Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 98513 dokumen yang sesuai dengan query
cover
Akira Andriani
"Analisis clustering merupakan proses pengelompokan yang bertujuan untuk menemukan kelompok atau cluster yang didalamnya memiliki karakteristik yang serupa. Seiring berjalannya waktu, teknik clustering berkembang menjadi biclustering dan triclustering, di mana dalam triclustering data yang digunakan adalah data tiga dimensi. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara bersamaan yang nantinya kelompok yang dihasilkan disebut dengan tricluster. Pada penelitian ini, digunakan metode Fuzzy Cuckoo Search (FCS) untuk mengimplementasikan triclustering pada data ekspresi gen tiga dimensi. FCS mengaplikasikan konsep Fuzzy C-Means (FCM) ke dalam algoritma cuckoo search. Penggunaan fungsi objektif FCM dalam FCS dapat mengatasi ketidakjelasan (uncertainty) dalam data, khususnya pada data ekspresi gen. Dalam metode cuckoo search, pencarian ‘solusi’ tricluster digambarkan dengan spesies cuckoo yang meletakkan telur di sarang burung lain. Berbeda dengan cuckoo search pada umumnya yang menggunakan metode random walk levy flight untuk pencarian solusi, pada penelitian ini, digunakan metode lain, yaitu metode random walk distribusi gaussian, di mana hal tersebut merupakan sebuah kebaruan dalam penelitian ini. Cuckoo search dalam metode FCS merupakan metode metaheuristik, sehingga dapat digunakan dalam berbagai masalah analisis data, termasuk data ekspresi gen. Metode FCS berdasarkan distribusi gaussian diimplementasikan pada data ekspresi gen tiga dimensi dari gen otot rangka yang diberi infus IL-6, di mana ekspresi gen diamati pada 3 subjek dan 3 titik waktu yang berbeda. Metode ini dievaluasi menggunakan ukuran evaluasi Triclustering Quality Index (TQI). Dari skenario yang dilakukan, metode FCS memberikan hasil terbaik dengan rata-rata TQI terendah ketika menggunakan nilai gaussian dan probabilitas . Hasil implementasi metode FCS menunjukkan 4 tricluster yang diduga sebagai kumpulan gen yang berekspresi atas respon dari IL-6. Kelompok gen yang diperoleh dari tricluster dapat digunakan sebagai target oleh ahli medis dalam pengembangan di bidang pengobatan penyakit seperti kanker, diabetes, paru-paru, atau gagal jantung yang menargetkan gen-gen dalam kelompok tricluster tersebut.

Clustering analysis is a grouping process that aims to find clusters such that objects in the same clusters have similar characteristics. Over time, clustering developed into biclustering and triclustering, wherein triclustering use three-dimensional dataset. Triclustering is able to group these three dimensions simultaneously and form groups called tricluster. This study used the Fuzzy Cuckoo Search (FCS) method to implement triclustering on three-dimensional gene expression data. FCS applies the Fuzzy C-means (FCM) concept to the cuckoo search algorithm. The use of the objective function of FCM in FCS can overcome the uncertainty in the data, especially in gene expression data. In the cuckoo search, finding the tricluster is described with cuckoo species laying their egg in the nests of other birds. The egg laid on the nest represents a 'solution' which is an update of the tricluster from the previous tricluster. Unlike cuckoo search in general, in this study, to find the tricluster solutions, it use gaussian random walk instead of levy flight random walk. Cuckoo search in the FCS method is a metaheuristic method, so it can be used in various data analysis problems, including gene expression data. FCS based on Gaussian distribution was implemented on three-dimensional gene expression data of skeletal muscle genes given IL-6 infusion, where the gene expression was observed in 3 subjects and 3 different time points. Of the 36 simulations performed, the FCS method gives the best results with the lowest average TQI when using gaussian values and probability . This method was evaluated using the Triclustering Quality Index (TQI) evaluation measure. The result of the implementation of FCS shows 4 triclusters which were suspected to be a collection of genes that change in response to IL-6. The gene groups obtained from the tricluster can be used as a consideration by medical professionals in the development of the treatment of diseases such as cancer, diabetes, pulmonary disease, or heart failure that target the genes in the tricluster group."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Ido Raskapati
"Analisis triclustering adalah salah satu metode data mining yang memiliki tujuan mengelompokkan data berbentuk tiga dimensi. Triclustering umumnya digunakan pada bidang bioinformatika untuk menganalisis kesamaan ekspresi gen suatu eksperimen pada titik waktu tertentu. Analisis triclustering yang dilakukan pada penelitian ini menggunakan metode gabungan Fuzzy Cuckoo Search berdasarkan Gaussian Distribution dengan -Trimax. Metode ini merupakan penggabungan algoritma nodes deletion pada Trimax dengan algoritma optimasi Fuzzy Cuckoo Search. Algoritma nodes deletion pada -Trimax digunakan pada fase pembentukan populasi awal tricluster. Konsep algoritma nodes deletion yaitu dapat menghasilkan himpunan tricluster dengan Mean Square Residue (MSR) di bawah threshold dan mendekati 0. Algoritma optimasi Cuckoo Search adalah algoritma pencarian solusi tricluster, digambarkan dengan konsep parasitisme spesies burung cuckoo. Pada penelitian ini, Cuckoo Search menggunakan random walk Gaussian Distribution untuk pencarian solusi tricluster. Berdasarkan hal ini komputasi algoritma Cuckoo Search menjadi lebih efisien dan efektif dalam menghasilkan himpunan tricluster yang lebih optimal dan mempercepat waktu komputasi. Fuzzy Cuckoo Search adalah pengembangan dari Cuckoo Search yang menggunakan fungsi objektif Fuzzy C-Means untuk mengatasi ketidakjelasan (uncertainty) dalam data ekspresi gen. Analisis triclustering menggunakan metode gabungan Fuzzy Cuckoo Search berdasarkan Gaussian Distribution dengan -Trimax digunakan pada data ekspresi gen tiga dimensi sel fibroblas yang diberikan perlakuan dengan Egr-1 dan Tgf-, di mana ekspresi gen diamati pada 6 kondisi dan 2 titik waktu. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index adalah himpunan tricluster yang dihasilkan dengan nilai = 0,015 dan = 0,50 . Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian perlakuan dengan Egr-1, Tgf- dan bertahan setiap titik waktu. Kumpulan gen tersebut dilakukan Gene Ontology (GO) yang diuji menggunakan Fisher’s exact dengan tingkat signifikansi 0,05 dan dikoreksi dengan False Discovery Rate. Hasil GO tersebut terdiri dari 219 GO Terms Biological Process, 28 GO Terms Molecular Function, dan 52 GO Terms Cellular Component. GO Terms dari masing-masing aspek GO tersebut dapat dijadikan bahan untuk penelitian di bidang bioinformatika untuk menganalisis hubungan GO Terms terhadap penyakit Systemic Sclerosis (SSc).

Triclustering analysis is one of the data mining methods aimed at clustering threedimensional data. Triclustering is commonly used in the field of bioinformatics to analyze the similarity of gene expression in an experiment at specific time points. The triclustering analysis in this research uses a combined method of Fuzzy Cuckoo Search based on Gaussian Distribution with -Trimax. This method combines the nodes deletion algorithm of -Trimax with the optimization algorithm of Fuzzy Cuckoo Search. The nodes deletion algorithm of -Trimax is used in the initial population formation phase of the tricluster. The concept of the nodes deletion algorithm is to produce tricluster sets with Mean Square Residue (MSR) below the threshold and close to 0. The optimization algorithm of Cuckoo Search is a search algorithm for tricluster solutions, depicted with the parasitism concept of cuckoo bird species. In this research, Cuckoo Search uses random walk Gaussian Distribution for tricluster solution search. This enhances the efficiency and effectiveness of the Cuckoo Search algorithm in producing more optimal tricluster sets and accelerating the computation time. Fuzzy Cuckoo Search is an extension of Cuckoo Search that employs Fuzzy C-Means objective function to handle uncertainty in gene expression data. The triclustering analysis using the combined method of Fuzzy Cuckoo Search based on Gaussian Distribution with -Trimax is applied to the three-dimensional gene expression data of fibroblast cells treated with Egr-1 and Tgf-1, where gene expressions are observed under 6 conditions and 2 time points. In this research, the tricluster set with the best quality based on the Triclustering Quality Index (TQI) is obtained with = 0.015 and = 0.50. Based on this tricluster set, important information is derived regarding groups of genes that respond well to treatment with Egr1, Tgf, and persist at each time point. These gene groups are subjected to Gene Ontology (GO) analysis, which is tested using Fisher's exact test with a significance level of 0.05 and corrected with False Discovery Rate. The GO results consist of 219 GO Terms Biological Process, 28 GO Terms Molecular Function, and 52 GO Terms Cellular Component. The GO Terms from each aspect can be utilized for further research in the field of bioinformatics to analyze the relationship of GO Terms with Systemic Sclerosis (SSc) disease."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisa Nurul Hidayah
"Triclustering digunakan untuk mengelompokkan data tiga dimensi secara simultan. Metode triclustering yang digunakan pada penelitian ini adalah gabungan 𝛿-Trimax dengan Fuzzy Cuckoo search (FCS) berdasarkan Lévy Flight. Data yang digunakan adalah data ekspresi gen dari proses diferensiasi human induced pluripoten stem cell (HiPSC) pada penderita penyakit jantung. Tahap awal adalah mencari populasi solusi tricluster homogen menggunakan metode 𝛿-Trimax. Penentuan nilai skala 𝛿 untuk menjalankan algoritma pada tahap populasi awal dilakukan menggunakan metode silhouette coefficient. Algoritma 𝛿-Trimax yang digunakan pada penelitian ini adalah algoritma Muliple Nodes Deletions dan Single Node Deletions. Tricluster yang didapatkan dari tahap 𝛿- Trimax selanjutnya akan dioptimasi menggunakan metode Fuzzy Cuckoo search berdasarkan Lévy Flight. Solusi tricluster yang berpotensi meningkatkan nilai fungsi objektif akan diganti menggunakan local random walk. Kumpulan tricluster yang terbentuk dari tahap optimasi akan dievaluasi menggunakan metode Tricluster Quality Index (TQI). Solusi tricluster terbaik yang diterapkan pada dataset tiga dimensi penyakit jantung didapatkan dari penggunaan nilai skala 𝛿 = 0,026 dan 𝜃 = 1,7. Solusi tricluster terbaik dianalisis lebih lanjut menggunakan Gene Ontology (GO) untuk menjelaskan keterkaitan gen-gen terhadap proses biologis, fungsi molekuler, dan komponen seluler.

Triclustering is used to group three-dimensional data simultaneously. The triclustering method used in this research is a combination of δ-Trimax with Fuzzy Cuckoo search (FCS) based on Lévy Flight. The threedimensional data used is gene expression data from the human induced pluripotent stem cell (HiPSC) differentiation process in heart disease sufferers. The initial stage finds a homogeneous population of tricluster solutions using the δ-Trimax method. Determining the δ scale value for running the algorithm at the initial population stage is carried out using the silhouette coefficient method. The δ-Trimax algorithm used in this research is the Multiple Nodes Deletions and Single Node Deletions algorithms. The tricluster obtained from the δ-Trimax stage will then be optimized using the Fuzzy Cuckoo search method based on Lévy Flight. The tricluster solution which has the potential to increase the objective function value will be replaced using a local random walk. The tricluster collection formed from the optimization stage will be evaluated using the Tricluster Quality Index (TQI) method. The best tricluster solution applied to a three-dimensional heart disease dataset was obtained from using scale values δ = 0,026 and θ = 1,7. The best tricluster solution was further analyzed using Gene Ontology (GO) to explain the relationship of genes to biological processes, molecular functions, and cellular components.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elita Pusparini
"ABSTRAK
Fasilitas blending mogas berfungsi untuk mencampur komponen High Octane Mogas Component HOMC dan Naphtha sehingga menghasilkan produk dalam bentuk gasoline 88 atau lebih dikenal premium. Analisa kelayakan investasi dilakukan dengan metode Net Present Value NPV yang dilakukan dalam dua cara yaitu secara konvensional dan fuzzy.Penelitian ini menggunakan software MATLAB R2016a untuk melakukan perhitungan Fuzzy NPV berbasis Distribusi Triangular. Rentang nilai yang digunakan untuk variabel yang difuzzikan adalah rendah L , medium M , dan tinggi H .Hasil perhitungan dengan pendekatan fuzzy menunjukkan nilai yang berbeda dibandingkan dengan pendekatan konvensional. Hasil perhitungan NPV menggunakan metode konvensional menghasilkan nilai 10.6995 juta USD, sedangkan berbasis Fuzzy Distribusi Triangular menghasilkan 8.8129 juta USD. Adanya perbedaan tersebut dikarenakan variasi input terhadap tingkat suku bunga, pendapatan, dan total biaya blending.

ABSTRACT
The blending mogas facility serves to mix High Octane Mogas Component HOMC and Naphtha components to produce gasoline 88 or known premium. Investment feasibility analysis is done by Net Present Value NPV method which is done in two ways, conventionally and fuzzy.This research uses MATLAB R2016a software to perform Fuzzy NPV calculation based on Triangular Distribution. The range of values used for the dif fered variables is low L , medium M , and high H .The results of calculations with the fuzzy approach show different values compared with the conventional approach. The NPV calculation results using conventional methods is 10.6995 million USD, while Fuzzy based Triangular Distribution is 8.8129 million USD. The difference is due because there are input variation to the interest rate, revenue, and total cost of blending. "
2017
T47745
UI - Tesis Membership  Universitas Indonesia Library
cover
Inry Raudiatul Fauzi
""ABSTRAK
"
Kanker merupakan penyakit penyebab kematian terbesar kedua di dunia. Menurut prediksi WHO 2015 kasus kematian akibat kanker akan meningkat menjadi 21,6 juta kasus pada tahun 2030. Salah satu usaha untuk mengurangi penyebaran kanker dengan menggunakan machine learning adalah melakukan pendeteksian jenis kanker dengan memanfaatkan microarray data. Pada umumnya, microarray data kanker terdiri dari banyak fitur. Namun, tidak semua fitur yang ada pada data kanker memiliki informasi penting. Oleh karena itu, fitur-fitur tersebut akan diekstraksi menggunakan metode Principal Component Analysis PCA . Kemudian dipilih fitur-fitur yang paling informatif dari data hasil ekstraksi PCA. Fitur-fitur terpilih dari data hasil ekstraksi akan dibentuk dalam data baru. Data sebelum dan data setelah dilakukan pemilihan fitur akan diklasifikasi menggunakan metode Fuzzy Support Vector Machines FSVM . Akurasi dari proses klasifikasi dua tahap tersebut akan dibandingkan. Pendekatan one versus one akan digunakan pada masalah klasifikasi multikelas data kanker leukemia. Dengan pendekatan tersebut akan terbentuk sebanyak k k-1 /2 masalah dua kelas, di mana k menunjukkan jumlah kelas. Hasilnya, tanpa melakukan pemilihan fitur, diperoleh akurasi tertinggi sebesar 87.69 . Setelah dilakukan pemilihan fitur, diperoleh akurasi terbaik dengan menggunakan 60 fitur dengan akurasi sebesar 96,92 .

ABSTRACT
Cancer is the second leading cause of death globally. According to WHO prediction 2015 cases of cancer deaths will increase become 21.6 million cases by 2030. One of the effort to reduce the spread of cancer by using machine learning is to detect the types of cancer. We can use microarray data to detect the types of cancer. In general, microarray cancer data consist of many features. However, not all features in cancer data have important information. Therefore, these features will be extracted by using Principal Component Analysis PCA method. Then, we select the most features who have important information of data extraction. The selected features of extracted data will be formed in the new data. Data, before and after selection will be classified using Fuzzy Support Vector Machines FSVM method. The accuracy of the classification process will be compared. The one versus one approach will be used on multiclass leukemia cancer data. This approach will formed the multiclass problem into k k 1 2 binary class problems, where k denotes the number of classes. The results, without doing feature selection, the highest accuracy is 87.69 . After doing feature selection, the best accuracy is obtained by using 60 features with the accuracy is 96.92 ."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Airlangga Muhammad Putrapradana
"Analisis triclustering merupakan salah satu metode data mining yang bertujuan mengelompokkan data berbentuk tiga dimensi. Triclustering kerap digunakan pada bidang bioinformatika untuk menganalisis kesamaan ekspresi gen suatu eksperimen pada titik waktu tertentu. Analisis triclustering yang dilakukan pada penelitian ini menggunakan metode gabungan Fuzzy Cuckoo Search dengan I-Trimax. Metode ini merupakan penggabungan algoritma nodes deletion pada I-Trimax dengan algoritma optimasi Fuzzy Cuckoo Search. Cuckoo Search merupakan metode optimasi yang sudah baik dalam menghasilkan himpunan tricluster yang menggunakan konsep parasitisme spesies cuckoo. Fuzzy Cuckoo Search menggunakan fungsi objektif fuzzy c-means untuk mengatasi ketidakjelasan (indiscernibility) yang biasa terjadi dalam data ekspresi gen sehingga masalah kesulitan membedakan objek karena kurangnya pengetahuan dari informasi yang tersedia dapat diatasi. Algoritma nodes deletion pada I-Trimax digunakan pada fase pembentukan populasi awal dari metode gabungan Fuzzy Cuckoo Search dengan I-Trimax. Hal ini dilakukan demi mendapatkan populasi awal yang sudah baik yaitu memiliki MSR yang minimum karena konsep dari algoritma nodes deletion yaitu dapat menghasilkan himpunan tricluster dengan Mean Square Residue (MSR) kecil yaitu di bawah threshold. Berdasarkan itu proses komputasi algoritma Fuzzy Cuckoo Searchyang dilakukan pada fase optimasi dapat berjalan dengan efektif sehingga menghasilkan himpunan tricluster yang berkualitas baik secara efisien. Analisis triclustering menggunakan metode gabungan Fuzzy Cuckoo Search dengan I-Trimax digunakan pada data ekspresi gen tiga dimensi sel kanker paru-paru fase stabil (A549) yang berkaitan dengan pemberian obat kemoterapi Motexafin Gadolinium (MGd), di mana ekspresi gen diamati pada 6 kondisi dan 3 titik waktu. Pada penelitian ini, himpunan tricluster yang memiliki kualitas terbaik berdasarkan Triclustering Quality Index (TQI) adalah himpunan tricluster yang dihasilkan dengan nilai  dan. Berdasarkan himpunan tricluster tersebut, didapatkan informasi penting mengenai kumpulan gen yang memiliki respon baik terhadap pemberian MGd tapi tidak bertahan setiap titik waktu. Hal ini dapat dijadikan acuan penelitian terkait terapi kanker menggunakan obat kemoterapi MGd yang perlu dilakukan pengembangan agar dapat tetap efektif pada seluruh titik waktu. Terdapat juga kumpulan gen yang memiliki respon cepat dan bertahan hingga jangka panjang dengan pemberian MGd dan mannitol. Gen-gen tersebut merupakan gen yang menunjukkan respon baik pemberian obat kemoterapi MGd tetapi efektivitasnya tidak terlalu maksimal karena responnya beririsan dengan subjek yang hanya diberikan mannitol. Hal ini dapat dijadikan bahan untuk penelitian lebih lanjut dalam pengembangan obat MGd supaya dapat lebih efektif.

Triclustering analysis is a data mining method that aims to group data in three dimensions. Triclustering is often used in the field of bioinformatics to analyze the similarity of gene expression under experimental conditions at a certain point in time. The triclustering analysis carried out in this study used the combined Fuzzy Cuckoo Search method with -Trimax. This method is a combination of node deletion algorithm on -Trimax with Fuzzy Cuckoo Search optimization algorithm. Cuckoo Search is a good optimization method in generating tricluster sets that use the concept of parasitism of cuckoo species. Fuzzy Cuckoo Search uses the fuzzy c-means objective function to overcome the indiscernibility that usually occurs in gene expression data so that the problem of difficulty distinguishing objects due to lack of knowledge from available information can be overcome. The nodes deletion algorithm on I-Trimax is used in the initial population formation phase from the combined Fuzzy Cuckoo Search method with I-Trimax. This is done in order to get a good initial population, which has a minimum MSR because the concept of the nodes deletion algorithm is that it can produce a tricluster set with a small Mean Square Residue (MSR), which is below the threshold. Based on that, the computational process of the Fuzzy Cuckoo Search algorithm which is carried out in the optimization phase can run effectively so as to produce a good quality tricluster set efficiently. Triclustering analysis using the combined Fuzzy Cuckoo Search method with I-Trimax was used on three-dimensional gene expression data of stable phase lung cancer cells (A549) associated with the administration of the chemotherapy drug Motexafin Gadolinium (MGd), where gene expression was observed in 6 conditions and 3 time points. In this study, the tricluster set that has the best quality based on the Triclustering Quality Index (TQI) is the resulting tricluster set with values. Based on these tricluster sets, important information was obtained regarding gene pools that responded well to MGd administration but did not persist at any point in time. This can be used as a reference for research related to cancer therapy using MGd chemotherapy drugs that need to be developed in order to remain effective at all time points. There is also a gene pool that responds quickly and persists in the long term with MGd and mannitol administration. These genes are genes that show a good response to MGd chemotherapy drugs but their effectiveness is not maximal because their responses coincide with subjects who are only given mannitol. This can be used as material for further research in the development of MGd drugs so that they can be more effective."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anis Gunaefi
"Jumlah produksi kartu perdana untuk pelanggan Telkom Flexi menunjukkan trend meningkat mengikuti kenaikan jumlah pelanggan dari periode satu ke periode berikutnya. Namun perusahaan juga dihadapkan dengan adanya keterbatasan sumber daya yang yang dimiliki seperti keterbatasan kapasitas BTS dan sumber daya penomoran dan ketersediaan budget. Kondisi ini memperlihatkan bahwa diperlukan suatu metode perencanaan produksi yang tepat untuk mengoptimalkan ketersediaan dan pemakaian sumber daya sehingga dihasilkan jumlah produksi yang optimal.
Metode fuzzy linear programming (FLP) dapat digunakan untuk solusi optimasi perencanaan produksi. Penerapan metode fuzzy linear programming dilakukan berdasarkan pertimbangan diperlukan adanya suatu batasan nilai terhadap jumlah produksi dengan ketersediaan sumber daya yang ada, sehingga diperoleh jumlah produksi yang optimal. Tesis ini akan menganalisa perencanaan produksi kartu perdana Flexi dengan menggunakan metode fuzzy linear programming.

Total production of starter pack for customers Telkom Flexi showed an increasing trend followed the increase in the number of subscribers from period to period. But the company also faces resource constraints or other factors such as the capacity of BTS, numbering resources and budget availability. This condition shows that we need a proper method of production planning to optimize the availability and use of resources or other factors so that the resulting optimal amount of production output.
The method of fuzzy linear programming (FLP) can be used for production planning optimization solutions. Application of fuzzy linear programming method based on the considerations necessary to have a limit value of total production with the availability of existing resources, to obtain the optimal amount of production. This tesis will analyze the production planning of Flexi starter pack using fuzzy linear programming method.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29591
UI - Tesis Open  Universitas Indonesia Library
cover
Noval Saputra
"

Analisis triclustering merupakan teknik analisis pada data 3D (observasi – atribut – konteks). Analisis triclustering dapat mengelompokkan observasi pada beberapa atribut dan konteks secara bersamaan. Analisis triclustering telah sering diterapkan untuk menganalisis data ekspresi gen microarray. Penelitian ini menggunakan metode δ-Trimax untuk melakukan analisis triclustering pada data ekspresi gen microarray. Metode δ-Trimax bertujuan untuk menemukan tricluster yang memiliki mean square residual kecil dari δ dan volume maksimal. Tricluster diperoleh dengan cara melakukan penghapusan node dari data 3D dengan menggunakan algoritma multiple node deletion dan single node deletion. Kandidat tricluster yang telah didapatkan, dilakukan pengecekan  kembali dengan menambahkan beberapa node yang telah dihapus sebelumnya menggunakan algoritma node addition. Pada penelitian ini dilakukan perbaikan program pada metode δ-Trimax dan juga menambahkan penghitungan evaluasi tricluster yang dihasilkan.  Implementasi metode δ-Trimax dilakukan pada data ekspresi gen dari proses diferensiasi human induced pluripoten stem cell (HiPSC) dari pasien penyakit jantung. Ekspresi gen diukur pada 12 titik waktu dan 3 replikasi. Dari beberapa simulasi yang dilakukan, metode δ-Trimax memberikan hasil terbaik ketika δ=0,0068 dan λ=1,2. Berdasarkan tricluster yang dihasilkan dari simulasi terbaik tersebut, dipilih 5 tricluster yang diduga sebagai ciri-ciri penyakit jantung. Lima tricluster ini dapat menjadi pertimbangan bagi ahli medis untuk melakukan tindakan lebih lanjut terhadap pasien.


Triclustering analysis is an analysis technique on 3D data (observation - attribute - context). Triclustering analysis can group observations on several attributes and contexts simultaneously. Triclustering analysis has been frequently applied to analyze microarray gene expression data. This study used the δ-Trimax method to perform triclustering analysis on microarray gene expression data. The δ-Trimax method aims to find a tricluster that has a mean square residual smaller than δ and a maximum volume. Tricluster is obtained by deleting nodes from 3D data using multiple node deletion and single node deletion algorithms. The tricluster candidates that have been obtained are checked again by adding some previously deleted nodes using the node addition algorithm. In this research, the program improvement of the δ-Trimax method was carried out and also the calculation of the resulting tricluster evaluation. The implementation of the δ-Trimax method was carried out on gene expression data from the differentiation process of human induced pluripotent stem cells (HiPSC) from patients with heart disease. Gene expression was measured at 12 time points and 3 replications. From several simulations performed, the δ-Trimax method gives the best results when δ = 0.0068 and λ = 1.2. Based on the tricluster generated from the best simulation, 5 tricluster were selected which were suspected as a characteristic of heart disease. These five tricluster can be a consideration for medical experts to take further action on patients.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Charista Christie Tjokrowidjaja
"Segmentasi merupakan sebuah proses yang penting dilakukan dalam menganalisa suatu citra. Dengan melakukan segmentasi, maka citra tersebut dapat dibagi menjadi beberapa bagian yang lebih sederhana yaitu bagian-bagian yang memiliki karakteristik visual yang serupa seperti warna, gerakan, dan tekstur. Fuzzy c-means (FCM) yang diperkenalkan oleh Dunn dan dikembangkan oleh Jim Bezdek, adalah algoritma yang populer digunakan dalam segmentasi citra karena algoritma ini mudah digunakan dan akurat. Lebih tepatnya, FCM sangatlah efektif digunakan untuk mensegmentasi citra yang tidak memiliki noise. Selain sensitif terhadap noise, FCM juga sensitif terhadap outliers. Berbagai macam metode telah ditemukan untuk mengatasi kelemahan dari algoritma FCM, salah satunya menggunakan metode robust FCM (RFCM). Dari hasil penelitian yang dilakukan, dapat dilihat hasil secara kuantitatifnya lebih baik dibandingkan dengan algoritma-algoritma FCM lain. Hasil percobaan menunjukkan modifikasi RFCM memberikan hasil yang lebih baik terutama untuk data iris.

Segmentation is an important process to analyze an image. With image segmentation, an image can be partitioned into several simpler parts, which is parts that have similar visual characteristics like colors, motions, and textures. Fuzzy c-means (FCM) is introduced by Dunn and developed by Jim Bezdek. FCM is a popular algorithm to be used on image segmentation because of its simplicity and accuracy. Moreover, FCM is highly effective to segment image that have no noise. Aside its sensitiveness to noise, FCM is also sensitive to outliers. Several methods are founded to overcome FCM’s weaknesses one of which is using robust FCM method. From research, quantitatively it’s result is better compared to other FCM algorithms. Reseach done shows that modified RFCM gives better result especially for iris data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S57576
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Siska
"Metode triclustering merupakan pengembangan dari metode clustering dan biclustering. Berbeda dengan  metode clustering dan biclustering yang bekerja pada data dua dimensi, triclustering bekerja pada data tiga dimensi yang disusun dalam bentuk matriks. Matriks ini terdiri dari dimensi observasi, atribut, dan konteks. Triclustering mampu mengelompokkan ketiga dimensi tersebut secara simultan dan membentuk kelompok berupa subruang yang disebut tricluster. Metode ini umumnya diimplementasikan dalam bidang bioinformatika, terkhususnya dalam analisis data ekspresi gen tiga dimensi untuk menemukan profil ekspresi gen. Data atau matriks ini terdiri dari dimensi gen, kondisi eksperimen, dan waktu eksperimen (time point).
Salah satu algoritma triclustering, yaitu Order Preserving Triclustering (OPTricluster), adalah algoritma yang menggunakan pendekatan pattern based dan digunakan untuk menganalisis data ekspresi gen tiga dimensi yang merupakan short time series 3-8 time point). OPTricluster membentuk tricluster dengan mengidentifikasi gen-gen yang memiliki perubahan ekspresi yang sama di sepanjang time points pada sejumlah kondisi eksperimen.
Dalam penelitian ini, OPTricluster diimplementasikan pada data ekspresi gen sejumlah pasien yellow fever pasca vaksinasi dengan beberapa skenario yang menggunakan threshold yang berbeda-beda. Skenario dengan threshold yang optimum ditunjukkan oleh rata-rata skor Tricluster Diffusion terendah. Tricluster-tricluster yang dihasilkan berhasil menunjukkan hubungan biologis di antara pasien-pasien tersebut, di mana vaksin cenderung memberikan reaksi yang lebih signifikan pada pasien pria dibandingkan pasien wanita. Selain itu, ditemukan anomali pada pasien-pasien tersebut.

Triclustering method is the development of clustering method and biclustering method. Unlike clustering and biclustering that works on two-dimensional data, triclustering works on three-dimensional data that arranged in the form of a matrix consisting of observations, attributes, and contexts dimensions. Triclustering is able to group these dimensions simultaneously and form a subspace called a tricluster. This method is generally implemented in analysis of three-dimensional gene expression data to find profiles of gene expression. This data or matrix consists of genes, experimental conditions and time points dimensions.
One of the triclustering algorithms, Order Preserving Triclustering (OPTricluster), is an algorithm that uses a pattern-based approach and used to analyze short time series data (3-8 time points). The OPTricluster forms the tricluster by identifying genes that have the same expression change across time points under a number of experimental conditions. The change in expression is expressed in a rank pattern which is divided based on three types of patterns, namely constant, conserved and divergent patterns.
In this study, OPTricluster was implemented in gene expression data of yellow fever patients after vaccination using several scenarios with different thresholds. The scenario with the optimum threshold is indicated by the lowest average Tricluster Diffusion score. The resulting triclusters were successful in showing biological relationships among these patients, where the vaccine tending to have a more significant reaction in male patients than in female patients. In addition, anomalies were found in these patients.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>