Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 62469 dokumen yang sesuai dengan query
cover
Ariq Fakhri
"Aluminium adalah sebuah logam ringan dan ulet yang memiliki kegunaan terbanyak kedua di dunia industri setelah besi dan baja. Salah satu paduan aluminium yang memiliki aplikasi luas adalah Al-Mg-Si yang termasuk ke dalam seri aluminium 6xxx. Peningkatan kekuatan paduan AlMg-Si dapat dilakukan melalui perlakuan penuaan dan pengerjaan panas, dimana kedua proses tersebut dapat digabungkan sehingga menghasilkan perlakuan yang disebut perlakuan panas T5. Penelitian ini menggabungkan metode canai panas yang dilakukan saat perlakuan pelarutan kemudian diikuti dengan penuaan pada paduan Al-1,01Mg-0,58Si (% berat) yang dihasilkan lewat proses squeeze casting. Pencanaian panas dilakukan pada temperatur 400, 475, dan 550 °C dengan persen deformasi sebesar 10 %, sementara itu penuaan buatan dilakukan pada temperatur 180 °C selama 0-200 jam. Karakterisasi meliputi pengujian komposisi kimia, pengujian kekerasan, pengamatan metalografi dan SEM – EDS (Scanning Electron Microscope-Energy Dispersive Spectroscopy), serta pengujian XRD (X-Ray Diffraction). Hasil penelitian menunjukkan bahwa kenaikan temperatur pemanasan atau laku pelarutan meningkatkan pelarutan fasa kedua, mempercepat peristiwa rekristalisasi dinamis, serta memicu respons penuaan yang lebih baik. Hal ini ditunjukkan dengan fenomena yang terjadi, pada kondisi setelah pencelupan cepat, paduan Al yang diberikan pencanaian panas pada temperatur 400 dan 475 °C mengalami peristiwa pemulihan, sementara pada 550 °C sudah terjadi rekristalisasi. Selanjutnya pada kondisi setelah penuaan, paduan Al hasil pencanaian panas pada temperatur 550 °C yang diikuti penuaan pada temperatur 180 °C selama 8 jam menghasilkan kekerasan yang paling tinggi diantara perlakuan lainnya.

Aluminum is a light and ductile metal which has the second most uses in industrial world after iron and steel. One aluminum alloy that has wide application is Al-Mg-Si which belongs to the aluminum 6xxx series. Increasing the strength of Al-Mg-Si alloys can be done through ageing treatment and hot working, which can be combined to produce T5 heat treatment. This research combined hot rolling with solution treatment followed by ageing, which was applied on Al-1.01Mg-0.58Si (Wt. %) alloy produced through the squeeze casting process. The temperatures of hot rolling were varied to 400, 475, and 550 °C with a percent deformation of 10 %, meanwhile artificial ageing was carried out at 180 °C for 0-200 hours. The characterization included chemical composition testing, hardness testing, metallographic observation by optical microscope and SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscopy), as well as XRD (X-Ray Diffraction) testing. The results showed that an increased in heating or solution treatment temperature increased the dissolution of the second phase into the matrix, accelerate dynamic recrystallization event, and trigger a better ageing response. This is showed by phenomenon that occurred, on the as-quenched condition, only recovery occurred to alloy that was given hot rolling at temperature of 400 and 475 °C, while at 550 °C the recrystallization occurred. On the as-aged condition, the alloy that was given hot rolling at 550 °C followed by ageing at 180 °C for 8 hours exhibits a higher hardness than other treatments."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Pasha Arrighi Effendi
"Aluminium adalah sebuah logam ringan dan ulet yang memiliki kegunaan terbanyak kedua di dunia industri setelah besi dan baja. Salah satu aluminium yang memiliki aplikasi yang luas adalah paduan Al-Mg-Si yang tergolong ke dalam aluminium seri 6xxx. Walaupun memiliki banyak keunggulan, paduan Al-Mg-Si memiliki kekurangan yaitu nilai kekerasannya yang rendah jika dibandingkan dengan aluminium seri lainnya. Oleh karena itu, peningkatan nilai kekerasan pada paduan Al-Mg-Si dapat dilakukan melalui pengerjaan dingin dan perlakuan penuaan. Kedua proses tersebut dapat digabungkan sehingga menghasilkan perlakuan yang disebut dengan perlakuan panas T8. Penelitian ini menggabungkan metode canai dingin yang dilakukan setelah perlakuan pelarutan kemudian diikuti dengan penuaan buatan pada paduan Al-1Mg-0.54Si ( % berat) yang dihasilkan melalui proses squeeze casting. Canai dingin yang dilakukan menggunakan tiga variasi deformasi yaitu 5, 10, dan 20 %. Sementara itu, penuaan dilakukan pada temperatur 180 °C selama 200 jam. Pengujian yang dilakukan adalah pengujian komposisi kimia, pengujian kekerasan, pengujian metalografi, pengujian SEM–EDS (Scanning Electron Microscope – Energy Dispersive Spectroscopy), dan pengujian XRD (X-Ray Diffraction). Hasil penelitian menunjukkan bahwa semakin besar deformasi menyebabkan butir semakin memanjang dan setelah penuaan menghasilkan peningkatan kekerasan puncak yang dicapai pada waktu yang semakin singkat. Hal ini ditunjukkan dengan paduan Al-Mg-Si setelah dideformasi sebesar 20 % yang diikuti dengan penuaan pada temperature 180 °C selama 30 menit menghasilkan nilai kekeran yang paling tinggi. Hal ini mengindikasikan adanya kombinasi dua mekanisme penguatan, yaitu pengerasan regangan dan penguatan presipitasi.

Aluminium is a light and ductile material that has the second most use in industry after iron and steel. One of the aluminium that has a wide application is the Al-Mg-Si alloy which classified as aluminium 6xxx series. Although it has many advantages, Al-Mg-Si alloy has a disadvantage, which is its low hardness value compared to other aluminium series. Therefore, increasing the hardness value of Al-Mg-Si alloys can be done through cold working and ageing treatment. The two processes can be combined to produce a treatment known as T8 heat treatment. This research combined the cold rolling method which was carried out after solution treatment followed by ageing of the Al-1Mg-0.54Si alloy (wt. %) which was produced through squeeze casting process. Cold rolling was varied to 5, 10, and 20 % deformation. Meanwhile, ageing was carried out at 180 °C for up to 200 h. Characterization included compositional testing, hardness testing, metallographic testing, SEM - EDS (Scanning Electron Microscope - Energy Dispersive Spectroscopy) testing, and XRD (X-Ray Diffraction) testing. The results demonstrated that the higher the deformation, the longer the grain elongated, and after ageing resulted in an increase in peak hardness which was achieved in a shorter time. This was demonstrated by the Al-Mg-Si alloy after 20 % deformation and ageing at 180 °C for 30 min, which produced the maximum hardness value. This suggests the presence of two strengthening mechanisms, which included strain hardening and precipitation strengthening."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachman Kurnia
"Aluminium dan paduannya tengah dikembangkan sebagai badan pesawat terbang karena sifatnya yang lebih ringan daripada baja dan mudah dibentuk. Paduan aluminium 7XXX yang mengandung Zn dan Mg dapat ditingkatkan sifat mekanisnya melalui proses deformasi. Persentase deformasi yang diberikan akan meningkatkan kekerasan paduan melalui mekanisme penguatan regang. Proses anil yang dilakukan setelah deformasi akan mengembalikan keuletan paduan melalui mekanisme stress relieve, rekristalisasi dan pertumbuhan butir. Penelitian ini bertujuan untuk mengetahui pengaruh persen deformasi dan temperatur anil terhadap rekristalisasi dan sifat mekanik paduan Al-4.7Zn-1.8Mg berat.
Pembuatan paduan dilakukan dengan proses squeeze casting. Proses homogenisasi dilakukan pada temperatur 400 oC selama 4 jam. Paduan hasil homogenisasi kemudian diberikan canai dingin dengan persen deformasi 5, 10 dan 20 . Selanjutnya paduan dengan deformasi 20 diberi perlakuan panas anil dengan temperatur 300, 400 dan 500 oC selama 2 jam. Karakterisasi meliputi pengujian kekerasan untuk melihat pengaruh canai dingin dan temperatur anil terhadap sifat mekanik paduan, pengamatan struktur mikro dengan mikroskop optik dan Scanning Electron Microscope SEM yang dilengkapi dengan Energy Dispersive Spectroscopy EDS.
Hasil penelitian menunjukkan bahwa peningkatan persen deformasi sebesar menyebabkan terjadinya pemipihan butir. Deformasi 5, 10 dan 20 menghasilkan rasio deformasi butir sebesar 2.19, 3.19 and 4.59 dan meningkatkan kerasan paduan dari 69.5 HV menjadi sebesar 95.3, 100.1 dan 105.4 HV. Perlakuan panas anil pada temperatur 300 oC menyebabkan terjadinya recovery sedangkan rekristalisasi terjadi pada temperatur 400 oC dgrain 290 ?m. Grain growth terjadi pada temperatur 500 oC dgrain 434 ?m yang menyebabkan penurunan kekerasand dari 105.4 HV menjadi 71.5, 96.8 and 95.3 HV berturut turut. Rekristalisasi sempurna diprediksi pada temperature anil 375 ndash; 425 oC selama 2 jam.

Aluminium alloys are developed as airplane body due to its lighter weight compared to steel and good formability. Aluminium 7XXX series with Zn and Mg alloying elements are commonly used because of its mechanical properties can be improved through deformation process. Deformation such as cold rolling may increase the hardness of an alloy through strain hardening. Annealing process after deformation process will recover ductility through stress relieve, recrystallization and grain growth mechanisms. This research aimed to find out the effect of cold rolling and annealing temperatur on the recrystallization and mechanical properties of Al 4.7Zn 1.8Mg wt. alloy.
The alloy was produced by squeeze casting process. Homogenization was conducted at 400 oC for 4 hours followed by cold rolling with degree of deformation of 5, 10 and 20 . The samples with 20 of deformation were then annealed at 300, 400 and 500 oC for 2 h. Vickers hardness test was performed on the cold rolled and annealed samples to reveal strain hardening effect and subsequent recrystallization process. Microstructure was observed by using optical microscope and Scanning Electron Microscope SEM with Energy Dispersive Spectroscopy EDS.
The results showed that the higher the deformation, the more elongated the grains. Deformation of 5, 10 and 20 led to grain shape ratios of 2.19, 3.19 and 4.59, respectively and increase in the hardness of the alloy from 69.5 HV to 95.3, 100.1 and 105.4 HV, respectively. Annealing at 300 oC resulted in recovery, while at 400 oC, recrystallization occured dgrain 290 m. Grain growth was observed after annealing at 500 oC for 2 h dgrain 434 m. The annealing temperature of 300, 400 and 500 oC decrease the hardness of the alloy from 105.4 HV to 71.5, 96.8 and 95.3 HV, respectively. Full recrystallization was predicted to happen at 375 ndash 425 oC for 2 hours.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67978
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suryadi
"Proses canai panas terdiri dari rangkaian proses, mulai dari pemanasan ulang, pengerolan, sampai pada pendinginan. Pengontrolan perubahan struktur mikro dan sifat mekanik sangat penting untuk menghasilkan proses dan sifat-sifat yang optimum. Pengontrolan tersebut akan efektif bila menggunakan suatu model terpadu yang mencakup semua aspek-aspek pada canai panas yaitu temperatur, sifat-sifat mekanik dan aspek metalurgi.
Pengembangan model matematika dilakukan untuk memprediksi tahanan deformasi dan beban pengerolan selama proses canai panas satu tingkat dari suatu plat baja karbon rendah dengan menggunakan model fisik dan data-data eksperimen di laboratorium.
Dalam penelitian ini diperoleh sebuah model yang dapat memprediksi tahanan deformasi dan beban pengerolan plat baja dengan kandungan 0.071% C selama proses pengerolan panas.

Hot rolling of steel consists of reheating furnace, rolling, scatting, and cooling. Micro structural changes and mechanical properties are very important to control during rolling to product an optimum process and properties condition. The controlling will be more effective if we used an overall model including temperature, mechanical properties and metallurgy aspect.
A mathematical model has been developed to predict the resistance to deformation and rolling load during a single pass hot rolling of rolling load by using physical model and data from laboratory experiments.
The modified models obtain in this present work hope that can be able to predict resistance to deformation and rolling load of wt-0.077 %C steel during hot rolling.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Qomaruddin
"Sebuah model tahanan deformasi hasil eksperimen diperoleh dari proses pengerolan dingin (cold rolling) paduan Kuningan Cartridge yang dilakukan di laboratorium. Berdasarkan model ini, model-model teoritis yang ada dimodifikasi sehingga model teoritis dapat diterapkan pada kondisi proses skala laboratorium tersebut. Model hasil regresi eksperimen dan modifikasi mampu memprediksi tahanan deformasi dan beban pengerolan paduan Kuningan Cartridge.

A model of resistance to deformation as a result of cold rolling process of Cartridge Brass alloy conducted at laboratory was obtained. Based on this experimental model, to be able to apply the theoretical models to meet the scale level of laboratory, they were modified. The regression of experiment results and the modified theoretical models are reasonably able to predict the resistance to deformation and roll separating force of the alloy during cold rolling process."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T1266
UI - Tesis Membership  Universitas Indonesia Library
cover
Damar Akhdan
"Salah satu material yang sering digunakan pada industri transportasi adalah aluminium seri 6xxx. Paduan aluminium seri 6xxx mengandung silikon dan magnesium dengan proporsi yang dibutuhkan untuk membentuk magnesium silisida sehingga membuatnya dapat diberikan perlakuan panas. Penambahan Ti pada paduan aluminium seri 6xxx diharapkan dapat berkontribusi dalam meningkatkan kekuatan dari paduan aluminium melalui penguatan batas butir dengan memperkecil ukuran butir. Penelitian ini mempelajari pengaruh penambahan Ti dan temperatur pencanaian panas saat laku pelarutan pada paduan Al-1,35Mg-0,77Si-0,04Ti (% berat). Sampel dibuat menggunakan pengecoran metode squeeze casting, dilanjutkan dengan homogenisasi pada temperatur 400 °C selama 4 jam. Selanjutnya, sampel diberi perlakuan T5 yaitu pencanaian panas saat laku pelarutan dengan persen reduksi 25% diikuti oleh penuaan buatan pada temperatur 180 °C selama 0-200 jam. Temperatur laku pelarutan divariasikan 450 °C, 525 °C, dan 590 °C selama 1 jam. Sebagai variabel kontrol adalah sampel yang diberi perlakuan T6 yaitu laku pelarutan pada temperatur 590 °C selama 1 jam diikuti oleh penuaan buatan selama 0 – 200 jam. Karakterisasi yang dilakukan adalah pengujian komposisi kimia, pengujian kekerasan, pengamatan metalografi menggunakan mikroskop optik dan Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), dan pengujian X-ray Diffraction (XRD). Hasil penelitian menunjukkan bahwa penambahan Ti sebesar 0,04 % berat mengubah morfologi butir dari dendritik menjadi equiaxed, namun tidak cukup untuk menurunkan ukuran butir sehingga terjadi penurunan kekerasan. Homogenisasi tidak memberikan efek signifikan pada nilai kekerasan paduan. Perlakuan T5 memberikan penguatan yang lebih baik dibandingkan T6, ditemukan nilai kekerasan setelah pencelupan cepat pada temperatur laku pelarutan 590 °C adalah 49,2 HRE pada T6, dan 54,6 HRE pada T5. Peningkatan temperatur pencanaian panas saat laku pelarutan meningkatkan pelarutan fasa kedua, mempromosikan peristiwa rekristalisasi dinamis, dan memicu respons penuaan yang lebih baik. Puncak kekerasan perlakuan T5 pada temperatur 450, 525, dan 590 °C masing-masing adalah 41,4 HRE, 78,8 HRE, dan 28 HRB. Fasa kedua yang terbentuk di dalam paduan adalah Mg5Si6, Mg9Si5, dan Mg2Si.

One material that is often used in the transportation industry is 6xxx series aluminium. The 6xxx series aluminium alloys contain silicon and magnesium in the required proportions to form magnesium silicide, making them amenable to heat treatment. The addition of Ti to 6xxx series aluminium alloys is expected to contribute to improving the strength of aluminium alloys through grain boundary strengthening by reducing grain size. This research studied the effect of Ti addition and hot rolling during solution treatment temperature on Al-1.35Mg-0.77Si-0.04Ti alloy (wt%). Samples were prepared using the squeeze casting method, followed by homogenisation at 400°C for 4 hours. Subsequently, the samples were treated with T5 temper, which is hot rolling during solution treatment with a reduction percentage of 25 percent followed by artificial ageing at 180°C for 0-200 hours. The solution treatment temperatures were varied to 450 °C, 525 °C, and 590 °C for 1 hour. As a control variable, the samples were treated with T6, i.e. solution treatment at 590 °C for 1 hour followed by artificial ageing for 0-200 hours. The characterisation carried out was chemical composition testing, hardness testing, metallographic observation using optical microscope and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS), and X-ray Diffraction (XRD) testing. The results showed that the addition of Ti at 0.04 wt% changed the grain morphology from dendritic to equiaxed, but not enough to decrease the grain size resulting in a decrease in hardness. Homogenisation had no significant effect on the hardness value of the alloy. T5 treatment provided better reinforcement than T6, where it was found that the hardness values after quenching at a solution treatment temperature of 590 °C were 49.2 HRE in T6, and 54.6 HRE in T5. Increasing the hot rolling temperature during solution treatment enhances the dissolution of the second phase, promotes dynamic recrystallisation events, and triggers a better ageing response. The peak aged hardness of the T5 treatment at 450, 525, and 590 °C were 41.4 HRB, 78.8 HRB, and 28 HRB, respectively. The second phases that was formed in the alloy are Mg5Si6, Mg9Si5, and Mg2Si."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Danny Taufik Bahar
"Jenis paduan aluminium yang gencar dikembangkan adalah Al-Zn-Mg (Seri 7xxx) dengan sifat mekanis paling baik di antara paduan aluminium lainnya. Peningkatan sifat mekanis tersebut dapat dilakukan dengan menambahan unsur minor ke dalam paduan, seperti Cr. Selain itu, sifat mekanis paduan aluminium seri 7xxx dapat ditingkatkan dengan melakukan laku pelarutan pada temperatur tertentu diikuti oleh pencelupan cepat dan diakhiri dengan pengerasan penuaan. Sifat mekanis akan ditentukan oleh temperatur laku pelarutan yang digunakan. Penelitian ini mempelajari pengaruh temperatur laku pelarutan pada karakteristik paduan Al-4.58Zn-1.47Mg-1.66Cr (%berat).
Sampel dibuat melalui proses pengecoran dengan metode squeeze casting diikuti homogenisasi pada temperatur 400 oC selama 4 jam untuk menyeragamkan butir. Proses laku pelarutan dengan variasi temperatur 220, 420, dan 490 oC dilakukan selama satu jam dan diikuti oleh pencelupan cepat menggunakan air. Lalu, dilakukan pengerasan penuaan pada temperatur 130 oC selama 48 jam dengan tujuan untuk menghasilkan presipitat. Karakterisasi yang digunakan berupa pengamatan struktur mikro dengan mikroskop optik dan SEM-EDS, pengujian kekerasan (HRB dan HB), pengujian XRD (X-Ray Diffraction), dan DSC (Differential Scanning Calorimetry).
Hasil penelitian menunjukkan bahwa semakin tinggi temperatur laku pelarutan, semakin banyak fasa interdendritik yang terlarut ke dalam matriks Al. Hal ini dibuktikan dengan fraksi volume fasa interdendritik pada 220, 420, dan 490 oC setelah pencelupan cepat berturut-turut adalah 5.93, 4.3, dan 3.23%. Setelah pengerasan penuaan, didapatkan nilai kekerasan paduan yang meningkat menjadi 34.42, 72.26, dan 68.12 HRB pada temperatur 220, 420, serta 490 oC. Selain itu, penambahan Cr akan menghasilkan presipitat CrAl7 yang dapat meningkatkan kekerasan paduan melalui pengecilan SDAS dan menjadis tempat tumbuhnya presipitat penahan dislokasi."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nuzulian Akbar Arandana
"Aluminium merupakan logam yang mudah untuk dipadukan dengan logam lain. Salah satu paduan aluminium yang sedang banyak dikembangkan adalah seri 7xxx Al-Zn-Mg karena memiliki densitas yang rendah dan sifat mekanis yang baik. Peningkatan sifat mekanis paduan tersebut dapat dilakukan dengan penambahan sejumlah unsur paduan seperti Cr yang dapat memperhalus butir. Selain itu, paduan juga dapat dikeraskan melalui proses pengerasan pengendapan dengan tahapan laku pelarutan, pencelupan cepat, dan penuaan.
Untuk memeroleh pengerasan pengendapan yang diinginkan maka tahapan laku pelarutan harus diperhatikan karena akan memengaruhi sejumlah unsur paduan yang dapat larut dan jumlah kekosongan yang terbentuk. Sementara itu, masih sedikit penelitian mengenai pengaruh kombinasi penambahan Cr dan temperatur laku pelarutan pada paduan. Oleh karena itu, penelitian ini bertujuan untuk mengetahui pengaruh penambahan Cr terhadap variasi temperatur laku pelarutan pada paduan Al-4.7Zn-1.7Mg-0.37Cr berat.
Paduan dibuat dengan metode squeeze casting. Kemudian dilakukan proses homogenisasi pada temperatur 400 C selama 4 jam. Pada paduan selanjutnya dilakukan proses laku pelarutan pada temperatur 220, 420, dan 490°C yang dilanjutkan dengan pencelupan dalam air. Setelah itu, paduan dilakukan pengerasan penuaan pada temperatur 130°C selama 48 jam. Karakterisasi yang dilakukan berupa pengamatan struktur mikro menggunakan OM Optical Microscope dan SEM-EDS Scanning Electron Microscope - Energy Dispersive Spectroscopy, pengujian kekerasan HRB dan HB, pengujian XRD X-Ray Diffraction, dan STA Simultaneous Thermal Analysis.
Hasil penelitian menunjukkan bahwa semakin tinggi temperatur laku pelarutan menyebabkan semakin banyaknya fasa interdendritik yang dapat larut dalam matriks Al. Hal ini dibuktikan dengan fraksi volume fasa interdendritik setelah laku pelarutan 220, 420, dan 490°C yang menurun menjadi 6.67, 4.55, dan 4.14 dari 6.9 setelah homogenisasi. Hasil tersebut menunjukkan bahwa penambahan 0.37 berat Cr tidak berpengaruh terhadap proses pelarutan fasa interdendritik selama laku pelarutan. Sebaliknya, intermetalik Cr seperti Al18Cr2Mg3 dan Cr,Fe Al7 yang terbentuk dapat meningkatkan kekerasan paduan. Kekerasan paduan setelah penuaan pada temperatur 130 C selama 48 jam meningkat menjadi 49.64, 52.54, dan 70.52 HRB pada variasi laku pelarutan 220, 420, 490°C.

Aluminium is a metal that can be easily alloyed with other metals. One of them is the 7xxx Al Zn Mg series which are the most developed series due to their low density and good mechanical properties. Their mechanical properties can also be strengthened by adding some microalloying element such as Cr which can refine the grain of the alloy. Aside from that, heat treatment such as precipitation hardening through solution treatment, quenching, and ageing can also be done to strengthen its properties. Solution treatment temperature may affect the amount of dissolved interdendritic phase and the number of vacancy, thus it has to be considered in case of getting the desired properties after the precipitation hardening.
Meanwhile, there are very few research on the combined effects of addition of Cr and solution treatment temperature on the properties of this alloy. Therefore, this research is aimed to investigate the effect of Cr and variation of solution treatment temperature on the properties of Al 4.7Zn 1.7Mg 0.37Cr wt. alloy.
The alloy was fabricated by squeeze casting process. Then it was homogenized at 400 C for 4 hours. Three samples were then solutionized at 220, 420, and 490 C for 1 hour and followed by rapid quenching in water. Ageing was then conducted at 130 C for 48 hours. Characterization included microstructure observation by using OM Optical Microscope and SEM EDS Scanning Electron Microscope Energy Dispersive Spectroscopy , hardness testing HRB and HB, XRD X Ray Diffraction, and STA Simultaneous Thermal Analysis.
The results showed that the higher solution treatment temperature increased the dissolution of interdendritic phase to the Al matrix. It was shown by the decreasing of interdendritic volume after solution treatment at 220, 420, and 490°C which became 6.67, 4.55, and 4.14 after 6.9 in the homogenized alloy. The results showed that the 0.37 wt. Cr addition had no effect on the dissolution process of the interdendritic phase. However, the formation of Cr intermetallic such as Al18Cr2Mg3 and Cr,Fe Al7 increased the hardness of the alloy. The hardness of the alloy after ageing at 130°C for 48 hours was increased to 49.64, 52.54, and 70.52 HRB in 220, 420, 490°C solutionized alloy respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauzan Hasan
"Paduan Al-Mg-Si memiliki sifat rasio kekuatan terhadap berat yang tinggi. Salah satu cara untuk meningkatkan kekuatan paduan Al-Mg-Si adalah dengan perlakuan pencanaian panas yang dilanjutkan dengan penuaan buatan atau dikenal sebagai proses perlakuan panas T5. Penelitian ini mempelajari pengaruh persen deformasi yang dilakukan setelah proses laku pelarutan terhadap respons penuaan paduan Al-1,86Mg-0,51Si (% berat). Paduan dibuat melalui pengecoran dengan metode squeeze casting. Selanjutkan dilakukan homogenisasi pada temperatur 400 °C selama 4 jam. Kemudian sampel diberi laku pelarutan pada temperatur 590 °C selama 1 jam dan dalam keadaan panas diberi deformasi sebesar 10, 17,5, dan 25 %. Tahap berikutnya sampel dicelup cepat dengan media air dan dilakukan penuaan buatan pada temperatur 180 °C selama 200 jam. Karakterisasi yang dilakukan pada sampel meliputi pengujian komposisi kimia, pengujian kekerasan, pengamatan struktur mikro dengan mikroskop optik, pengujian SEM-EDS, dan XRD. Hasil penelitian menunjukkan peningkatan persen deformasi menyebabkan pengecilan ukuran butir dan peningkatan kekerasan puncak setelah penuaan buatan. Hal ini disebabkan oleh adanya fenomena dynamic recrystallization yang mendorong terjadinya pengecilan ukuran butir. Namun tidak ada interaksi yang signifikan dari proses canai pada laku pelarutan dengan penuaan buatan. Adanya perbedaan kekerasan hanya disebabkan oleh perbedaan persen deformasi yang menyebabkan penguatan batas butir.

The Al-Mg-Si alloys has a high strength to weight ratio. Way to increase the strength of Al-Mg-Si alloys is by hot rolling treatment followed by artificial ageing or known as T5 heat treatment process. This research studied the effect of deformation percentage performed after solution treatment on ageing response of Al-1.86Mg-0.51Si alloy (wt. %). The alloy made by squeeze casting method and homogenized at 400 °C for 4 hours. Then the sample was given solution treatment at 590 °C for 1 hour and in hot conditions deformed by 10, 17.5, and 25 %. Next, the samples were rapidly quenched in water and artificially aged at 180°C for 200 hours. The characterization carried out included chemical composition testing, hardness testing, microstructure observation with optical microscope, SEM-EDS testing, and XRD. The results showed that the increase in percent deformation causes a decrease in grain size and increase in peak hardness after artificial ageing. This is caused by the phenomenon of dynamic recrystallization which encourages grain size reduction. However, there was no significant interaction of the rolling process on solution treatment with artificial ageing. The difference in hardness is only caused by the difference in percent deformation which causes grain boundary strengthening."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risly Wijanarko
"Paduan Al 7XXX Al-Zn-Mg merupakan salah satu paduan aluminium yang mampu dilaku panas dan memiliki kekuatan tinggi. Paduan Al 7xxx dapat diperkuat dengan pengerasan pengendapan. Dalam proses pengerasan pengendapan, proses laku pelarutan merupakan tahapan penting dimana fasa kedua larut ke dalam matriks agar dapat bertransformasi menjadi presipitat saat proses penuaan. Selain itu, penambahan Ti dapat memperkuat paduan dengan melakukan penghalusan butir. Penelitian kombinasi laku pelarutan dengan penghalusan butir oleh Ti masih terbatas. Oleh karena itu, pada penelitian ini akan diamati pengaruh temperatur laku pelarutan terhadap struktur mikro dan sifat mekanis paduan Al-5.1Zn-2Mg dengan penambahan 0.1 berat Ti hasil squeeze casting. Paduan Al-5.1Zn-2Mg-0.1Ti hasil pengecoran dihomogenisasi pada temperatur 400 C selama 4 jam. Setelah itu, laku pelarutan dilakukan dengan variasi temperatur 220, 420, dan 490 C, dilanjutkan dengan pencelupan cepat. Selanjutnya, penuaan dilakukan pada temperatur 130 C selama 48 jam. Karakterisasi meliputi pengamatan struktur mikro menggunakan mikroskop optik, dan Scanning Electron Microscope SEM Energy Dispersive Spectroscopy EDS, pengujian kekerasan Rockwell, X-Ray Diffraction XRD, dan Simultaneous Thermal Analysis STA. Penambahan 0.1 berat Ti dapat memperbulat struktur butir paduan dan menyebabkan tegangan permukaan antarmuka matriks ?-Al menurun sehingga fasa kedua lebih mudah untuk berdifusi ke dalam matriks saat laku pelarutan. Peningkatan temperatur laku pelarutan dapat meningkatkan jumlah fasa kedua yang larut ke dalam matriks. Hal ini dapat ditunjukkan melalui fraksi volume fasa kedua dari kondisi setelah homogenisasi, yaitu 7.07 menjadi 6.74, 3.50, dan 2.75 untuk temperatur laku pelarutan 220, 420, dan 490 C. Banyaknya fasa kedua yang larut berdampak pada kekerasan yang dihasilkan setelah penuaan. Nilai kekerasan penuaan meningkat seiring dengan meningkatnya temperatur laku pelarutan, yaitu 41.68, 52.46, dan 70.98 HRB pada temperatur laku pelarutan 220, 420, dan 490 C. Selain itu, nilai kekerasan paduan dengan 0.1 berat Ti lebih tinggi dibanding paduan tanpa Ti setelah penuaan karena jumlah fasa kedua yang larut lebih besar sehingga presipitat yang terbentuk menjadi lebih banyak.

Al 7XXX alloy is one of heat treatable aluminium alloy which has superior strength. It can be strengthened by precipitation hardening. Solution treatment in precipitation hardening sequence has an important role in which second phases will dissolve, and vacancies will be quenched in the matrix to form precipitates in the ageing process. Another strengthening can be done by the addition of Ti as grain refiner. However, there is still lack of study concerned on the combination of solution treatment with grain refining by Ti. Thus, this study is aimed to investigate the effect of solution treatment temperature on microstructure and mechanical properties of Al 5.1Zn 2Mg alloy with 0.1 wt. Ti produced by squeeze casting. As cast alloy was homogenized at 400 C for 4 h. Solution treatment was conducted at 220, 420, and 490 C, followed by rapid quenching. The alloy was subsequently aged at 130 C for 48 h. Characterization was performed by optical microscope, Scanning Electron Microscope SEM ndash Energy Dispersive Spectroscopy EDS, Rockwell hardness testing, X Ray Diffraction XRD, and Simultaneous Thermal Analysis STA. The addition of 0.1 wt. Ti resulted in rounder grains which possess lower surface tension between the Al matrix and second phase interface so that the dissolution of it will be much easier while solution treatment. Increasing solution treatment temperature leads to decreasing volume fraction of the second phases at grain boundaries. It can be known by quantitative analysis from as homogenized condition with volume fraction of 7.07 which decreased to 6.74, 3.50, and 2.75 after solution treatment at 220, 420, and 490 C, respectively. The amount of dissolved second phases will affect the final hardness after ageing process, at which the hardness was increasing with increasing solution treatment temperature. The hardness was 41.68, 52.46, and 70.98 HRB with solution treatment temperature of 220, 420, and 490 C, respectively. Besides, the hardness value of 0.1 wt. Ti added alloy was higher than that of the alloy without Ti addition. It was due to higher second phase dissolution which leads to more precipitates formed."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>