Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 50445 dokumen yang sesuai dengan query
cover
Agung Setiawan
"Dalam penelitian ini, proses reduksi karbotermik pada ilmenit (FeTiO3) dengan biomassa dari cangkang kelapa sawit sebagai agen reduktor menggunakan tungku listrik dan tungku surya dikaji. Studi ini mencakup simulasi termodinamika dengan eksperimen. Hasil penelitian menunjukkan bahwa biomassa dari cangkang kelapa sawit dapat digunakan sebagai reduktor alternatif untuk proses reduksi karbotermik. Simulasi termodinamika memprediksi bahwa ketika biomassa direaksikan dengan ilmenit pada temperatur 1000-1200 °C, fase utama yang diperoleh adalah Fe(m), pseudobrookit, spinel, dan rutil. Hasil tersebut sesuai dengan hasil karakterisasi mineralogi dan fase pada ilmenit yang telah direduksi. Selain itu, analisis kinetika menunjukkan bahwa proses reduksi mengikuti mekanisme yang dikendalikan oleh difusi. Hal ini dikonfirmasi oleh analisis struktur mikro yang menunjukkan partikel ilmenit tereduksi memiliki struktur tiga lapis. Analisis struktur mikro juga mengungkapkan bahwa pori-pori dan retakan mikro yang ada pada ilmenit awal yang lapuk mendorong dan memfasilitasi pembentukan Fe(m). Energi aktivasi untuk proses reduksi ilmenit menggunakan biomassa dan grafit (sebagai reduktor pembanding) diperoleh masing-masing sebesar 217,00±0,06 kJ.mol-1 dan 239,44±0,06 kJ.mol-1. Lebih lanjut, reduksi ilmenit dengan biomassa pada temperatur 1200 °C menggunakan tungku surya mendorong pembentukan pseudobrookit, dan morfologi garis-garis yang unik pada Fe(m). Morfologi Fe(m) tersebut berbanding terbalik ketika direduksi dengan tungku listrik yang strukturnya berbentuk globular. Hal ini mungkin dikarenakan panas berlebih yang terlokalisir oleh radiasi matahari yang mendorong reduksi lokal yang cepat.

In this present study, a carbothermic reduction of ilmenite (FeTiO3) with palm kernel shell biomass as a reducing agent using regular electric and simulated solar heating was investigated. The study included a combined thermodynamic assessment together with reduction experiments. The results demonstrate that palm kernel shell biomass can be used as an alternative reductant for carbothermic reduction. Thermodynamic assessment predicted that when biomass was reacted with ilmenite at 1000-1200 °C, the major phases expected were Fe(m), pseudobrookite, spinel, and rutile. The results similar to mineralogy and phase characterization results of the reduced ilmenite generally are in good agreement with the thermodynamic predictions. In addition, the kinetic analysis indicated that the reduction process followed a diffusion-controlled mechanism. This was confirmed by a microstructural analysis that showed the reduced ilmenite grains had a three-layer structure. The microstructural analysis also revealed that pores and cracks present in the initial weathered ilmenite promoted metallic iron formation. The apparent activation energy for ilmenite reduction using biomass and graphite (as a comparison) was determined to be 217.00±0.06 kJ.mol-1 and 239.44±0.06 kJ.mol-1, respectively. Furthermore, reduction ilmenite with biomass at 1200 °C using a solar furnace promoted pseudobrookite formation, and a unique streak morphology of Fe(m) was observed as opposed to a globular structure found in samples heated in an electric furnace. It is suggested that this may be due to localized overheating by solar radiation that promoted rapid local reduction. "
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Cynta Immanuela Lamandasa
"Penelitian ini mengkaji pengaruh penggunaan reduktor biomassa dari cangkang sawit pada proses reduksi karbotermik ilmenit. Berdasarkan hasil pengujian XRF mineral ilmenit yang digunakan dalam penelitian ini mengandung TiO2 dan Fe2O3 masing-masing sebesar 50,2% dan 37,5%. Proses reduksi karbotermik dilakukan pada temperatur 1000°C, 1100°C, dan 1200°C dengan waktu tahan 0,5 jam, 1 jam, 2 jam, dan 3 jam. Reduktor biomassa yang digunakan berasal dari cangkang sawit dengan penambahan 6 wt%, 8 wt%, 9 wt%, dan 10 wt%. Setelah mendapatkan kondisi reduksi karbotermik yang optimal, yaitu reduksi karbotermik ilmenit dengan 9 wt% reduktor pada temperatur 1200°C selama 2 jam yang menghasilkan recovery Fe dan Ti tertinggi, yaitu masingmasing sebesar 87,03% dan 12,53%. Kemudian dilakukan reduksi karbotermik ilmenit dengan reduktor grafit sebagai pembanding. Setelah proses reduksi karbotermik dilakukan kemudian dilakukan karakterisasi menggunakan XRD, OM, SEM, BET, dan TEM. Hasil penelitian ini menyatakan bahwa reduksi karbotermik ilmenit dengan reduktor biomassa menghasilkan lebih banyak retak/pori yang memfasilitasi terbentuknya Fe di daerah dekat retak/pori.

The effect of using biomass as a reducing agent from oil palm shells on the ilmenite carbothermic reduction process is investigated in this study. The ilmenite minerals employed in this investigation contained 50.2 percent TiO2 and 37.5 percent Fe2O3, according to the XRF test results. The carbothermic reduction process was performed at temperatures of 1000°C, 1100°C, and 1200°C for 0.5, 1 hour, 2 hours, and 3 hours. The reducing agent of biomass used is derived from oil palm shells with the addition of 6 wt%, 8 wt%, 9 wt%, and 10 wt%. After obtaining the ideal carbothermic reduction conditions, namely ilmenite carbothermic reduction with 9 wt percent reducing agent at a temperature of 1200°C for 2 hours, the maximum recovery of Fe and Ti were obtained, which were 87.03 percent and 12.53 percent, respectively. The carbothermic reduction of ilmenite was then performed with graphite as a reducing agent for comparison. After the carbothermic reduction procedure, characterisation was carried out utilizing XRD, OM, SEM, BET, and TEM. The results of this investigation showed that carbothermic reduction of ilmenite with a biomass reducing agent resulted in more cracks/pores, which facilitated the creation of Fe in the area near the cracks/pores."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Cornellio Geordie Setianto
"Platform chemicals as a substrate allow for the formation of high-value products used in many applications, ranging from energy to pharmaceutical industry. Traditionally, these chemicals originated from fossil fuels-based refinery, necessitating a shift towards sustainable and renewable sources. Lignocellulosic biomass, one of the world’s most abundant sources, emerges as a leading alternative. Levoglucosenone (LGO) and 5-Chloromethylfurfural (CMF) are examples of bio-based platform chemicals derived from biomass, offering versatile applications, namely as capsule coating in pharmaceutical industry and as bio-based pesticides. The research focuses on a thermochemical conversion of pre-treated hardwood biomass (Victorian ash) to platform chemicals (LGO and CMF) through a two-step pyrolysis process in a fluidized bed reactor to improve product selectivity. The analysis result indicates successful removal of impurities, such as furfural and anhydrous sugar, during the first stage pyrolysis, allowing for product purification. Optimal conditions for maximum LGO concentration (38.82 mg/mL of bio-oil) were achieved at temperature combinations of 250oC and 300oC. Alternatively, increasing the temperature to 250oC and 350oC proved ideal for both LGO (22.16 mg/ mL) and CMF (14.44 mg/mL) production. The study demonstrates the viability of generating bio-based platform chemicals (LGO and CMF) from pre-treated hardwood biomass through a two-step pyrolysis process, presenting a promising pathway for utilizing sustainable and renewable sources in the production of high-value products.

Bahan kimia dasar sebagai substrat memungkinkan pembentukan produk bernilai tinggi yang dapat digunakan dalam berbagai aplikasi, mulai dari industry energi hingga farmasi. Secara tradisional, bahan kimia ini berasal dari pengolahan bahan bakar fosil, sehingga diperlukannya pergeseran menuju sumber daya berkelanjutan dan terbarukan. Biomassa lignoselulosa, salah satu sumber daya terbanyak di dunia, muncul sebagai alternatif utama. Levoglucosenone (LGO) dan 5-Chloromethylfurfural (CMF) adalah contoh bahan kimia dasar berbasis biomassa yang menawarkan aplikasi serbaguna, seperti pelapis kapsul dalam industri farmasi dan pestisida berbasis biomassa. Penelitian ini berfokus pada konversi termokimia biomassa hardwood (Victorian ash) yang telah melalui pre-treatment menjadi bahan kimia dasar (LGO dan CMF) melalui proses pirolisis dua tahap dalam reactor fluidized bed untuk meningkatkan selektivitas produk. Hasil analisis menunjukkan hilnagnya zat-zat kontaminan, seperti furfural dan gula anhidrat, pada tahap pertama pirolisis, memungkinkan purifikasi produk akhir. Kondisi optimal untuk konsentrasi maksimum LGO (38,82 mg/mL bio-oil) tercapai pada kombinasi suhu 250oC dan 300oC. Sebagai alternatif, peningkatan suhu menjadi 250oC dan 350oC terbukti ideal untuk produksi maksimum LGO (22,16 mg/mL) dan CMF (14,44 mg/mL). Studi ini membuktikan kelayakan dalam penghasilan bahan kimia dasar berbasis biomassa dari hardwood (yang telah melalui proses pre-treatment) dengan proses pirolisis dua tahap. Hasil penelitian menunjukkan jalur yang manjanjikan untuk pemanfaatan sumber daya berkelanjutan dan terbarukan dalam memproduksi produk bernilai tinggi."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stella Faustine Loandy
"Bonggol jagung dan plastik polipropilena merupakan sampah yang berlimpah di Indonesia, namun belum didaur ulang dengan maksimal. Bio-oil hasil proses co-pyrolysis biomassa dan plastik dapat dimanfaatkan menjadi salah satu sumber alternatif bio-fuel. Plastik polipropilena, yang memiliki rasio H/C yang tinggi dapat menjadi sumber hidrogen yang baik bagi bio-oil pirolisis biomassa. Dengan melakukan co-pyrolysis pada kedua bahan ini, sebuah efek sinergetik akan terjadi sehingga bio-oil yang dihasilkan akan memiliki kuantitas dan kualitas yang lebih baik. Peningkatan kualitas bio-oil ditandai dengan berkurangnya kadar oksigen akibat pengusiran H. Reaksi berlangsung pada reaktor tangki berpengaduk, dengan kondisi operasi 500oC, laju alir N2 750 mL/menit, holding time 10 menit dan heating rate 5oC/menit. Yield bio-oil non-polar mengalami kenaikan seiring dengan bertambahnya komposisi PP pada umpan. Wax mengalami kenaikan jumlah ikatan jenuh seiring dengan kenaikan komposisi PP akibat terjadinya transfer hidrogen pada proses pirolisis. Proses pirolisis dapat menyebabkan degradasi termal yang menyebabkan produk pirolosis mempunyai berat molekul yang lebih rendah.

Corncob and polypropylene plastics are abundant waste in Indonesia which have not been fully recycled to its fully potential. Co pyrolysis of corncob and plastic can be one of alternative source of bio fuel. Polypropylene plastic, which is high in H C ratio can be a good hydrogen source for pyrolysis oil from biomasss. Co pyrolysing biomass and plastic could lead to synergetic effect which yields higher quantitiy of liquid product. Low oxygenated compound in bio oil is caused by hydrogen resulting in higher quality of bio oil. The reaction occurs in a stirred tank reactor, with operation condition 500oC, N2 flowrate 750 mL min, holding time 10 minutes and heating rate 5oC min. Non oxygenated bio oil yield is significantly increase as polypropylene composition in feed increased. Wax shows raised amount of double bonds as PP composition increase due to hydrogen transfer in pyrolysis. Pyrolysis can cause thermal degradation which leads to lower molecular weight of the products."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfian Rivaldi Nugraha
"Detox sludge merupakan salah satu sumber mineral yang memiliki potensial yang besar untuk dilakukan proses pengolahan dan pemurnian. Salah satu metode untuk proses pengolahan detox sludge yaitu dengan cara proses reduksi karbotermik. Proses karbotermik sering digunakan untuk mereduksi suatu mineral, dimana proses reduksi karbotermik membutuhkan reduktor untuk mereduksi unsur-unsur lain yang terdapat pada detox sludge. Reduktor yang biasa digunakan pada proses reduksi karbotermik adalah batubata dan kokas. Tetapi penggunaan batubara memiliki banyak efek negatif bagi lingkungan, maka dari itu pada penelitian ini reduktor yang digunakan adalah biomassa, yaitu cangkang kelapa sawit yang dipanaskan hingga suhu 900˚C agar menjadi arang. Dalam penelitian ini digunakan detox sludge yang berasal dari proses pengolahan emas dan tembaga dan cangkang kelapa sawit berasal dari Palangkaraya, Kalimantan Tengah. Detox sludge dan cangkang kelapa sawit di preparasi terlebih dahulu sebelum dilakukan proses reduksi karbotermik. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi waktu reduksi detox sludge, dengan rasio massa dan temperature yang tetap. Variasi waktu reduksi yang dilakukan dalam penelitian ini adalah 30 menit, 60 menit, dan 120 menit. Seluruh sampel diuji pada suhu 900˚ dan rasio massa 1:2 ( detox sludge: cangkang kelapa sawit) yang dimasukan kedalam krusibel keramik dan dilakukan reduksi karbotermik di dalam tungku. Hasil XRD menyatakan bahwa terjadinya penghilangan puncak calcite yang menandakan sudah terjadi proses reduksi pada calcite dan adanya penambahan senyawa yaitu alumina. Hasil XRF menunjukan bahwa pada waktu reduksi selama 90 menit merupakan waktu optimum karena didapatkan %recovery disemua kandungan paling tinggi diantara variasi waktu lainnya.

Detox sludge is a mineral source that has great potential for processing and refining. One of the method for the processing of detox sludge is a carbothermic reduction process. Carbothermic processes are often used to reduce a mineral, where the carbothermic reduction process requires a reducing agent to reduce other elements present in detox sludge. Reductors that are commonly used in the carbothermic reduction process are coal and coke. But the use of coal has many negative effects on the environment, therefore in this study the reducing agent used is biomass, namely pal kernel shells. In this study, detox sludge originating from the processing of gold and copper and palm kernel shells from Palangkaraya, Central Kalimantan. Detox sludge and palm kernel shells are prepared first before carrying out the carbothermic reduction process. The purpose of this study was to determine the effect of variations in the reduction time of detox sludge, with a fixed ratio of mass and temperature. The reduction time variations in this study were 30 minutes, 60 minutes, and 120 minutes. All samples were tested at a temperature of 900˚ and a mass ratio of 1: 2 (detox sludge: palm kernel shell) which was inserted into the ceramic crucible and the carbothermic reduction was carried out in the furnace. After the reduction process is complete the detox sludge will be separated from the oil palm shell and carried out by XRD and XRF testing to determine the optimum time for the carbothermic reduction process. XRD results state that the occurrence of calcite peak removal that indicates there has been a reduction process in calcite and the addition of compounds namely alumina. XRF results show that at a reduction time of 90 minutes is the optimum time because %recovery is obtained in all the highest content among other time variations."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Mailisa F.
"Kebutuhan bensin meningkat seiring dengan meningkatnya kebutuhan kendaraan bermotor. Namun produksi minyak bumi sebagai bahan baku pembuatan bensin menurun setiap tahunnya sehingga perlu dikembangkan sumber alternatif untuk memperoleh bensin. Bensin merupakan campuran senyawa hidrokarbon C5 - C10. Salah satu sumber hidrokarbon adalah biomass, misalnya minyak kelapa sawit. Indonesia merupakan penghasil minyak sawit terbesar kedua di dunia. Perengkahan katalitik minyak sawit menjadi bahan bakar telah berhasil dilakukan. Pada penelitian saat ini akan dipelajari perengkahan katalitik minyak sawit untuk memproduksi senyawa hidrokarbon setaraf bensin. Pengaruh jenis umpan minyak sawit, temperatur reaksi, penambahan aditif pada katalis dalam proses perengkahan dipelajari dengan mengunakan suatu fixed bed reactor yang beroperasi pada tekanan 1.5 kgf/cm2. Umpan yang akan direngkahkan dilakukan preparasi awal terlebih dahulu melalui oksidasi, transesterifikasi dan penambahan metanol. Temperatur reaksi akan dilakukan dari 350°C sampai dengan 500 °C. Aditif yang ditambahkan pada katalis zeolit adalah B2O3 dengan variasi dari 5% sampai 20 % berat. Produk cair hasil reaksi dianalisis GC-FID dan FT-IR. Sedangkan, karakteristik katalis dilakukan untuk melihat perubahan luas permukaan dengan menggunakanBET dan keberadaan B2O3 pada kristal zeolit dianalisis dengan XRD. Penambahan B2O3 menyebabkan menurunnya luas permukaan katalis dan ukuran pori katalis. Penambahan B2O3 optimum adalah 5%. Yield bensin terbaik yaitu 52.5% diperoleh pada temperatur 450 °C, dengan umpan POME dan katalis zeolit alam murni."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49581
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Arifianto
"Bahan bakar minyak merupakan suatu kebutuhan yang sangat penting bagi kehidupan manusia. Bahan bakar minyak yang ada sekarang diperoleh melalui reaksi perengkahan melalui minyak bumi. Tetapi ketergantungan manusia akan bahan bakar fosil perlu dikurangi karena cadangan minyak bumi yang semakin berkurang setiap tahunnya. Karena hal inilah dikembangkan bahan bakar minyak yang didapat melalui proses perengkahan minyak nabati. Salah satu jenis minyak nabati yang banyak terdapat di alam adalah minyak kelapa sawit. Metode perengkahan katalitik merupakan suatu cara untuk memecahkan rantai karbon yang cukup panjang, menjadi suatu molekul dengan rantai karbon yang lebih sederhana, dengan bantuan katalis.
Bantuan katalis ini bertujuan untuk menurunkan suhu dan tekanan pada saat reaksi. Sementara itu, katalis yang digunakan dalam penelitian ini adalah katalis B203/Al203 yang bersifat asam. Penambahan B203 dimaksudkan untuk membentuk spesi peroksida (022-) pada permukaan katalis. Sedangkan Al203 bersifat asam dan sangat baik untuk memutuskan ikatan antar karbon.
Metode yang digunakan dalam menguji hasil reaksi adalah dengan FT-IR, dan GC-FID. Penelitian ini dilaksanakan pada tekanan atmosferik dengan reaktor fixed bed. Berbagai variasi yang akan dilakukan dalam penelitian ini adalah variasi temperatur (350°C, 400°C, 450°C, dan 500°C), kandungan B203 (5%, 10% 15%, 20%, dan 25%) pada katalis dan variasi jenis umpan yang di treatment. Uji aktivasi katalis dengan menggunakan katalis 10% B203/Al203 memberikan hasil yield fraksi bensin terbaik sebesar 58% pada temperatur 450°C dengan umpan POME (Palm Oil Methyl Ester). Ini menunjukkan terjadinya peningkatan keasaman katalis, dan peranan spesi peroksida (O22-) sebagai inti aktif baru."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49573
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadi Ahmad Mawardi
"Kenyataan bahwa cadangan minyak bumi dunia yang semakin menipis tidak dapat terelakkan lagi. Dengan kondisi ini memaksa dilakukannya pencarian energi alternatif yang dapat mengurangi beban suplai energi dari basis minyak bumi. Konsumsi bahan bakar bensin di Indonesia terus meningkat tetapi suplai akan bensin tersebut sudah mulai menipis. Minyak kelapa sawit yang dimiliki Indonesia sangat melimpah, dapat dijadikan sebagai sumber bahan bakar bensin. Minyak kelapa sawit mengandung trigeliserida yang mengikat asam lemak jenuh maupun tak jenuh, salah satunya asam oleat yang kandungannya sangat besar mencapai 43%.
Secara teoritis, ikatan rangkap pada asam lemak tak jenuh trigliserida dapat terengkah dengan menggunakan katalis asam salah satunya katalis ?-alumma. Penelitian ini dilakukan dengan mereaksikan minyak sawit dengan katalis ?-alumina di dalam reaktor tumpak berpengaduk. Untuk mendapatkan kondisi yang optimum maka dilakukan variasi perbandingan berat minyak/katalis 100:1, 75:1 dan 50:1, suhu reaksi 260-340°C dan waktu reaksi 1-2 jam.
Dari hasil uji densitas dan viskositas dan FTIR maka diperoleh kondisi optimum sebagai berikut : perbandingan berat minyak/katalis 100:1, waktu reaksi 1.5 jam dan suhu 340°C. Untuk mendapatkan produk biogasoline, dilakukan distilasi tumpak secara bertahap sebanyak dua kali untuk ketiga produk reaksi yang terbaik dari masing - masing perbandingan berat minyak/katalis. Identifikasi produk biogasoline dengan analisis densitas dan viskositas menunjukkan hasil yang mendekati bensin komersial. Dari uji FTIR, uji GC dan uji GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial dengan yield 11.79% v/v) dan konversi 28% (v/v)terhadap umpan minyak sawit dan bilangan oktana 61."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49579
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adam Hirsaman
"Pesatnya pembangunan di bidang transportasi berimplikasi pada meningkatnya kebutuhan akan bensin (gasoline). Peningkatan ini tidak sejalan dengan cadangan minyak bumi dunia sebagai bahan baku utama pembuatan bensin yang terus menurun. Ini menyebabkan urgensi kebutuhan akan bensin dari bahan baku altelnatif yang terbarukan semakin meningkat dari waktu ke waktu. Minyak sawit, merupakan salah satu bahan yang disebut-sebut dapat digunakan untuk menghasilkan alternatif bensin (biogasoline). Pada penelitian ini biogasoline disintesis dari minyak sawit melalui reaksi hydrocracking dengan katalis NiMo/zeolit yang merupakan katalis pada proses hydrocracking minyak bumi. Penelitian dilakukan dengan mereaksikan minyak sawit dalam reaktor batch berpengaduk bersama katalis NiMo/zeolit dan gas hidrogen. Perbandingan berat katalis/reaktan yang digunakan adalah 1:75. Gas hidrogen dialirkan dengan laju alir rendah pada suhu ruang. Reaksi dilakukan pada tekanan atmosferik dengan 2 variasi suhu, yaitu 300°C dan 320°C masing-masing selama 1 jam, 1.5 jam, dan 2 jam. Penurunan densitas produk reaksi terhadap densitas minyak sawit, penambahan jumlah gugus -CH3, dan pengurangan gugus -C=C- yang ditunjukkan oleh spektrum FTIR, menunjukkan bahwa reaksi hydrocracking yang diinginkan pada penelitian ini memang benar terjadi. Untuk mendapatkan produk biogasoline, dilakukan distilasi batch secara bertahap sebanyak dua kali untuk masing-masing produk reaksi. Pengukuran densitas produk biogasoline menunjukkan hasil yang mendekati densitas bensin komersial. Uji GC dan GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial. Namun demikian masih terdapat kandungan senyawa yang tidak termasuk dalam fraksi bensin dalam proporsi yang cukup besar sehingga produk biogasoline yang didapatkan ini belum dapat digunakan untuk menggantikan bensin. Ini ditunjukkan oleh bilangan oktan produk biogasoline yang jauh lebih kecil dibanding standar bilangan oktan bensin komersial. Untuk mendapatkan produk biogasoline yang memenuhi kriteria bensin, diperiukan proses pemisahan lebih lanjut untuk memisahkan fraksi berat tersebut."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49559
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gandi Iswara
"Jumlah konsumsi bensin di Indonesia terus meningkat dari tahun ke tahun. Namun, cadangan minyak bumi di Indonesia yang terus berkurang menuntut untuk ditemukannya sumber energi alternatif pengganti bensin. Telah dipublikasikan sebelumnya bahwa minyak kelapa sawit dapat direngkah menjadi senyawa hidrokarbon melalui reaksi perengkahan katalitik pada fasa' gas menggunakan katalis asam, namun produk yang dihasilkan memiliki yield bensin yang kecil, yaitu 4-20%. Penelitian ini bertujuan untuk memperoleh bensin dari minyak kelapa sawit melalui reaksi perengkahan katalitik pada fasa cair dengan jumlah yield bensin yang tinggi. Minyak kelapa sawit direaksikan dengan katalis H-Zeolit yang dipreparasi dari Zeolit Alam melalui metode pertukaran ion. Reaksi dilakukah dalam fasa cair dengan rasio berat katalis per berat umpan 1:75 di dalam reaktor tumpak berpengaduk. Reaksi dilakukan dengan variasi waktu 1 hingga 2 jam pada suhu 300-320°C. Reaksi yang terjadi adalah reaksi perengkahan katalitik, dimana H-Zeolit merengkah ikatan kimia minyak kelapa sawit menjadi hidrokarbon dengan rantai yang lebih pendek. Agar diperoleh yield bensin yang tinggi, produk reaksi didistilasi secara tumpak sebanyak 2-3 kali. Distilasi dihentikan apabila diperoleh produk yang memenuhi spesifikasi bensin dalam hal titik didih dan densitas. Produk yang memenuhi spesifikasi bensin ini disebut Bensin-Bio. Pada Bensin-Bio, dilakukan analisis GC-MS, angka oktana dan RVP. Berdasarkan hasil penelitian, kondisi optimum reaksi adalah pada reaksi selama 1 jam pada suhu 320°C dan dilanjutkan dengan dua kali distilasi secara tumpak. Produk yang dihasilkan memiliki densitas 0,77 g/mL dan titik didih akhir 255°C. Komposisi Bensin-Bio adalah senyawa hidrokarbon dengan jumlah rantai Ci-Cn , memiliki RVP 48,23 serta angka oktana 122,24. Konversi reaksi adalah 21,56% dan yield bensin sebesar 58%."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49605
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>