Ditemukan 86648 dokumen yang sesuai dengan query
Hana Raissya
"Perkembangan knowledge graph semakin penting sebagai sumber data dan informasi kontekstual pada ilmu data. Meskipun konsep ini telah ada selama lebih dari dua dekade, memahami data knowledge graph masih menjadi tantangan bagi pengguna. Penggunaan alat visualisasi data, misalnya seperti, Wikidata Query Service (WQS), dapat membantu mengatasi tantangan tersebut. Namun, alat tersebut difokuskan hanya pada knowledge graph tertentu dan hanya disediakan sebagai aplikasi web. Di sisi lain, visualisasi dengan Python library, kglab memfasilitasi visualisasi knowledge graph generik dengan dukungan terbatas dari jenis visualisasi dibandingkan dengan WQS. Penelitian ini mengusulkan VizKG, sebagai framework (Python library) yang menyediakan berbagai macam visualisasi untuk hasil kueri SPARQL pada knowledge graph generik. VizKG menghubungkan hasil kueri dan library visualisasi eksternal melalui pemetaan variabel terhadap komponen visualisasi yang dibutuhkan. Sebagai bentuk evaluasi pendekatan kami, penelitian ini menyertakan evaluasi use case untuk VizKG pada knowledge graph generik yang berasal dari beberapa domain. Saat ini jumlah visualisasi grafik yang didukung oleh VizKG adalah 24 jenis grafik. Fitur lainnya yang didukung VizKG termasuk rekomendasi jenis visualisasi untuk pengguna dan kemudahan ekstensibilitas bagi pengembang untuk menambahkan jenis visualisasi baru. Framework VizKG ini diharapkan dapat membantu ekstraksi dan memvisualisasikan knowledge graph untuk memahami data dan mendukung analisis lebih lanjut. VizKG tersedia secara terbuka di https://pypi.org/project/VizKG/.
Knowledge graphs become increasingly important as a source of data and contextual information in data science. Even though knowledge graphs has been around for more than two decades, understanding SPARQL query results from a knowledge graph can be challenging for users. The use of data visualization tool, such as, Wikidata Query Service (WQS) can help address this challenge. However, existing tools are either focused just on a specific knowledge graph and only provided as a web interface. On the other hand, visualization through Python library, kglab facilitates visualizing generic Knowledge graphs though with a limited support of visualization types compared to that of WQS. This study proposes VizKG, as a framework (Python library) that provides a wide range of visualizations for SPARQL query results on any knowledge graphs. VizKG connects SPARQL query results and external visualization libraries by mapping variables to the visualization components needed. To evaluate our approach, this study includes use case evaluation for the VizKG on generic knowledge graphs originated from several domains. At this stage the number of graph visualizations supported by VizKG is 24 chart types. Other features of VizKG includes recommendations of visualization type for user and easy extensibility for developers to add new types of visualizations. This framework is expected to assist extraction and visualize knowledge graphs for understanding data and support further analysis. VizKG is openly available at https://pypi.org/project/VizKG/."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
"RDF database systems is a cutting-edge guide that distills everything you need to know to effectively use or design an RDF database. This book starts with the basics of linked open data and covers the most recent research, practice, and technologies to help you leverage semantic technology. With an approach that combines technical detail with theoretical background, this book shows how to design and develop semantic web applications, data models, indexing and query processing solutions.
"
Waltham, MA: Morgan Kaufmann, 2015
e20427683
eBooks Universitas Indonesia Library
Andrey Andoko
Jakarta: Elex Media Komputindo, 1989
001.642 AND t
Buku Teks SO Universitas Indonesia Library
Cicin Wijaya
"Clipper merupakan bahasa pemrograman basis data terpusat. Operasi basis data pada Clipper tersebut masih berupa operasi berkas. Setiap berkas data Clipper merupakan satu tabel basis data. berkas-berkas tersebut diletakkan pada satu tempat tertentu, dan untuk pengaksesannya perlu disebutkan dimana berkas tersebut berada. Dampaknya, pemrogram perlu mengetahui letak tabel tersebut. Permasalahan letak data ini menjadi semakin bertambah pada sistem basis data terdistribusi. Disamping itu, secara internal Clipper tidak melakukan pemeriksaan atas integritas data. Hal ini menyebabkan modifikasi yang dilakukan dapat menyebabkan data menjadi tidak konsisten.
Tugas Akhir ini dibuat untuk mengatasi permasalahan letak data dan integritas data tersebut. Caranya adalah dengan pembuatan suatu katalog dan beberapa sub-program. Dengan adanya tambahan fasilitas ini, pemrograman basis data terdistribusi Clipper menjadi transparan, tanpa perlu mengetahui letak tabel data ataupun hubungan rujukan data.
Agar sistem yang dikembangkan ini dapat digunakan dan berjalan dengan benar, maka pemrogram harus menggunakan perintah-perintah pemanggil sub-program tertentu, serta tidak boleti menggunakan beberapa perintah yang telah digantikan oleh suatu sub-program. Disamping itu, hasil rancangan perancang basis data harus dituangkan secara konsisten pada katalog dari basis data tersebut."
Depok: Universitas Indonesia, 1994
T9667
UI - Tesis Membership Universitas Indonesia Library
Annisa Ananta Koesuma
"Penggunaan Python dipilih karena bahasa pemrograman ini bersifat open source dengan banyak tersedianya berbagai sumber dan Python juga diklaim sebagai bahasa yang menggabungkan kapabilitas, dengan kode sintaks yang sangat jelas, dan dilengkapi dengan bahasa yang besar dan komprehensif. Library Open CV juga tersedia secara gratis dan menyediakan banyak fungsi pemrosesan gambar. Pengoreksian citra CBCT yang dilakukan pada penelitian ini bertujuan untuk meningkatkan kualitas citra CBCT dengan melihat meningkatnya nilai yang didapat pada citra CBCT terkoreksi. Phantom CIRS 002LFC di-scan pada CBCT menggunakan half bow tie filter sesuai dengan protokol yang digunakan untuk scanning organ thorax. Penelitian ini menggunakan data citra pasien dengan diagnosa kanker paru dan laring masing-masing berjumlah dua dan satu orang. Hasil kalibrasi CBCT terhadap CT diperoleh bahwa nilai HU citra CBCT linier terhadap citra CT. Evaluasi PSNR dan SSIM digunakan pada penelitian ini sebagai parameter keberhasilan dari citra yang dikoreksi.
Python was chosen because this programming language is open source with many sources available and Python is also claimed to be a language that combines capabilities, with very clear syntax code, and is equipped with a large and complete language. CV Open Library is also available free of charge and provides many drawing functions. CBCT image correction carried out in this study aims to improve the quality of CBCT images by looking at the value obtained in the corrected CBCT image. Phantom CIRS 002LFC was scanned on CBCT using a half bow tie filter according to the protocol used for scanning the thorax organs. This study uses image data of patients diagnosed with lung and laryngeal cancer, respectively, two and one person. The CBCT calibration results against CT showed that the HU value of CBCT images was linear to CT images. PSNR and SSIM evaluations were used in this study as the confidence parameters of the corrected image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Budi Selamet Raharjo
"Sistem Penilaian Otomatis SIMPLE-O selama ini dikembangkan dengan pemrograman PHP di Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. Namun akurasi SIMPLE-O saat ini belum cukup tinggi untuk dapat digunakan secara praktis. SIMPLE-O kemudian dilanjutkan pengembangannya menggunakan pemrograman Bahasa C, tidak hanya untuk mencoba meningkatkan akurasi SIMPLE-O, tapi juga untuk memperluas penggunaannya. Untuk dapat meningkatkan akurasi penilaian SIMPLE-O diintegrasikan learning vector quantization LVQ pada pengembangannya. Skripsi ini membahas bagaimana pengembangan SIMPLE-O dengan LVQ menggunakan pemrograman Bahasa C.Seberapa banyak bagian data sampel yang digunakan pada saat training mempengaruhi performa penilaian. Semakin sedikit data yang digunakan pada fase training, maka akan terjadi penurunan akurasi pada fase evaluasi. Akurasi penilaian juga dipengaruhi proses ekstraksi ciri-ciri teks yang dilakukan menggunakan latent semantic analysis LSA dan singular value decomposition SVD . Akurasi penilaian dapat berubah ketika singular value yang dihasilkan, di proses terlebih dulu dengan frobenius norm dan vector angle. Faktor lainnya seperti jumlah kata-per-kolom matriks LSA tidak begitu mempengaruhi akurasi penilaian. Pada akhir percobaan, akurasi SIMPLE-O dengan LVQ secara rata-rata adalah 52.27 . Dengan menambahkan LVQ, akurasi SIMPLE-O mengalami peningkatan sebesar 41.67.
Sistem Penilaian Otomatis SIMPLE O was developed using PHP at Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. But the resulting accuracy of the SIMPLE O was not reliable enough to be used practically. Right now, SIMPLE O was being developed using C Programming Language. This was done to increase its reliability and to further widen its applications. To increase the accuracy of SIMPLE O, learning vector quantization LVQ was integrated as part of the new program. This Paper was written to address the development of SIMPLE O with LVQ.With less data used in LVQ training phase there will a decrease in the resulting accuracy of the validation phase. The accuracy was also affected by the method of how well the extraction of the text characteristic using latent semantic analysis LSA and singular value decomposition SVD . Additional process of the resulting singular value will result in change of accuracy. The number of words per column when creating the LSA matrix did not have any significant effect. At the end, SIMPLE O with LVQ has an average accuracy of 52.27. Implementation of LVQ give an increase of 41.67 of the accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68766
UI - Skripsi Membership Universitas Indonesia Library
Reading Mass: Addison-Wesley, 1987
006.33 LOG
Buku Teks Universitas Indonesia Library
Teft, Lee
Englewood Cliffs, NJ: Prentice-Hall, 1989
006.33 TEF p
Buku Teks Universitas Indonesia Library
Paulus Wiyanto
Jakarta: Elex Media Komputindo, 1987
005.1 WIY a
Buku Teks SO Universitas Indonesia Library
Hartono Partoharsodjo
Jakarta : Elex Media Komputindo, 1989
001.642 HAR t
Buku Teks SO Universitas Indonesia Library