Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75678 dokumen yang sesuai dengan query
cover
Hervin
"Nikola Tesla, seorang inventor dan engineer, pada tahun 1913 mempatenkan suatu invensi yang dinamakan olehnya ‘Turbine’ yang kemudian lebih sering direferensi sebagai Tesla Turbine, sebuah turbin non-konvensional tanpa bilah yang bekerja menggunakan prinsip boundary layer. Dalam percobaan ini, penulis berusaha untuk mengoptimalkan kerja turbin menggunakan cetakan alur (groove) spiral tipis di permukaan cakram untuk memandu jalannya fluida. Skripsi ini akan mencoba beberapa konfigurasi bilah turbin seperti normal, face-to-face, dan same side yang diuji pada kondisi yang sama untuk menentukan beda RPM dan efisiensi. Dari percobaan ini, akan ditemukan perkembangan efisiensi berkat surface finishing yang dilakukan kepada bilah turbin dibandingkan dengan bilah normal, dimana konfigurasi face-to-face mendapatkan efisiensi paling tinggi dibandingkan dengan bilah - bilah lainnya.

In 1913, inventor and engineer Nikola Tesla patented a certain invention he named ‘Turbine’, which would grew in popularity as Tesla Turbine, which is a non-conventional bladeless turbine that works using the principle of boundary layer. In this paper, the author will attempt to optimalize the performance of the turbine by placing thin spiral grooves along the disks’ surface to guide the flow of the fluid. Here, the author will attempt multiple configurations such as normal, face-to-face, and same side disks that will be tested under same circumstances in order to determine the differences in RPM and efficiency. From this experiment, it will be found that there exists an improvement due to disks’ surface finishing compared to normal disks, where face-to-face configurations will obtain the highest efficiency compared to other configurations."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Lubis, Muhammad Naufal
"Menurut Bank Dunia, sekitar 23 dari populasi yang hidup di daerah terpencil tidak memiliki akses listrik. Hal ini dikarenakan beberapa faktor seperti daerah yang terpencil maupun penghasilan populasi yang rendah. Salah satu solusi yang dapat digunakan untuk mengatasi masalah ini adalah melalui pembangkit listrik tenaga air skala piko. Beberapa penelitian telah mengembangkan desain turbin air yang optimum, terutama Turbin Turgo. Salah satu faktor penting dalam pembangkitan listrik di daerah terpencil adalah keterjangkauan dan portabilitas dari teknologi. Penelitian ini berusaha mencari solusi dengan cara merancang Turbin Turgo yang terjangkau dan portable menggunakan bahan baku sendok. Ancanganya adalah turbin berbahan baku sendk yang dapat dibuat dengan hanya Rp 1.000.000. Turbin kemudian di uji coba pada suatu instalasi. Hasilnya, turbin Turgo terjangkau ini dapat menghasilkan daya sebesar 36.7 W dengan nilai Head sebesar 56 m dan debit sebesar 2.371 l/. Turbin terjangkau ini juga dapat dibandingkan dengan turbin Pelton yang dibuat dengan 3D-printing dari riset-riset sebelumnya. Karena itu, turbin terjangkau ini dapat digunakan sebagai solusi untuk pembangkitanlistrik di daerah terpencil.

According to the World Bank, about 23 of the world rsquo s rural population still lacks access to electricity. This is due to factors such as the remote areas and the low income of the population. A solution that can be implemented to tackle this problem is through the utilization of Pico Hydropower generation. Several studies have developed the optimum designs and parameters in the operation of water turbines, specifically the Turgo turbine. One of the most important factor in rural power generation is the affordability and portability of the technology. This study seeks to find a solution by designing a low cost, portable Turgo turbine manufactured using spoons. The design s a low cost spoon based Turgo turbine that can be manufactured with around IDR 1.000.000. The turbine is then tested in an experiment installation to observe the performance of the Turgo turbine. As the result, the low cost Turgo turbine can generate power as high as 36.7 W under the condition of head 3.56m and water flow of 2.37 l s. The low cost turbine is also comparable with a 3D printed Pelton turbines used in previous studies. Thus the low cost turbine can serve as a solution for rural electrification"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Aziz
"Banyak penelitian dilakukan terkait pembangkit energi terbarukan, selain untuk memenuhi kebutuhan energi juga didorong oleh harga bahan bakar fosil yang terus meningkat dan ketersediannya yang semakin menipis. Turbin Gas Bioenergi Mikro Proto X-2 merupakan pembangkit skala mikro yang sedang dikembangkan dengan menggunakan energi terbarukan yaitu bioetanol yang didapat dari tebu, gandum, umbi dan jagung. Bioetanol sangat cocok digunakan sebagai energi alternatif karena bahan baku pembuatannya mudah tumbuh subur di iklim tropis Indonesia. Dalam penelitian ini, bioetanol digunakan sebagai bahan campuran solar untuk digunakan sebagai bahan bakar Turbin Gas Bioenergi Mikro Proto X-2. Tujuan dari penelitian ini adalah untuk mendapatkan rasio campuran terbaik dari solar dan bioetanol, dimulai dari penambahan bioetanol 2,5% sampai 40%. Pembakaran pada ruang bakar dianalisa untuk mengetahui efek yang terjadi dari penambahan bioetanol ini.
Dari hasil penelitian ini didapatkan penambahan bioetanol sampai 10% masih menunjukkan performa yang cukup baik jika dibandingkan dengan menggunakan bahan bakar solar murni yaitu dengan putaran turbin mencapai 38.000 rpm. Putaran turbin mengalami penurunan pada penambahan bioetanol diatas 10%. Selain itu, penambahan bioetanol diatas 10% menghasilkan campuran yang kurang homogen dan terjadi endapan sehingga menjadi kendala pada saat pengoperasian Turbin Gas Bioenergi Mikro Proto X-2.

Many research was conducted related to renewable energy. Not only to fulfill the needs of energy, it also driven by the fossil fuel prices which is getting higher and the supply which is constantly depleting. Proto X-2 Micro Bioenergy Gas Turbine is a micro-scale power plant that are being developed by using the renewable energy such as; bioethanol obtained from sugarcane, wheat, tubers and corn. Bioethanol is suitable as an alternative energy as the raw material of manufacture which is easily thrive in the tropical climate of Indonesia. In this research, bioethanol was used as a mixture of diesel for usage as fuel Proto X-2 Micro Bioenergy Gas Turbine. This research aimed at getting best mixture ratio of solar and bioethanol, starting at 2.5% until 40%. The burning process in the combustion chamber was analyzed to determine the effects resulting from the addition of this bioethanol.
The result of this research obtained by adding up to 10 % of bioethanol, still shows a preety good performance, if compared with pure diesel that was by turns the turbine reached 38.000 rpm. The rotation of the turbine was decreasing in the addition of bioethanol above 10%. Furthermore, the addition of ethanol above 10% produced less homogeneous mixture and deposition occurred which impeding the operation of the Proto X-2 Micro Bioenergy Gas Turbine.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45368
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sumarlin Hari Wibowo
"Turbin cross flow merupakan salah satu pembangkit daya alternatif yang mudah dibuat dan murah harganya. Kemampuan turbin cross flow dalam menghasilkan daya yang cukup besar dengan energi berupa aliran air menjadikannya cocok untuk digunakan di Indonesia, baik untuk di desa-desa yang belum terjamah listrik ataupun di perkotaan. Penelitian yang dilakukan terhadap turbin cross flow saat ini berkatian dengan upaya meningkatkan efisiensi turbin. Metode yang umum digunakan adalah dengan membuat casing yang menyelubungi turbin. Cara ini walaupun efektif tetapi juga cukup sulit untuk dimanufaktur sehingga menyebabkan tambahan biaya yang signifikan dalam pembuatan turbin. Alternatif lain untuk meningkatkan efisiensi turbin dan menjaganya tetap cost effective adalah dengan membuat runner tak berporos yang bertujuan untuk memaksimalkan aliran air di dalam runner.

Cross Flow Turbine is one of the alternative power plant that cheap and easy to build. It's ability to generate decent power from water flow energy makes it suitable to be used in Indonesia, whether it in remote areas or cities. The current research about Cross Flow Turbine is focused on increasing the efficiency of turbine. The common method to increasing turbine efficiency is done by making a case that envelope the turbine. Eventough this method is effective but it's difficult to manufacture, then increasing a significant cost in turbine production. Another alternative method to increasing turbine efficiency and keep it cost effective is done by making unshafted runner to maximize the water flow in the runner.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53086
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tresna Priyana Soemardi
"ABSTRAK
Turbin mikrohidro cross flow dengan inovasi fabrikasi dan bahan komposit menjadi fokus studi ini.
Tujuan keseluruhan adalah memperoleh kinerja keseluruhan yang baik pada aspek design sampai pada pengoperasiannya.
Hasil menunjukkan mikrohidro yang dikembangkan masih cukup rendah output dan efisiensi, hal-hal ini dikaji dalam studi ini untuk pengembangan lebih baik.

ABSTRACT
Cross-flow water turbine and using of composite materials are the focus of this study.
The overall objective is to obtain the high performance in all aspect of design and fabrication. The results have shown the advantages of this microhydro power plant, at the other side there are still problem which influence the efficiency
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Buyung Junaidin
"Konsumsi energi yang berasal dari bahan bakar fosil yang semakin tinggi dan ketersediannya di alam yang terbatas sehingga jumlahnya semakin berkurang, memaksa orang untuk mencari alternatif sumber energi lain. Energi angin menjadi salah satu energi alternatif yang penting dan diperhitungkan sejak adanya krisis energi dan isu lingkungan (polusi udara) akibat penggunaan bahan bakar fosil. Energi angin dimanfaatkan dengan cara mengubah gerakan angin menjadi energi listrik dengan turbin angin (wind turbine). Banyak turbin angin dengan skala besar yang telah dibuat atau dikembangkan di berbagai negara karena terbukti sangat efektif untuk menghasilkan energi listrik. Turbin angin skala kecil juga ikut dibuat dan dikembangkan hingga saat ini karena beberapa kelebihannya jika dibandingkan dengan turbin angin skala besar. Kelebihannya itu diantaranya tidak terbatasnya daerah atau lokasi pemasangan turbin angin karena ukurannya yang kecil sehingga dapat di tempatkan di daerah seperti perkotaan. Untuk turbin angin skala kecil, jenis vertical axis wind turbin (VAWT) sangatlah cocok digunakan didaerah perkotaan karena karakteristik VAWT yang dapat bergerak tanpa tergantung arah angin, hal ini sesuai dengan karakteristik angin perkotaan. Selain itu, VAWT dapat bergerak dan menghasilkan energi listrik pada kondisi kecepatan angin yang rendah. Penelitian ini fokus pada perancangan VAWT skala kecil yang dapat diaplikasikan pada kecepatan angin rendah dan berubah-ubah arah seperti karakteristik angin di perkotaan Indonesia serta analisis aerodinamika menggunakan metode double-multiple stream-tube (DMS). "
Yogyakarta: Pusat Penelitian dan Pengabdian pada Masyarakat (P3M) STTA, 2017
621 JIA 9 : 2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Steven Darmawan
"Kebutuhan akan energi yang semakin meningkat menjadikan turbin gas mikro berkembang menjadi alternatif pembangkit daya yang dapat digunakan. Turbin gas Mikro Proto X-2a merupakan turbin gas mikro dengan satu-tingkat kompresor-turbin dimana pembangkitan daya dilakukan melalui aplikasi sebuah runner cross-flow yang dihubungkan ke generator. Runner cross-flow ini digerakkan oleh udara pada sisi masuk kompresor. Pada operasinya, vorteks resirkulasi terbentuk pada bagian dalam runner cross-flow. Karena besaran vorteks ini mempengaruhi unjuk kerja dari runner cross-flow, analisis yang lebih baik diperlukan, yang juga dapat digunakan dan sebagai dasar pengembangan. Perilaku vorteks resirkulasi direpresentasikan lebih detail, dengan menggunakan metode CFD dengan menggunakan model turbulen RNG k-ε. Karakteristik vorteks resirkulasi yang diiringi dengan penurunan temperatur pada bagian dalam runner cross-flow tersebut sesuai untuk penggunaan model turbulen RNG k-ε. Perubahan temperatur tersebut mempengaruhi aliran resirkulasi yang terjadi secara molekular, selain secara konvektif. Pada kondisi ini, analogi Reynolds tidak lagi sesuai untuk digunakan. Oleh karena itu, pemilihan bilangan turbulen Prandtl turbulen ? inverse (α) yang mampu merepresentasikan fenomena aliran tersebut menjadi penting.
Berdasarkan konsep difusivitas pada aliran turbulen, konsep rasio viskositas molekukar dan turbulen pada model turbulen RNG k-ε, pada penelitian ini, nilai α divariasikan menjadi 1; 1,1; 1,2 dan 1;3. Simulasi CFD pada runner cross-flow dilakukan secara tiga-dimensi dengan menggunakan CFDSOF. Jumlah mesh optimum 300 x 147 x 3 dari hasil uji ketergantungan mesh digunakan dengan jenis mesh Body-fitted-coordinate (curved-linear). Eksperimen dilakukan pada sistem turbin gas mikro Bioenergi Proto X-2a yang telah dihubungkan dengan runner cross-flow dan sebuah alternator DC. Parameter karakteristik turbin gas mikro didapatkan, bersama dengan kecepatan poros dan beda temperatur pada casing runner cross-flow.
Data hasil eksperimen (data_1, data_2 dan data_3) secara berturut-turut menghasilkan kecepatan poros runner (N3) dan beda temperatur pada sisi masuk dan keluar (ΔTCR) sebesar 1330 rpm (ΔTCR1 = 0,424oC) , 604 rpm (ΔTCR2 = 0,874oC) dan 659 rpm (ΔTCR3 = 0,936oC). Ketiga data ini dianalisis secara lebih detail dengan CFD. Hasil eksperimen dengan data_3 dengan ΔTCR paling besar menunjukkan bahwa pada kondisi tersebut runner sudah terbebani oleh generator listrik, sistem turbin gas mikro sudah menghasilkan daya listrik 0,54 kWh. Kondisi ini dicapai pada kecepatan kompresor (N1) 78.890 rpm dengan rasio tekanan 1,4 pada efisiensi kompresor 67% dan laju bahan bakar Diesel 2,314 g/s, dengan daya termal yang dihasilkan runner cross-flow sebesar 230 Watt. Secara umum, hasil simulasi CFD menunujukkan bahwa vorteks resirkulasi terbentuk di bagian dalam runner cross-flow pada zona VI hingga VIII (dari sudu jalan ke-14 hingga ke-18).Variasi nilai α yang divariasikan menjadi 1; 1,1; 1,2 dan 1,3 efektif pada beda temperatur runner ΔTCR yang paling besar (ΔTCR3 = 0,936oC) dengan parameter hasil simulasi kecepatan-w dan temperatur statik pada zona resirkulasi (zona VI ? VIII) koordinat (i,j,k = 37-100; 57; 2), pada daerah dekat dinding sudu arah radial pada sudu ke-14 hingga sudu ke-18. Pada data hasil eksperimen lain, variasi nilai α tidak signifikan pada koordinat tersebut. Dari berbagai analisis yang telah dilakukan pada runner cross-flow, terutama pada aliran resirkulasi, besaran bilangan Prandtl turbulen - inverse (α) dapat direkomendasikan nilai optimum α = 1,1. Bilangan α tersebut menjadikan rasio viskositas molekular dan viskositas turbulen sebesar 𝜈0𝜈𝑇=0,8394, yang paling optimum dalam merepresentasikan aliran resirkulasi yang terjadi pada bagian dalam runner cross-flow dengan menggunakan model turbulen RNG k-ε. Hasil ini dapat digunakan untuk analisis dan pengembangan perancangan runner cross-flow.
Increasing of energy needs has lead the development of micro gas turbine as an alternative power generator. The Proto X-2a Bioenergy Micro Gas Turbine is a single-stage compressor-turbine, at which the electricity power generated by application of a cross-flow runner coupled with a DC alternator. This cross-flow runner is driven by inlet compressor air ?a sub-pressure application. Recirculation vortexes which occur during operation inside the cross-flow runner affect the performance ? the cross-flow runner and the Proto X-2a in general. For performance analysis and design development reasons, this condition has triggered more detailed analysis of this type of vortex of the cross-flow runner numerically with CFD method with RNG k-ε turbulence model. Characteristics of recirculation vortexes carried with slighty-decreased temperature inside the cross-flow runner suitable with RNG k-ε turbulence model. Furthermore, the temperature difference inside the cross-flow runner affects the recirculation vortexes since the molecular transport also dominant, beside the convective transport. During this condition, selection of appropriate inverse-turbulent Prandtl number (α) is important to represent the recirculation vortexes.
Inverse-turbulent Prandtl numer (α) varied to 1; 1,1; 1,2 and 1,3 in this research, based on turbulence diffusivity theory, turbulent and molecular viscosity ratio and basic concept of RNG k-ε turbulence model. The CFD simulation done three-dimensionaly with CFDSOF. The mesh-depencency test resulting the optimum mesh was 300 x 147 x 3 cells. The mesh was body-fitted-coordinate (curved-linear type). Experimental data from the Proto X-2a Bioenergy Micro Gas Turbine including the temperature difference and shaft rotational speed of the cross-flow runner is used to CFD simulation. Electricity power generated by a DC alternator coupled to the cross-flow runner is also used to analyzed as a part of the system and temperature difference effect to the runner.
Three experimental data (data_1, data_2 anda data_3) were detailed-numerically analyze. The datas generated the cross-flow runner shaft speed (N3) and temperature difference at cross-flow runner casing; N3 = 1330 rpm (ΔTCR1 = 0,424oC) , N3 = 604 rpm (ΔTCR2 = 0,874oC) dan N3 = 659 rpm (ΔTCR3 = 0,936oC) respectively. Data_3 shows the optimal condition of the system, at which the compressor shaft velocity (N1) was 78.890 rpm, pressure ratio at 1,4, efficiency of 67%, and generated 0,54 kW electricity power with 2,314 g/s Diesel fuel flow rate. At this condition, the cross-flow runner generated 230 W. Recirculation vortexed shows by CFD simulation occur at the inner side of the cross-flow runner, at VIth ? VIIIth zones (14th ? 18th blade) in general for all data. The CFD simulation shows that variation of α effective at data_3, where the temperature difference is the largest (ΔTCR3 = 0,936oC), while the others data shows almost no difference at α variations. More detailed analysis done at recirculating vortexed ? dominated area at i;j;k = 37-100; 57; 2 for data_3, near the radial blade wall with two most affective parameters; w-velocity and static temperature to represent the recirculation flow at recirculation zone. The optimum α is 1,1 since this α variation shows the most logic results compared to the other variation of α. Therefore, for CFD simulation with RNG k-ε turbulence model to a cross-flow runner, is is recomended to use α that represent better recirculation flow, and the optimum ratio between molecular and turbulent viscosity is now 𝜈0𝜈𝑇=0,8394. This result is can be used for both analysis and future design development of cross-flow runner.>/i>
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2092
UI - Disertasi Membership  Universitas Indonesia Library
cover
Herlina
"ABSTRAK
Torsi cogging adalah torsi yang ada pada setiap generator magnet permanen, muncul karena adanya interaksi antara slot pada stator dengan medan elektromagnetik yang dihasilkan oleh magnet permanen pada rotor. Torsi ini menghambat kerja generator untuk menghasilkan daya listrik Penelitian ini memfokuskan pada reduksi torsi cogging pada generator magnet permanen dengan metode anti notch. Akibat adanya anti notch, maka dilakukan penurunan model matematik dari kerapatan fluks magnetik normal Bn = Bar dan kerapatan fluks magnetik tangensial Bt = Ba? . Persamaan torsi cogging yang baru berdasarkan perbedaan radius tepi dalam stator pada posisi-posisi tertentu. Validasi persamaan matematik melalui perhitungan dengan MATLAB dan FEMM. Metode anti notch efektif untuk menurunkan torsi cogging namun perubahan energi yang berhubungan dengan efisiensi tidak banyak berubah. Dengan penambahan anti notch maka nilai Bt turun sehingga torsi cogging minimal. Hasil torsi cogging yang didapatkan antara keduanya tidak persis sama nilainya, namun pola dan kecenderungannya sama, yaitu cenderung mendekati nol dan lebih stabil dibandingkan dengan model referensi. Persentase reduksi torsi cogging untuk model sederhana anti notch adalah 92,9 dan 97,03 . Eksentrisitas rotor yang diijinkan antara 0,5 sampai 1 derajat. Torsi cogging minimal akan memperhalus jalannya rotor, sehingga pada kecepatan angin rendah, rotor akan berputar untuk menghasilkan daya listrik

ABSTRACT
Cogging torque is the remaining torque of any permanent magnet generator, arising from the interaction between the stator slot and the electromagnetic field brought about by the permanent magnet on the rotor. This torque discourages the performance of the generator to generate electrical power. This research concentrates on reducing cogging torque on the permanent magnet generator by anti notch method. As a following of the anti notch, the mathematical model is derived from normal magnetic flux density Bn Bar and tangential magnetic flux density Bt Ba . The new cogging torque equation is based on the diversity in the edge radius in the stator at particular positions. Validate mathematical equations through computations with MATLAB and FEMM. An adequate anti notch method for reducing cogging torque but energy related changes in efficiency has not varied considerably. With the extension of anti notch thus the value of Bt down so that the minimum cogging torque. The result of the cogging torque achieved between the two is not precisely the same value, but the pattern and trend are the same, which tends to be near zero and further steady than the reference model. The percentage of cogging torque reduction for simple anti notch models is 92.9 and 97.03 . The permissible rotor permeability is between 0.5 to 1 degree. Minimum cogging torque will lighten the rotor course, so at moderate wind speeds, the rotor will rotate to generate electrical power."
2018
D2399
UI - Disertasi Membership  Universitas Indonesia Library
cover
Tommy Harza Putra
"Studi eksperimen ini membandingkan performa perpindahan panas dari bermacam design augmentasi dan menemukan karakteristik pergerakan fluida diatas dinding permukaan lekukan kipas turbin. Untuk menreplikasi ujung lekukan didalam kipas turbin, sebuah model eksperimen dengan lekukan tajam 180derajat telah dibuat. Dalam eksperimen ini Particle Image Velocimetry(PIV) di letakan disamping dasar dinding lekukan augmentasi untuk mendapatkan dinamika fluida diatas permukaan dinding lekukan model eksperimen. Sebelum eksperimen dilakukan, metode lain untuk menganalisa permorma perpindahan panas didalam lekukan kipas juga telah dilakukan. Dengan hampir semua eksperimen serupa mengunakan korelasi angka Nusselt dengan angka Reynold yang berdasarkan hidrolik diameter, korelasi angka Nusselt dengan angka Reynold yang berdsarkan posisi sepanjang permukaan lekukan dipergunakan untuk memberikan pandangan yang lebih baik untuk menganalisa pergerakan fluida diatas dinding lekukan kipas turbin Studi korelasi angka Nusselt dengan angka Reynold adalah berdasarkan hasil eksperimen yang dibuat oleh Wang dan rekan-rekan(2013) yang dipublikasikan pada artikel berjudul An Experimental Study of Heat Transfer In a U-Bend Duct With and Without Ribs[1] dan Ronald S. Bunker (20080 dipublikasikan pada artikel berjudul The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins[2]. Berfokus pada observasi perpindahan panas didalam lekukan saluran mengunakan Liquid Crystal Technique. Dengan didapatkannya temperature dan koefisien perpindahan panas pada dinding, informasi yang signifikan pada karakteristik perpindahan panas didalam pergerakan fluida pada lekukan dapat ditemukan Pada fase selanjutnya dalam studi ekperimen, dinamika fluida dari bermacam permukaan lekukan dengan berbeda tinggi, bentuk dan pengaturan telah didapatkan oleh Particle Image Velocimetry dan kemudian dianalisa dalam bentuk korelasi angka Nusselt dengan angka Reynold yang berdasarkan posisi sepanjang permukaan dinding lekukan. Studi eksperimen ini membandingkan performa perpindahan panas dari bermacam design augmentasi dan menemukan karakteristik pergerakan fluida diatas dinding permukaan lekukan kipas turbin. Untuk menreplikasi ujung lekukan didalam kipas turbin, sebuah model eksperimen dengan lekukan tajam 180derajat telah dibuat. Dalam eksperimen ini Particle Image Velocimetry(PIV) di letakan disamping dasar dinding lekukan augmentasi untuk mendapatkan dinamika fluida diatas permukaan dinding lekukan model eksperimen. Sebelum eksperimen dilakukan, metode lain untuk menganalisa permorma perpindahan panas didalam lekukan kipas juga telah dilakukan. Dengan hampir semua eksperimen serupa mengunakan korelasi angka Nusselt dengan angka Reynold yang berdasarkan hidrolik diameter, korelasi angka Nusselt dengan angka Reynold yang berdsarkan posisi sepanjang permukaan lekukan dipergunakan untuk memberikan pandangan yang lebih baik untuk menganalisa pergerakan fluida diatas dinding lekukan kipas turbin. Studi korelasi angka Nusselt dengan angka Reynold adalah berdasarkan hasil eksperimen yang dibuat oleh Wang dan rekan-rekan(2013) yang dipublikasikan pada artikel berjudul An Experimental Study of Heat Transfer In a U-Bend Duct With and Without Ribs[1] dan Ronald S. Bunker (20080 dipublikasikan pada artikel berjudul The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins[2]. Berfokus pada observasi perpindahan panas didalam lekukan saluran mengunakan Liquid Crystal Technique. Dengan didapatkannya temperature dan koefisien perpindahan panas pada dinding, informasi yang signifikan pada karakteristik perpindahan panas didalam pergerakan fluida pada lekukan dapat ditemukan Pada fase selanjutnya dalam studi ekperimen, dinamika fluida dari bermacam permukaan lekukan dengan berbeda tinggi, bentuk dan pengaturan telah didapatkan oleh Particle Image Velocimetry dan kemudian dianalisa dalam bentuk korelasi angka Nusselt dengan angka Reynold yang berdasarkan posisi sepanjang permukaan dinding lekukan. Dengna harapan informasi yang didapatkan dari eksperimen ini dapat memberikan penjelasan yang lebih untuk karakteristik pergerakan fluida dan juga untuk untuk mendesain augmentasi ujung lekukan turbin yang lebih baik.
This thesis report concludes the experimental study conducted to identifies the fluid flow characteristic over the tip wall surface of a turbine blade, it provide the background of the conceptual line and key elements on the enhancement of internal blade tip cap cooling of gas turbine blade. Divided into 3 main parts; the augmentation techniques contains information about the recent development and literature review relevant to the research, the experimental study to simulate the fluid dynamics inside the U-bend model, and finally the analysis of the results on how the fluid dynamics correlate to the heat transfer performance and relevant CFD model The experimental model simulates the turning channel flow effect using a testing frame with U- bend turn and aluminum foam heat sink augmented to the base of the model to emulate the enhancement on the tip-wall surface of a turbine blade. In the experiment the impingement flow and secondary flow of the model are obtained using the Particle Image Velocimetry(PIV) After the experiment several results from relevant literature were also analysed and compared regarding the heat transfer performance of various design of tip cap augmentations. It is concluded from the literature review, that the heat transfer performance along tip-wall of various augmentation designs shown similar heat transfer profiles, these heat transfer data later analysed using the Nusselts number (Nu) to Reynolds number (Re) correlation calculation model to gives a better perspective on how to analyse the fluid flow characteristics on the tip wall surface of a turbine blade tip-cap."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58171
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>