer sudut terbuka.

ABSTRAK
Glaucoma is a multifactorial disease and the second biggest cause of death in the world. Riskesdas 2007 report rsquo s stated around 4.6 population in Indonesia was diagnosed with glaucoma. The gold standard in diagnosing glaucoma is using the average RNFL.The purpose of this research is finding the correlation of rim area with average of RNFL as a diagnostic tools for primary open angle glaucoma. The method used in this research is a cross sectional study, the samples of which use 55 patient medical records from 2015 February until 2016 June. The result consist of the data that most of the patient with primary open angle glaucoma are older than 58 years old 56.4 , male 61.8 , cup disk ratio 0.7 63.6 , the average RNFL 60.76 19.86 m and rim area 0.73 0.56 mm2. Rim area and average RNFL are analyzed with pearson corelation test and the result of which are r value 0,734 and p value less than 0,05 which represent a strong correlation and statistically significant result. Measurement with ROC curve found that the cut off of rim area is 1.049 with 81.8 sensitivity and 95.5 specificity. As the conclution, rim area has corelation with average RNFL and can be used as a diagnostic tool for primary open angle glaucoma. "
2016
S70378
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Rabi`Ah Al`Adawiyah
"Penyakit mata berat yang telat tertangani seperti katarak, glaukoma, serta retinopati diabetik merupakan salah satu penyebab utama gangguan penglihatan dan kebutaan. Pencegahan dapat dilakukan dengan melakukan pendektesian dini melalui citra fundus. Untuk mengatasi minimnya dokter mata dan persebarannya yang masih belum merata, dilakukan pendektesian penyakit mata secara otomatis melalui gambar mata dengan pendekatan deep learning. Dalam penelitian ini, digunakan metode Transfer Learning U-Net dengan VGG16 sebagai pretrained model (V-Unet) yang telah dilatih pada online database, ImageNet. Data yang digunakan dalam penelitian ini merupakan data citra fundus yang diperoleh dari platform Kaggle. Preprocessing data pada citra fundus yang dilakukan untuk meningkatkan kinerja model adalah centered crop, resize, dan rescale. Fungsi optimasi Adam digunakan untuk meminimalkan fungsi loss ketika melatih model. Pada penelitian ini, dilakukan pemisahan data training, validasi, testing dengan 3 rasio berbeda, yaitu kasus I dengan rasio 60:20:20, kasus II dengan rasio 70:20:10, dan kasus III dengan rasio 80:10:10. Hasil penelitian ini menunjukkan bahwa V-Unet memiliki kinerja paling baik pada kasus II berdasarkan skor AUC dan running time dengan nilai rata-rata skor AUC 0,8622 dan rata-rata running time 3,7079 detik sedangkan berdasarkan nilai akurasinya V-Unet memiliki kinerja paling baik pada kasus III dengan rata-rata nilai akurasi sebesar 66,34%.

Untreated severe eye diseases such as cataracts, glaucoma, and diabetic retinopathy is one of the main causes of visual impairment and blindness. Prevention can be done by doing early detection through fundus images. To overcome the lack of ophthalmologists and their uneven distribution, an automatic detection of eye diseases is carried out through eye images using a deep learning approach. In this study, Transfer Learning U-Net method was used with VGG16 as a pre-trained model (V-Unet) which had been trained on the online database, ImageNet . The data used in this study is fundus image data that obtained from the Kaggle platform. Preprocessing data on the fundus image that is carried out to improve model performance is centered crop, resize, and rescale. Adam's optimization function used to minimize the loss function when training the model. In this study, the training, validation, testing data was separated with 3 different ratios, namely case I with a ratio of 60:20:20, case II with a ratio of 70:20:10, and case III with a ratio of 80:10:10. The results of this study indicate that V-Unet has the best performance in case II based on the AUC score and running time with an average AUC score of 0.8622 and an average running time of 3.7079 seconds while based on accuracy value the best case is case III with an average accuracy value of 66.34%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widi Nugroho
"Bayi prematur adalah bayi yang lahir dengan usia kehamilan kurang dari 37 minggu yang memiliki sistem saraf dan organ-organ yang belum sempurna sehingga lebih beresiko mengalami berbagai masalah kesehatan. Salah satu masalah kesehatan yang dapat terjadi adalah pada organ mata yang merupakan organ penting dalam perkembangan bayi. Retinopathy of Prematurity (ROP) merupakan salah satu penyakit mata yang terjadi pada bayi prematur yang disebabkan oleh pembentukan pembuluh darah retina yang tidak normal. Proses diagnosis yang dilakukan oleh dokter mata belum bisa mengatasi kenaikan jumlah kasus ROP, sehingga disini penulis menggunakan pendekatan deep learning untuk melakukan klasifikasi tingkat keparahan ROP pada citra fundus retina. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN) dengan arsitektur ResNet50. Data yang digunakan pada penelitian ini merupakan data sekunder yang diperoleh dari online database Kaggle berupa 90 data citra fundus retina yang terbagi atas 38 citra bukan penderita ROP, 19 citra penderita ROP Stage 1, 22 citra penderita ROP Stage 2, dan 11 citra penderita ROP Stage 3. Pada tahap persiapan data, dilakukan perbaikan kontras citra menggunakan Contrast Limited Adaptive Histogram (CLAHE) dan image masking. Kemudian dilakukan resize citra menjadi ukuran 224×224. Data kemudian diaugmentasi menggunakan teknik flip horizontal dan rotation agar data menjadi lebih banyak yang kemudian dibagi menjadi 80% data training dan 20% data testing. Dari 80% data training, diambil 20% untuk data validation. Training model dilakukan menggunakan model dengan arsitektur ResNet50 dengan hyerparameter model yaitu batch size 64, learning rate 0.001, dan epoch sebanyak 30, fungsi optimasi Adam (Adaptive moment estimation), dan fungsi loss categorical cross entropy. Proses modelling dilakukan sebanyak 5 kali percobaan dan berhasil memperoleh nilai rata-rata kinerja training model sebesar 99.714% dan 92.85% pada akurasi training dan akurasi validation-nya, selain itu diperoleh nilai 0.01864 dan 0.18434 pada loss training dan loss validation. Sedangkan rata-rata kinerja testing model berhasil memperoleh akurasi testing sebesar 97.352%, testing loss sebesar 0.0986374, dan AUROC sebesar 0.0955. Selain melakukan evaluasi kinerja, peneliti juga akan menggunakan GradCAM untuk menampilkan visualisasi ciri-ciri yang dianggap penting untuk nantinya membantu dokter dalam mengevaluasi ROP.

Premature infants are babies born with a gestational age of less than 37 weeks, and they have underdeveloped nervous systems and organs, making them more susceptible to various health issues. One of the health problems that can occur involves the eye, which plays a crucial role in the baby's development. Retinopathy of Prematurity (ROP) is one of the eye diseases that affects premature infants and is caused by abnormal blood vessel formation in the retina. The current diagnostic processes performed by ophthalmologists have not been effective in addressing the increase in ROP cases. Therefore, in this study, the author employs a deep learning approach to classify the severity of ROP in retinal fundus images. The deep learning method utilized is the Convolutional Neural Network (CNN) with the ResNet50 architecture. The research data consists of 90 retinal fundus images obtained from the online database Kaggle, comprising 38 images of non-ROP cases, 19 images of ROP Stage 1, 22 images of ROP Stage 2, and 11 images of ROP Stage 3. In the data preparation phase, the image contrast is enhanced using Contrast Limited Adaptive Histogram (CLAHE) and image masking techniques. Subsequently, the images are resized to 224×224 dimensions. Data augmentation is performed using horizontal flip and rotation techniques to increase the dataset, which is then split into 80% training data and 20% testing data. From the 80% training data, 20% is further allocated for validation data. The model is trained using the ResNet50 architecture with hyperparameters set to batch size 64, learning rate 0.001, and 30 epochs. The optimization function used is Adam (Adaptive Moment Estimation), and the loss function is categorical cross-entropy. The modeling process is repeated five times, and the average performance of the training model is achieved at 99.714% for training accuracy and 92.85% for validation accuracy, with training and validation losses of 0.01864 and 0.18434, respectively. As for the average performance of the testing model, the testing accuracy is 97.352%, the testing loss is 0.0986374, and the AUROC (Area Under the Receiver Operating Characteristic) is 0.0955. In addition to evaluating the model's performance, the researcher also employs GradCAM to visualize important features, which can assist doctors in evaluating ROP cases.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panggabean, Prima Ria Rumata
"Busuk pangkal batang merupakan penyakit utama tanaman kelapa sawit yang disebabkan oleh patogen yaitu jamur Ganoderma sp. terkhusus di Indonesia. Tindakan pengendalian dan metode pengamatan kondisi kelapa sawit yang dilakukan oleh petani secara manual masih belum efektif. Pemanfaatan teknologi drone DJI Air 2S yang dilengkapi kamera RGB (Red, Green, Blue) dapat memberikan solusi untuk pemantauan kondisi kelapa sawit yang lebih efektif menggunakan citra dari hasil perekaman. Kamera RGB masih memiliki kelemahan dalam mendeteksi penyakit kelapa sawit sehingga membutuhkan kamera tambahan dengan variasi panjang gelombang yang berbeda yaitu kamera OCN (Orange, Cyan, NIR). Citra dari hasil perekaman kamera RGB dan OCN memiliki informasi yang dapat digunakan untuk mengidentifikasi penyakit busuk pangkal batang menggunakan citra daun kelapa sawit sehingga membutuhkan metode pengolahan citra yang tepat untuk menggabungkan kedua citra. Metode image fusion dapat menggabungkan informasi dari citra RGB dan OCN sehingga menghasilkan citra baru yang memiliki enam kanal (Red, Green, Blue, Orange, Cyan, NIR). Penelitian ini berfokus untuk membangun metode image fusion (RGB dan OCN) berbasis arsitektur ResNet50 untuk mengidentifikasi penyakit kelapa sawit. Hasilnya didapatkan bahwa metode image fusion berbasis arsitektur ResNet50 dapat digunakan untuk mengidentifikasi penyakit kelapa sawit dengan sangat baik dibuktikan dengan nilai akurasi 99,70%, presisi 98,11%, dan recall 97,19%.

Stem base rot is a major disease of oil palm caused by the pathogen Ganoderma sp. especially in Indonesia. Control measures and methods of observing the condition of oil palms carried out by farmers manually are still not effective. The use of DJI Air 2S drone technology equipped with an RGB (Red, Green, Blue) camera can provide a solution for more effective monitoring of oil palm conditions using images from recording results. RGB cameras still have weaknesses in detecting oil palm diseases so they need additional cameras with different wavelength variations, namely OCN (Orange, Cyan, NIR) cameras. Images from RGB and OCN camera recordings have information that can be used to identify stem base rot using oil palm leaf images, so an appropriate image processing method is needed to combine the two images. The image fusion method can combine information from RGB and OCN images to produce a new image that has six channels (Red, Green, Blue, Orange, Cyan, NIR). This research focuses on building an image fusion method (RGB and OCN) based on ResNet50 architecture to identify oil palm diseases. It was found that the image fusion method based on ResNet50 architecture can be used to identify oil palm diseases very well as evidenced by the accuracy value of 99.70%, precision of 98.11%, and recall of 97.19%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sianturi, Julius Hotma Baginda
"COVID-19 merupakan penyakit yang telah menjadi pandemi pada tahun 2020. Penyakit ini dinyatakan sebagai pandemi karena menjadi wabah yang sangat luas hingga seluruh dunia terpapar. Dalam usaha penekanan penyebaran penyakit COVID-19, banyak peneliti yang menerapkan deep learning untuk mendeteksi penyakit ini. Convolutional Neural Network(CNN) merupakan jenis deep learning yang paling banyak digunakan untuk usaha mengklasifikasi citra X-ray paru-paru. Algoritma yang dikembangkan pada penelitian ini menggunakan deep learning dengan model CNN ResNet152v2 dengan Python untuk bahasa pemrogramannya serta Keras Tensorflow sebagai API. penelitian ini melakukan beberapa ekperimen untuk meningkatkan akurasi dan performa dengan memvariasikan dataset serta parameter seperti epoch, batch size, optimizer. Performa terbaik didapatkan dengan pengaturan parameter pada jumlah dataset 3000, epoch 15, batch size 16, dan optimizer Nadam dengan nilai akurasi hingga 96%. Hasil akurasi ini merupakan peningkatan yang didapatkan penelitian terdahulu yang menggunakan model VGG16 dengan akurasi hingga 92%.

COVID-19 is a disease that has become a pandemic in 2020. This disease is declared a pandemic because it is an epidemic that is so widespread that the entire world is exposed. In an effort to suppress the spread of the COVID-19 disease, many researchers have applied deep learning to detect this disease. Convolutional Neural Network (CNN) is a type of deep learning that is most widely used to classify X-ray images of the lungs. The algorithm developed in this study uses deep learning with the CNN ResNet152v2 model with Python for the programming language and Keras Tensorflow as the API. This study conducted several experiments to improve accuracy and performance by varying the dataset and parameters such as epoch, batch size, optimizer. The best performance is obtained by setting parameters on the number of datasets 3000, epoch 15, batch size 16, and optimizer Nadam with an accuracy up to 96%. The result of this accuracy is an improvement obtained from previous studies using the VGG16 model with an accuracy of up to 92%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardanareswari Chaerani
"Glaukoma adalah salah satu penyebab kebutaan terbanyak kedua di dunia yang disebabkan oleh tekanan yang meninggi pada bola mata. Dalam proses mendiagnosa glaukoma, dibutuhkan waktu yang lama dikarenakan tidak ada perubahan secara signifikan pada citra fundus. Pada penelitian ini, penulis menggunakan Convolutional Neural Network (CNN) untuk mengekstraksi fitur dan metode klasifikasi Deep Belief Network (DBN) dalam mengklasifikasi glaukoma pada data citra fundus. Hasil pada model CNN-DBN dibandingkan dengan metode ekstraksi fitur CNN dan klasifikasi Support Vector Machine (SVM) yang dinamakan model CNN-SVM. Arsitektur CNN yang digunakan pada penelitian ini adalah ResNet-50. Dataset yang digunakan dalam penelitian ini diperoleh dari 2 online database, yaitu cvblab dan kroy1809. Pada proses ekstraksi fitur, model dilatih dari fully connected layer pada ResNet-50. Kemudian, vektor fitur dari fully connected layer diklasifikasi menggunakan metode klasifikasi DBN dan SVM. Berdasarkan hasil simulasi, CNN-DBN memiliki hasil akurasi, precision, dan recall terbaik dibandingkan dengan metode CNN-SVM dan CNN dengan akurasi 96.46%, precision 95.86%, dan recall 98.05% pada pembagian dataset training dan testing 70:30.

Glaucoma is the second most common factor of blindness in the world caused by the increasing pressure on the eyeball. It takes a long time to diagnose glaucoma due no significant change in the fundus image. In this study, the author used the Convolutional Neural Network (CNN) to extract the features and the Deep Belief Network (DBN) classification method to classify glaucoma in fundus images. The results on the CNN-DBN model will be compared with to the CNN feature extaction method and the Support Vector Machine (SVM) classification method, named the CNN-SVM model. The CNN architecture used in this study is ResNet-50. The dataset used in this study are from 2 online database, cvblab and kroy1809. In the feature extraction process, the model is trained using the CNN method with the ResNet-50 architecture. Afterward, the feature vectors of the fully connected layer are classified using the DBN and SVM classification methods. Based on the simulation results, CNN-DBN has the best results than CNN-SVM and CNN method with the accuracy of 90%, precision of 95%, and recall of 92% with splitting data training and testing of 70:30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elkania Samanta Nagani
"Penyakit mata perlu pendeteksian dan diagnosis yang tepat mengingat peran organ mata yang penting dalam kehidupan. Salah satu cara mendeteksi penyakit mata yang menyebabkan kebutaan adalah melalui ophthalmoscopy, dengan hasil pemeriksaan berupa citra fundus. Penelitian ini menggunakan metode Convolution Neural Network (CNN) dengan arsitektur CO-ResNet. Data yang digunakan dalam penelitian ini diambil dari online database yang berisi data multi-kelas penyakit mata. Preprocessing crop center dan resize digunakan dalam penelitian ini agar ukuran data citra dapat dijadikan input model. Fungsi optimasi untuk meminimalkan loss function ketika melatih model yang digunakan dalam penelitian ini adalah fungsi Adam dengan setting hyperparameter learning rate, epoch, 𝛽1 , dan 𝛽2 . Fungsi loss yang digunakan untuk masalah pengklasifikasian multikelas dalam penelitian ini adalah categorical cross entropy. Hasil penelitian menunjukan nilai yang diperoleh dengan training loss terkecil sebesar 0,4066 dan validation loss terkecil sebesar 0,4950. Sementara itu, nilai training accuracy terbaik sebesar 87% dan validation accuracy terbaik sebesar 79%. Setelah melalui proses training, dilakukan proses testing untuk mengevaluasi kinerja model. Hasil testing terbaik yang didapat dengan nilai testing accuracy sebesar 75,25%, precision sebesar 75,6%, recall sebesar 75,4%, dan F1-score sebesar 75,4%. Secara keseluruhan, metode CO- ResNet bekerja dengan cukup baik dalam mengklasifikasi dan mendeteksi penyakit mata.

Eye diseases need proper detection and diagnosis considering the important role of eye organs in life. One way to detect eye diseases that cause blindness is through ophthalmoscopy, with the results of the examination being an image of the fundus. This research uses the Convolution Neural Network (CNN) method with CO-ResNet architecture. The data used in this study were taken from an online database containing data on multi-class eye diseases. Preprocessing crop center and resize are used in this study so that the size of the image data can be used as model input. The optimization function to minimize the loss function when training the model used in this study is the Adam function with the hyperparameters setting are learning rate, epoch, 𝛽1, and 𝛽2. The loss function used for the multiclass classification problem in this study is categorical cross entropy. The results showed that the value obtained with the smallest training loss was 0.4066 and the smallest validation loss was 0.4950. Meanwhile, the best training accuracy value is 87% and the best validation accuracy is 79%. After going through the training process, a testing process is carried out to evaluate the performance of the model. The best testing results were obtained with testing accuracy values of 75.25%, precision of 75.6%, recall of 75.4%, and F1-score of 75.4%. Overall, the CO-ResNet method works quite well in classifying and detecting eye diseases."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harahap, Nanda Ilham
"Perkembangan bidang machine learning telah mengalami kemajuan yang pesat dari berbagai domain dimana dibutuhkan sistem otomasi. Hal ini membuat model yang advanced, seperti Convolutional Neural Network yang merupakan bagian dari deep learning, dapat mencapai performa yang baik dalam melakukan klasifikasi, identifikasi objek, hingga bahkan melebihi kemampuan manusia dalam beberapa domain. Salah satu aplikasi dari perkembangan ini adalah klasifikasi gambar terutama pada bidang medis misalnya pada klasifikasi kanker kulit. Diagnosis otomatis kanker kulit dari lesi kulit dengan menggunakan gambar dermoskopi masih merupakan tugas yang menantang bagi kecerdasan buatan seperti Artificial Neural Network khususnya pada metode konvolusi yang umum pada gambar, atau disebut Convolutional Neural Network. Penggunaan arsitektur transfer learning dengan TF Lite pada klasifikasi merupakan faktor penting dalam membuat diagnosis otomatis yang mobile, akurat, dan cekat. Meski demikian, model-model klasifikasi yang sudah terbuat tersebut masih belum dapat sempurna melakukan kategorisasi pada penyakit lesi kulit. Pada dataset ini terdapat 7 kelas label yang akan diklasifikasi dengan menggunakan arsitektur InceptionResNetV2. Kemudian dilakukan penanganan imbalanced data dengan menggunakan metode oversampling untuk mengangani dataset yang tidak rata. Setelah itu hasilnya akan dianalisis dengan beberapa metrik parameter yang dipakai yaitu presisi, recall, akurasi, dan F1-score. Didapatkan hasil terbaik ketika EarlyStopping pada epoch terakhir dengan akurasi overall pada 87.56%, top-2 pada 95.05%, dan top-3 pada 97.46%. Durasi klasifikasi juga telah diukur dengan Streamlit Share dan HuggingFace Spaces. Durasi tersebut ialah waktu dari ping ke tiap host, dimana aplikasi web Streamlit memiliki latency yang lebih rendah dibandingkan dengan HuggingFace, pada rata-rata (1,17 ms vs 1,49 ms), dan standar deviasi latency pada aplikasi web HuggingFace lebih tinggi dibandingkan dengan Streamlit (0,10 ms vs 0,49 ms), durasi klasifikasi HuggingFace memiliki waktu klasifikasi rata-rata 116 ms dan standar deviasi sebesar 5 ms, sedangkan Streamlit lebih rendah, yaitu 97 ms dan standar deviasi sebesar 2 ms.

The development of the field of machine learning has experienced rapid progress from various domains where automation systems are needed. This makes advanced models, such as Convolutional Neural Networks that are part of deep learning, can achieve good performance in classifying, object identification, and even exceed human capabilities in some domains. One application of this development is image classification, especially in the medical field, for example in the classification of skin cancer. Automatic diagnosis of skin cancer from skin lesions using dermoscopy images is still a challenging task for artificial intelligences such as Artificial Neural Networks, especially the convolutional method common in images, or called Convolutional Neural Networks. The use of transfer learning architecture with TF Lite on classification is an important factor in making automatic diagnosis mobile, accurate, and agile. However, the classification models that have been made are still unable to perfectly categorize skin lesion diseases. In this dataset there are 7 label classes that will be classified using the InceptionResNetV2 architecture. Then handling imbalanced data using the oversampling method to handle uneven datasets. After that, the results will be analyzed with several metric parameters used, namely precision, recall, accuracy, and F1-score. The best results were obtained when EarlyStopping at the last epoch with overall accuracy at 87.56%, top-2 at 95.05%, and top-3 at 97.46%. The duration of classification has also been measured with Streamlit Share and HuggingFace Spaces. The duration is the time from ping to each host, where the Streamlit web application has lower latency compared to HuggingFace, on average (1.17 ms vs 1.49 ms), and the standard deviation of latency on the HuggingFace web application is higher than that of Streamlit (0.10 ms vs 0.49 ms), the duration of HuggingFace classification has an average classification time of 116 ms and a standard deviation of 5 ms, while Streamlit is lower, at 97 ms and standard deviation of 2 ms."
Depok: 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>