Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 66657 dokumen yang sesuai dengan query
cover
"In this project, Physics-Informed Neural Networks (PINNs) will be used to predict 2D unsteady flows. PINNs is a deep learning application to solve partial differential equations where neural networks learn from data and from physics. In this project, PINNs will be used to predict the velocity and pressure fields of a 2D unsteady flow by learning from the pressure and velocity data from flow simulations and fitting the output velocity and pressure data and its derivatives to the Navier-Stokes equations (NSE) as the governing equations. PINNs learns from data by developing a model that performs nonlinear regression on a set of training velocity and pressure data to produce a predicted output velocity and pressure values that is close to the training pressure and velocity data values. To learn from physics, the derivatives of the output velocity and pressure fields are computed which will be fitted into the Navier-Stokes equations. This becomes an optimization problem where the neural network needs to minimize the error of the predicted and training data and the error from fitting the data and the derivatives to the Navier-Stokes equations.
PINNs will be implemented in 3 different scenarios, which are super resolution, data noise- filtering and pressure gradient prediction, and finally, time series prediction. In super resolution, the neural network will be trained with low resolution pressure and velocity field data to reconstruct accurate high-resolution velocity and pressure fields. In data noise- filtering and pressure gradient prediction, the neural network will be trained only with data from noisy velocity fields and no pressure data, mimicking data processing of Particle Image Velocimetry (PIV) measurements which will produce an accurate noise free velocity field and pressure gradient data. In time series prediction, the network will train with velocity and pressure fields at a limited time range and must predict the velocity and pressure data beyond the time range.
The result of this project shows that PINNs make excellent tools to the field of experimental and computational fluid dynamics. PINNs can reconstruct accurate high- resolution velocity and pressure fields with less than 0.01 normalized error even if training data has a resolution 10 times smaller than the validation data. PINNs can also remove noise with a normalized error of less than 0.02 despite the noisy data having a 0.25 mean squared error. PINNs are however not effective enough to predict flows in a domain without training data or boundary conditions."
[Depok, ]: [Fakultas Teknik Universitas Indonesia, ], 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Thomas Hadi Wijaya
"Penelitian ini berfokus pada pengaplikasian teknologi deep learning, secara khusus menggunakan Residual Network (ResNet101) dalam prediksi perencanaan dosis untuk pasien kanker paru-paru. Tiga variasi input data diproses untuk dilatih dan diuji menggunakan ResNet, dan kemudian dievaluasi untuk menentukan variasi input yang paling akurat. Tujuan utama penelitian ini adalah memahami mekanisme kerja deep learning dalam prediksi perencanaan dosis, mengevaluasi akurasi prediksi menggunakan ResNet, dan menganalisis kinerja model pada masing-masing variasi input data. Metodologi yang digunakan melibatkan penggunaan model input dan output untuk menghasilkan kurva distribusi-volume dosis (DVH) prediksi dan aktual. DVH merupakan kurva yang digunakan untuk mengukur seberapa besar dosis yang diterima dalam persentase volume pada organ tertentu. Evaluasi dilakukan menggunakan metode Mean Absolute Error (MAE) dari persentase volume prediksi dan referensi masing-masing pasien pada rentang dosis yang ditentukan yaitu 0-60 Gy dengan lebar bin sebesar 0,25 Gy. Hasil evaluasi menunjukkan bahwa variasi data input A memberikan nilai MAE sebesar 11,24% ± 10,58%, variasi data input B memberikan MAE sebesar 12,79% ± 11,27%, dan variasi data input C memberikan MAE sebesar 12,22% ± 12,13%. Hasil tersebut memperlihatkan bahwa variasi data input A memiliki tingkat akurasi terbaik dengan nilai error dan standar deviasi terendah. Evaluasi juga melibatkan penggunaan train-val loss untuk masing-masing model yang dilatih. Temuan ini menunjukkan bahwa penggunaan citra CT sebagai channel 1, gabungan ROI tanpa ROI target sebagai channel 2, dan ROI target sebagai channel 3 memberikan prediksi perencanaan dosis yang paling akurat untuk pasien kanker paru-paru.

This study focuses on the application of deep learning technology, specifically using Residual Network (ResNet101), to predict dosage planning for lung cancer patients. Three variations of input data were processed for training and testing using ResNet, and then evaluated to determine the most accurate input variation. The primary objectives of this research are to understand the mechanism of deep learning in dosage planning prediction, evaluate prediction accuracy using ResNet, and analyze model performance for each input data variation. The methodology involved using input and output models to generate predicted and actual dose-volume histogram (DVH) curves. DVH is a curve used to measure the dose received as a volume percentage in a specific organ. Evaluation was conducted using the Mean Absolute Error (MAE) method from the volume percentage prediction and reference for each patient within a dose range of 0-60 Gy with a bin width of 0,25 Gy. The evaluation results showed that input data variation A yielded an MAE of 11,24% ± 10,58%, input data variation B yielded an MAE of 12,79% ± 11,27%, and input data variation C yielded an MAE of 12,22% ± 12,13%. These results indicate that input data variation A had the best accuracy with the lowest error and standard deviation. Evaluation also included using train-val loss for each trained model. These findings suggest that using CT images as channel 1, a combination of ROIs excluding the target ROI as channel 2, and the target ROI as channel 3 provides the most accurate dosage planning prediction for lung cancer patients."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzi Rahmad
"Arsitektur model deep learning kini sudah semakin kompleks setiap harinya. Namun semakin besar model maka dibutuhkan kekuatan komputasi yang cukup besar juga dalam menjalankan model. Sehingga tidak semua perangkat Internet of Things (IoT) dapat menjalankan model yang begitu besar secara efisien. Untuk itu teknik model optimization sangat diperlukan. Pada penelitian kali ini penulis menggunakan metode optimasi menggunakan layer weight regularization, serta penyederhanaan arsitektur model pada hybrid deep learning model. Dataset yang digunakan pada penelitian kali ini adalah N-BaIoT. Sementara evaluasi performa model yang digunakan adalah accuracy, confussion matrix, dan detection time. Dengan tingkat accuracy yang sama, model yang diusulkan berhasil meningkatkan waktu deteksi model lebih cepat 0,8 ms dibandingkan dengan model acuan.

The deep learning model architecture is getting more complex every day. However, the larger the model, the greater the computational power is needed to run the model. So not all Internet of Things (IoT) devices can run such a large model efficiently. For this reason, model optimization techniques are needed. In this study, the author uses an optimization method using layer weight regularization, as well as simplification of the model architecture on the hybrid deep learning model. The dataset used in this research is N-BaIoT. While the evaluation of the performance of the model used is accuracy, confusion matrix, and detection time. With the same level of accuracy, the proposed model succeeded in increasing the detection time of the model by 0.8 ms faster than the reference method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Mahdi Ramadhan
"Penggunaan kecerdasan buatan berbasis Deep Learning untuk mendukung prediksi dan pengambilan keputusan sangat populer di banyak bidang. Salah satu bidang tersebut adalah di sektor kesehatan, terutama dalam pengobatan kanker. Banyak ahli onkologi radiasi dan fisikawan medis sedang melakukan penelitian yang menjanjikan dalam histologi dan stadium kanker, prediksi hasil, segmentasi otomatis, perencanaan perawatan, dan jaminan kualitas. Penelitian ini merupakan studi pendahuluan pengembangan dan perbandingan model deep learning yang berfungsi sebagai alat konversi dari nilai piksel citra Electronic Portal Imaging Device (EPID) ke dosis. Data diambil dari dua bidang radioterapi dengan teknik yang berbeda, yang pertama dosimetri transit pada Varian Unique 6MV foton dan dosimetri non-transit pada Varian Halcyon. Selanjutnya karena data yang tersedia hanya sedikit, data tersebut direproduksi dengan teknik augmentasi sehingga data tersebut cukup untuk menjadi data latih pada berbagai model deep learning, hasilnya divalidasi menggunakan indeks gamma 3%/3mm terhadap citra dosis hasil perencanaan dari TPS. Beberapa model deep learning telah berhasil dibuat yang dapat mengubah nilai piksel EPID menjadi distribusi dosis. Pada dosimetri transit telah berhasil dibuat model Convolutional Neural Network (CNN) dengan 6 layer dengan hasil validasi terbaik mencapai 92,40% ± 28,14%. sedangkan pada dosimetri non-transit, model terbaik mencapai tingkat kelulusan gamma indeks rata-rata 90,07 ± 4,96%. Validasi lebih lanjut dalam banyak kasus dan perbaikan perlu dilakukan untuk meningkatkan akurasi kemiripan dengan citra acuan dengan mempertimbangkan karakteristik yang terkandung dalam gambar EPID dan jumlah dataset.

The use of deep learning to support prediction and decision making is very popular in many areas. Many radiations oncologist and medical physicists are conducting promising research in cancer histology and staging, outcome prediction, automated segmentation, treatment planning, and quality assurance. This research is a preliminary study of the development and comparison of deep learning model that work as a conversion tool from the pixel value of Electronic Portal Imaging Device (EPID) images to dose. Data were taken from two radiotherapy plane with different techniques, the first was transit dosimetry on the Varian Unique 6MV Photon and the second non-transit dosimetry on the Varian Halcyon. Furthermore, due to limited of data source, the data was reproduced by augmentation techniques so that the data was sufficient to become training data on various deep learning models, the results were validated using a gamma index of 3%/3mm compared to the planned dose image from TPS. Several deep learning models has been successfully created that can convert the EPID pixel value into a dose distribution. In transit dosimetry, a Convolutional Neural Network (CNN) model with 6 layers has been successfully created with the best results from the validation reaching 92.40% ± 28.14%. while in non-transit dosimetry, the best model achieves an average gamma passing rate of 90.07 ± 4.96%. Further validation in many cases and improvements need to be made to increase the accuracy of similarity by considering the characteristics contained in the EPID image and the number of datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Frendy Muhamad Rachmansyah
"Pengukuran viskositas zat cair merupakan aspek penting dalam berbagai industri. Dalam mengukur viskositas suatu cairan umumnya menggunakan viskometer bola jatuh. Namun penggunaan viskometer bola jatuh memiliki kekurangan dalam ketelitian dalam menentukan kecepatan terminal bola ketika mencapai kedalaman tertentu. Dalam penelitian ini, penulis merancang pendekatan baru yang menggabungkan teknologi pengolahan video dengan metode deep learning, khususnya algoritma You Only Look Once (YOLO), untuk mengukur viskositas zat cair secara efisien dan akurat. Pendekatan ini memungkinkan pengukuran viskositas dilakukan dengan menggunakan kamera sederhana, yang secara otomatis menganalisis pergerakan jatuhnya kelereng dalam suatu fluida. Penulis melatih model deep learning menggunakan dataset video jatuhnya bola pada suatu cairan yang diambil secara langsung menggunakan kamera smartphone, dan menunjukkan bahwa pendekatan ini mampu menghasilkan pengukuran viskositas yang akurat dengan waktu perhitungan yang lebih cepat dibandingkan menggunakan viskometer bola jatuh. Hasil percobaan menunjukkan bahwa model YOLO mampu mendeteksi 11 objek dari total 25 gambar dengan presisi 0,99 dan konsistensi tinggi (mAP50-95 sebesar 0,86). Model ini efektif dalam mendeteksi jatuhnya kelereng, dengan waktu pemrosesan per gambar yang cepat. Meskipun beberapa frame tidak terdeteksi, model menunjukkan akurasi tinggi dalam memprediksi viskositas dengan MAE sebesar 0,13, menjadikannya andal dan efisien untuk pengukuran viskositas dalam aplikasi industri dan laboratorium.

Viscosity measurement of liquid substances is an important aspect in various industries. The traditional method of measuring viscosity is by using a falling ball viscometer. However, this method has limitations in accurately determining the terminal velocity of the ball at a certain depth. In this research, the author designed a new approach that combines video processing technology with deep learning methods, specifically the You Only Look Once (YOLO) algorithm, to measure the viscosity of liquid substances efficiently and accurately. This approach allows viscosity measurement to be done using a simple camera, which automatically analyzes the movement of a marble falling in a fluid. The author trained a deep learning model using video datasets of the falling ball in a liquid captured directly using a smartphone camera, and demonstrated that this approach can produce accurate viscosity measurements with faster calculation time compared to using a falling ball viscometer. The experimental results demonstrated that the YOLO model accurately detected 11 objects out of 25 images with a precision of 0,99 and a consistent mAP50-95 score of 0,86. Applied to 7 video frames, it processed images quickly with times of 1,9 ms for preprocessing, 45,7 ms for inference, and 0,6 ms for post-processing. Despite some frames missing detections, the model achieved a high accuracy in predicting viscosity with a Mean Absolute Error (MAE) of 0,13, making it reliable for various industrial and laboratory applications."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeremy Filbert Baskoro
"Perkembangan dari variasi modulasi menjadi semakin maju dan kompleks, terutama pada kondisi signal-to-noise ratio (SNR) rendah, sehingga dibutuhkan algoritma klasifikasi secara otomatis yang dapat diandalkan. Pada penelitian ini, penulis memodelkan sebuah arsitektur deep learning baru yang terdiri dari convolutional neural network (CNN) untuk mengekstrak karakteristik spatial, recurrent neural network (RNN) untuk mengekstrak karakteristik temporal, dan dense neural network (DNN) untuk mengekstrak fitur untuk diklasifikasikan pada kondisi SNR rendah. Model yang ditawarkan mengimplementasikan input multi-channel untuk mengekstrak sinyal termodulasi in-phase dan quadrature, serta menggunakan urutan RNN long-short term memory dan gated recurrent unit (LSTM-GRU) untuk meningkatkan keakuratan klasifikasi. Dari eksperimen yang dilakukan, model yang diusulkan memiliki keakuratan yang lebih baik pada modulasi QAM16, QAM64, dan QPSK dibandingkan dengan model state-of-the-art yang lain dengan rata-rata akurasi yang didapatkan adalah sebesar 61.46% pada SNR rendah menggunakan dataset RadioML 2016.10A.

The development of modulation variation is more advanced and more complex, especially on low signal-to-noise ratio (SNR) condition, resulting a reliable automatic modulation classification algorithm is required. In this research, we introduced a deep learning architecture consisting of convolutional neural network (CNN) to extract spatial characteristics, recurrent neural network (RNN) to extract temporal characteristics, and dense neural network (DNN) to extract feature for low SNR condition recognition. The proposed model implements multi-channel input of in-phase and quadrature modulated signal along with RNN sequence of long-short term memory and gated recurrent unit (LSTM-GRU) to improve classification accuracy. From the set experiment, the proposed model has better accuracy on 16-QAM, 64-QAM, and QPSK modulation in compare with other state-of-the-art models and obtains 61.46% average accuracy on low SNR using RadioML2016.10A dataset."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bella Septina Ika Hartanti
"Bencana banjir merupakan salah satu peristiwa alam yang sering terjadi di dunia, termasuk Indonesia, dan terjadi ketika aliran air yang berlebihan menggenangi daratan dalam jangka waktu tertentu. Perubahan iklim, cuaca ekstrem, urbanisasi yang tidak terkendali, dan kondisi geografis yang kompleks telah berkontribusi terhadap peningkatan frekuensi dan intensitas banjir, terutama di daerah perkotaan. Analisis banjir otomatis dan deteksi citra dapat memberikan panduan dan informasi yang berguna dalam membuat keputusan untuk mengurangi dampak destruktif seperti korban jiwa dan ekonomi, salah satunya dengan melakukan segmentasi untuk membantu proses pembuatan peta kerawanan banjir. Namun, sejumlah kecil data beresolusi tinggi dan berlabel yang tersedia membuat proses segmentasi sulit untuk dilakukan. Oleh karena itu, penulis mengusulkan pendekatan semi-supervised yaitu mean teacher dengan memanfaatkan teknik deep learning. Adapun dataset yang digunakan adalah citra SAR Sentinel-1 C-band yang telah diolah sebelumnya. Hasil penelitian menunjukkan bahwa model usulan memberikan kenaikan performa yang cukup signifikan pada metrik IoU sebesar 5% terhadap baseline yang mengimplementasikan teknik pseudo-labeling.

Floods are one of the natural disaster events that occur in the world. Floods happen when excessive water flows and submerges land for a certain period of time. Climate change, extreme weather, uncontrolled urbanization, and complex geographical conditions have contributed to the increase in the frequency and intensity of floods, especially in urban areas. Automatic flood analysis and detection of imagery can provide useful guidance and information in making decisions to reduce destructive impacts such as loss of life and economy. However, the small amount of high-resolution and labeled data available makes the segmentation process difficult for flood detection. Therefore, the author proposes a semi-supervised approach, namely mean teacher by utilizing the deep learning architecture. The dataset used is the SAR image of Sentinel-1 C-band which has been processed. The results show that the proposed model provides a significant increase in performance on the IoU metric by 5% against the baseline that implements the pseudo-labeling technique."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>