Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 36011 dokumen yang sesuai dengan query
cover
Elgar Dimaspria Widodo
"Geokimia dalam eksplorasi geotermal memiliki peran yang sangat penting, termasuk memprediksi suhu reservoir sebagai penilaian potensi suatu lapangan geotermal. Daerah Penelitian merupakan salah satu lapangan geotermal di Indonesia yang berada dalam perbatasan dua sistem geotermal, dimana penelitian lebih lanjut akan dilakukan di bagian selatan lapangan yang memiliki sistem dominasi air dan daerah yang kurang tereksploitasi. Metode yang umum digunakan untuk menentukan suhu adalah geotermometer, dimana perkiraan suhu didasarkan pada ketergantungan kesetimbangan kimia yang telah didefinisikan persamaan kesetimbangannya untuk suhu itu sendiri. Pada kenyataannya reaksi kimia antara fluida dan mineral batuan dari reservoir ke permukaan mengalami beberapa gangguan yang harus dianalisa lebih mendalam.
Penelitian ini dilakukan untuk mengetahui estimasi kesetimbangan kimia antara batuan dan fluida yang terjadi di reservoir geotermal sebelum terjadinya proses cooling, boiling, dan mixing. Estimasi ini dilakukan dengan metode CO2 Discharge Method yang membentuk asam karbonat di reservoir, yang muncul di permukaan dan digunakan sebagai perhitungan pH aktual di reservoir. Nilai pH dihitung dari koefisien aktivitas ion hidrogen yang sangat bergantung pada suhu. Dalam reaksi kesetimbangan fluida-batuan, terjadi proses hidrolisis mineral hidrotermal dimana energi bebasnya dapat dihitung menggunakan hukum termodinamika Gibbs dan menghasilkan perbandingan ion Na+ dan K+ dengan ion hidrogennya. Hasilnya pH fluida reservoir adalah cukup basa pada 290 °C, dan rasio Na+ dan K+ sangat tidak sensitif terhadap perubahan suhu. Model plotting data menunjukkan tiga kelompok mineral hidrotermal yaitu kelompok Kaolinit, kelompok K-Mica/K-Feldspar, dan kelompok Albit/Kuarsa, dengan kestabilan aktivitas ion yang tinggi. Hal ini menunjukkan perhitungan geotermometer Na-K-Ca menjadi valid yaitu 290°C. Dari hasil perhitungan geotermometer, pH fluida, dan letak reservoirnya menunjukkan area tengah-selatan Daerah Penelitian layak untuk dilakukan pengembangan lebih lanjut.

Geochemistry in geothermal exploration has a very important role, including predicting reservoir temperature as an assessment of the potential of a geothermal field. The Research Area is one of the geothermal fields in Indonesia which lies within the borders of two geothermal systems, where further research will be carried out in the southern area of the field which has a water-dominated system and less exploited area. The common method used to determining the temperature is geothermometer, where the approximate temperature is based on chemical equilibrium dependence which has defined its equilibrium equation for the temperature itself. In fact, the chemical reaction between fluids and rock minerals from reservoir to the surface experiences some disturbances that must be analyzed more comprehensively.
This study was made to determine chemical equilibrium estimation between rocks and fluids that occur in the geothermal reservoir before the occurrence of the cooling, boiling, and mixing processes. This estimation is carried out using CO2 Discharge Method which forms carbonic acid in the reservoir, that appears on the surface and is used as a calculation of the actual pH in the reservoir. The pH value is calculated from the coefficient of hydrogen ion activity which is very dependent on temperature. In the reaction of fluid-rock equilibrium there is a hydrolysis process of hydrothermal minerals where its free energy can be calculated using Gibbs' law of thermodynamics and makes a ratio of Na+ and K+ ions with their hydrogen ions.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Indra Kurniawan
"Lapangan geotermal “x” merupakan salah satu lapangan geotermal di Indonesia yang sedang dalam proses pengembangan. Tahap eksplorasi merupakan tahapan yang paling mempunyai resiko yang besar. Untuk mengurangi resiko tersebut, diperlukan data – data yang saling terintegrasi untuk menggambarkan sistem geotermal bawah permukaan secara representatif. Data magnetotellurik dan gravitasi merupakan data utama dalam pembuatan model konseptual sistem geotermal lapangan “x”. Selain itu juga didukung dengan data geokimia dan data sumur landaian suhu. Dari metode magnetotellurik yaitu berupa analisis fasa tensor dan induction arrow didapatkan arah struktur utama atau bisa disebut dengan geoelectrical strike yaitu berarah Timurlaut – Baratdaya atau lebih tepatnya mempunyai arah N80oE. Hal ini juga diperkuat dari metode gravitasi berupa analisis derivatif dan data geologi regional dimana struktur yang teridentifikasi juga dominan berarah Timurlaut – Baratdaya. Dari hasil pengolahan data gravitasi berupa data complete bouger anomaly mempunyai nilai 53 – 82 mgal dimana daerah yang mempunyai anomali tinggi berada pada daerah sekitar manifestasi hingga ke Timur daerah penelitian. Hasil pemodelan inversi 3D dari data magnetotellurik didapatkan batuan claycap mempunyai ketebalan berkisar antara 400 – 500 m. Batuan yang berperan sebagai heatsource merupakan batuan intrusi yang mempunyai nilai resistivitas hingga mencapai 400 ohm-m. Dari analisis data geokimia menunjukkan daerah outflow pada sistem geotermal yaitu daerah dimana terdapatnya manifestasi yang muncul ke permukaan. Dari semua data tersebut dapat diintegrasikan menjadi model konseptual sistem geotermal dimana dapat digunakan sebagai acuan dalam melakukan pemboran geotermal.

The geothermal field "x" is one of the geothermal fields in Indonesia which is in the process of being developed. The exploration stage is the stage that has the greatest risk. To reduce this risk, integrated data is needed to describe the subsurface geothermal system in a representative manner. Magnetotelluric and gravity data are the main data in making a conceptual model of the field "x" geothermal system. Also besides supported by geochemical data and temperature sloping well data. From the magnetotelluric method, namely in the form of phase tensor analysis and induction arrow, the direction of the main structure is obtained or it can be called a geoelectrical strike, which is in the Northeast - Southwest direction or more precisely has a direction of N80oE. This is also reinforced by the gravity method in the form of derivative analysis and regional geological data where the identified structures are also predominantly northeast-southwest trending. From the results of processing gravity data in the form of complete bouge anomaly data has a value of 53 - 82 mgal where areas that have high anomalies are in the area around the manifestation to the east of the study area. The results of 3D inversion modeling from the magnetotelluric data show that clay cap rocks have a thickness ranging from 400 - 500 m. Rocks that act as heat sources are intrusive rocks that have a resistivity value of up to 400 ohm-m. The geochemical data analysis shows the outflow area in the geothermal system, namely the area where there are manifestations that appear to the surface. From all these data, it can be integrated into a conceptual model of the geothermal system which can be used as a reference in carrying out geothermal drilling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dizanissa Purnama Sari
"Lapangan geotermal X merupakan salah satu lapangan di Flores, Nusa Tenggara Timur yang memiliki potensi geotermal dan masih dalam tahap pengembangan. Pada Tahap eksplorasi, diperlukan pemahaman yang sangat baik terhadap sistem geotermal yang dapat digambarkan melalui model konseptua. Penelitian ini bertujuan untuk membangun sebuah model konseptual yang terintegrasi data geofisika, geologi, geokimia, dan data sumur. Hal ini digunakan untuk meminimalisir kegagalan dalam pemboran. Model konseptual merupakan informasi awal untuk menentukan lokasi pengeboran. Pemodelan dilakukan dengan menggunakan analisis inversi 3D magnetotellurik (MT) dan 2D gravitasi yang dikorelasikan dengan data sumur. Hasil geotermometer menunjukan temperatur reservoir berkisar 225-250ºC. Berdasarkan korelasi data tersebut dapat dilihat bahwa lapisan dibawah permukaan X dibagi menjadi 3 yaitu argilik, transisi, dan propilitik. Zona argilik diidentifikasikan sebagai clay cap dengan resistivitas ≤ 10 ohm-m dengan temperature 200ºC. Sedangkan zona transisi merupakan batas dari reservoir dan clay cap yang memiliki suhu sebesar 200-210ºC dan resistivitas 10-20 ohm-m. Zona propilitik merupakan zona reservoir yang kaya mineral illit dengan resistivitas 20-100 ohm-m dan temperature ≥ 210ºC. Luas area prospek lapangan geotermal X sebesar 3.4 km2 dengan potensi tertinggi di bagian utara daerah penelitian. Rekomendasi pengembangan yaitu 3 sumur produksi ke arah utara dan 2 sumur injeksi ke arah selatan. Disimpulkan bahwa model konseptual yang dihasilkan berkorelasi dengan baik dengan data sumur.

The X Geothermal field is one of the fields in Flores, East Nusa Tenggara that has geothermal potential and is still under development. At the exploration stage, understanding the geothermal system is important can be described through a conceptual model. This study aims to build an integrated conceptual model with geophysical, geological, geochemical, and well data. It is used to minimize failures in drilling. This is used to minimize failure in drilling. The geothermal conceptual model is the initial information for determining the drilling location. Modeling was carried out using inverse 3D magnetotelluric (MT) and 2D gravity analysis which was correlated with well data. The results of the geothermometer show that the reservoir temperature ranges from 225-250ºC. Based on the data correlation, it can be seen that the subsurface layer X is divided into 3 namely argillic, transitional, and propylitic. The argillic zone is identified as a clay cap with a resistivity of ≤ 10 ohm-m at a temperature of 200ºC. While the transition zone is the boundary of the reservoir and clay cap which has a temperature of 200-210ºC and a resistivity of 10-20 ohm-m. The prophylactic zone is a reservoir zone rich in illite minerals with a resistivity of 20-100 ohm-m and a temperature of ≥ 210ºC. The prospect area for the X geotermal field is 3.4 km2 with the highest potential in the northern part of the study area. Development recommendations are 3 production wells to the north and 2 injection wells to the south. It was concluded that the resulting conceptual model correlated well with the well data."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anugrah Indah Lestari
"Data magnetotellurik biasanya masih dihimpun dan ditampilkan dalam bentuk profil dan diinterpretasi menggunakan inversi 1-dimensi (1-D) atau 2-dimensi (2-D). Asumsi yang digunakan dalam inversi 1-D dan 2-D dapat menyebabkan kesalahan interpretasi dikarenakan kondisi riil di bawah permukaan adalah 3-D. Oleh karena itu dilakukan pengujian inversi 1-D, 2-D, dan 3-D (full tensor impedance dan off diagonal elements) profil data sintetik 3D untuk menganalisis pengaruh efek 3D dan efek tepi. Hasil dari inversi 1D dan 2D memperlihatkan ketidakmampuan dalam mempertahankan geometri model sintetik 3D terutama dalam memperlihatkan batas tepi model sintetik 3D. Dengan menggunakan inversi 3-D, terlihat memberikan hasil yang lebih baik dalam memperlihatkan geometri model sintetik 3D. Pentingnya penggunaan on diagonal elements (Zxx dan Zyy) dalam proses inversi diperlihatkan melalui hasil data sintetik yakni menambah keakuratan dalam hasil inversi terutama pada profil bagian tepi dari benda konduktif dan resistif. Hal ini diperlihatkan melalui hasil plot nilai impedansi Zxx dan Zyy. Oleh karena itu penggunaan seluruh komponen tensor impedansi penting digunakan dalam inversi 3-D untuk menginterpretasi profil data. Arah strike juga terlihat sangat mempengaruhi hasil inversi 2-D. Analisis terhadap inversi multidimensi profil data dilakukan terhadap data riil magnetotelurik daerah prospek panas bumi Tawau, Malaysia. Dari hasil inversi1-D, 2-D, dan 3-D pada data riil didapatkan kemiripan pola distribusi zona resistivitas rendah dan tinggi pada hasil inversi 1-D dan 3-D dikarenakan hasil kedua inversi tidak dipengaruhi oleh arah strike serta hasil ini mendukung kesesuaian pada hasil model sintetik di mana hasil inversi 1-D dapat mencitrakan resistivitas bawah permukaan dengan baik pada kedalaman dangkal.

Magnetotelluric data is usually still collected and displayed in profile data and interpreted by using 1-dimensional inversion (1-D) or 2-dimensional inversion (2-D). The assumption that is used in 1-D and 2-D may lead potential pitfall during interpretation because real condition beneath the surface is 3-D. Therefore, inversion 1-D, 2-D, and 3-D (full tensor impedance and off diagonal elements) is tested in 3D synthetic profile data for analyzing the influence of 3D effect and edge effect. 1-D and 2-D inversion result shows an inability to maintain the geometry of 3D synthetic model, mainly in imaging edge border of 3D synthetic model. By using 3-D inversion profile synthetic data MT, it is proven that the use of 3-D inversion gives better result in showing the geometry of 3D synthetic model. The importance of on diagonal elements (Zxx and Zyy) in the inversion result is shown by the result of synthetic data which increase the accuracy of inversion result, particularly at edge of conductive and resistive feature. This is shown by the result of impedance value (Zxx and Zyy) ploting. Therefore, using all components of tensor impedance is important in 3D inversion to interpret profile data. Strike direction is also seen affect the result of 2D inversion. Analysis of multidimension inversion of profile data is then performed on real magnetotelluric data in Tawau geothermal prospect area. From 1-D, 2-D, and 3-D inversion result, it is obtained that there is similarity in distribution pattern of low and high resistivity zone because both of the inversion are not influenced by strike direction and this result supports the suitability of synthetic model result where 1-D inversion can image subsurface resistivity at shallow depth well.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54755
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wambra Aswo Nuqramdha
"Daerah prospek panasbumi Arjuno-Welirang terletak di wilayah Kabupaten Malang, Kabupaten Mojokerto, Kabupaten Pasuruan dan Kota Batu. Daerah prospek ini berada di lingkungan geologi yang didominasi oleh batuan vulkanik berumur Kuarter. Manifestasi permukaan yang terdapat di daerah prospek ini berupa fumarol ? Solfatar yang terletak di puncak Gunung Welirang serta mata air panas yang berada di sebelah barat dan baratlaut Gunung Welirang. Mata air panas ini bertipe bicarbonate, dengan suhu berkisar antara 39,4 ? 55 0C.
Dari hasil perhitungan geothermometer Na-K, suhu reservoir area prospek ini sekitar 310-314 0C. Untuk mengetahui informasi bawah permukaan daerah prospek panasbumi Arjuno-Welirang, dilakukan survey magnetotelurik. Selanjutnya hasil dari data MT akan di integrasikan dengan data geologi dan geokimia. Data magnetotelurik diolah dari time-series data hingga mendapatkan kurva resistivitas versus frekuensi, dan fase, lalu dilakukan filtering, rotasi dan koreksi static shift untuk mendapatkan kurva MT yang lebih representatif. Selanjutnya dilakukan inversi 2-dimensi dan divisualisasikan secara 3-dimensi.
Hasil penelitian ini memperlihatkan lapisan konduktif (<15 ohm-m) dengan ketebalan sekitar 1 km, diindikasikan sebagai clay cap dari sistem panasbumi. Lapisan yang berada di bawah clay cap dengan nilai resistivitas sedikit lebih tinggi (>30 ohm-m), diindikasikan sebagai zona reservoir. Updome shape dengan nilai resistivitas yang tinggi (±1000 ohm-m), mengindikasikan hot rock, yang berada di bawah Gunung Welirang dan masih meluas kearah Selatan dan Tenggara. Model konseptual dibuat dengan mengintegrasikan data MT, geologi dan geokimia, sebagai pedoman dalam melakukan pengeboran eksplorasi.

Arjuno-Welirang geothermal prospect area is located in the district of Malang, Mojokerto, Pasuruan, dan Batu Town. The prospect area is located in the geological environment that is dominated by Quaternary volcanic rocks. Surface manifestations occurred in this prospect area are fumaroles-solfatara found on the top of Mount Welirang and hot springs located on the West and Northwest of Mount Welirang. These hot springs are bicarbonate types, with temperature range between 39.4 to 55 0C.
From the calculation of Na-K geothermometer, the temperature of the reservoir is about 310-314 0C. To understand the subsurface information of the Arjuno-Welirang geothermal prospect for further development, a magnetotelluric survey was carried out. The result was then integrated with geological and geochemical data. The Magnetotelluric data was processed from the time-series data to obtain resistivity and phase versus frequency. Further processing were filtering, rotation and static shift correction to obtain a more representative MT curve. The final processing was two-dimensional inversion and 3-D visualization.
The results show a conductive layer (<15 ohm-m) with a thickness of about 1 km, indicating a clay cap of the geothermal system. A slighty higher resistivity values (>30 ohm-m) is found below the clay cap, indicating as reservoir zone. An updome shape of high resistivity zone (± 1000 ohm-m) is encountered below the indicated reservoir zone. This resistive zone indicating the hot rock is located below the Mount Welirang cone and is still expanding towards the south and southeast. A conceptual model of the geothermal system was then developed on the basis of the MT data, integrated with geological and geochemical data. This model could be used for a guidance in conducting exploration drilling.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S911
UI - Skripsi Open  Universitas Indonesia Library
cover
Rino Idul Putra
"Daerah penyelidikan panasbumi Banda baru terletak di kecamatan Amahai, Maluku Tengah, Provinsi Maluku. Daerah Banda Baru memiliki potensi panas bumi. Hal ini di indikasikan oleh penelitian sebelumnya yang menemukan adanya manifestasi panas bumi berupa mata air panas dengan suhu antara 60 - 68 oC. Metode gayaberat adalah metode yang efektif untuk mendelineasi struktur bawah permukaan yang mengontrol sistem panasbumi.
Pada penelitian ini, telah dilakukan pengukuran gayaberat dengan 253 titik pengukuran. Kemudian dilakukan koreksi data untuk mendapatkan peta anomali bouguer. Untuk pemisahan anomali residual dan regional dari anomali bouguer digunakan Butterworth filter.
Analisis data gayaberat dilakukan dengan menggunakan metode Horizontal Gradient (HG) dan Euler Deconvolution (ED). Kedua teknik interpretasi ini akan membantu mendeteksi sesar atau patahan yang ada di daerah penyelidikan. Kemudian hasilnya di didukung dengan hasil interpretasi sesar dari data geologi.
Hasil analisis geologi, Horizontal gradient dan Euler deconvolution, menunjukkan adanya struktur berupa sesar didekat manifestasi disekitar daerah penyelidikan panasbumi Banda Baru. Sesar ini diduga sebagai jalan bagi fluida hidrotermal untuk keluar.

Banda Baru geothermal research area is located in Amahai district, central Maluku, Maluku. Banda Baru area exhibited geothermal prospecting. It is indicated by previous investigation through which has been found manifestations such as hot springs with temperature around 60-68˚C. Gravity method is powerful way to delineate structures that controls geothermal system.
In this study, we have identified subsurface structure by gravity method. We have measured gravity data at 253 station. Then, we corrected the data to obtain bouguer anomaly map. Buttherworth filter was used to separate residual and regional anomaly from its bouguer anomaly.
Gravity data analysis was done using Horizontal gradient method and Euler deconvolution. Both interpretation techniques was used to identify faults around the study area. Then, the result of this interpretation is supported with interpretation of faults from geology data.
The result of geological analysis combined with Horizontal gradient and Euler deconvolution showed that there is a fault structure near the manifestations around Banda Baru geothermal prospect. This fault is believed to be a path for the hydrothemal fluid to flow up to the surface.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47643
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samuel Adam
"Indonesia memiliki cadangan panas bumi yang besar, diperkirakan 24 GW atau setara dengan 35-40% dari potensi global, menjadikannya komponen penting dalam upaya transisi energi terbarukan negara tersebut. Namun, hanya 2.34 GW yang telah dimanfaatkan, jauh di bawah target pemerintah 2025 sebesar 7.2 GW. Indonesia menghadapi masalah dalam mengamankan pendanaan untuk target panas bumi yang ambisius ini karena iklim investasi yang menantang. Ketidakpastian yang melekat dalam proyek panas bumi, biaya pengembangan awal yang tinggi, dan insentif yang tidak memadai menjadi penghalang besar bagi investor untuk mencapai pengembalian yang sepadan dengan risiko yang luas. Oleh karena itu, mengatasi ketidakpastian utama dalam fase yang sangat berisiko dari pengembangan panas bumi, seperti eksplorasi dan eksploitasi, diperlukan untuk mengejar strategi yang tepat untuk meminimalkan risiko investasi yang gagal dan meningkatkan kesesuaian untuk alokasi anggaran. Studi ini mengusulkan pendekatan pemodelan dan analisis keuangan eksplorasi untuk menyelidiki ketidakpastian utama dalam proyek panas bumi dengan menggabungkan opsi nyata dan pemodelan eksplorasi. Temuan menunjukkan bahwa harga listrik, kekeringan fluida, biaya pengeboran eksplorasi, dan faktor kapasitas adalah ketidakpastian utama dalam fase eksplorasi. Sementara itu, rasio keberhasilan sumur produksi dan biaya pengembangan dan injeksi adalah ketidakpastian utama dalam fase eksploitasi. Analisis opsi nyata berguna dalam kondisi yang tidak menguntungkan di mana fleksibilitas manajemen diperlukan untuk menghindari penghentian proyek lebih awal. Namun, ketika berada dalam kondisi yang menguntungkan, para pengambil keputusan harus mencari ketahanan keseluruhan di mana proyek tidak akan dihentikan terlepas dari ketidakpastian masa depan.

Indonesia has massive geothermal reserves, estimated at 24 GW or equal to 35-40% of global potential, making it a crucial component in the nation's effort for renewable energy transition. Nevertheless, only 2.34 GW has been utilized, far below the government's 2025 target of 7.2 GW. Indonesia faces problems securing funding for its ambitious geothermal target due to the challenging investment climate. The inherent uncertainty in geothermal projects, high upfront development costs, and insufficient incentives pose significant barriers for investors in achieving returns commensurate with the extensive risks. Therefore, addressing key uncertainties in highly risky phases of geothermal development, such as exploration and exploitation, is needed to pursue the right strategy to minimize the risk of failed investments and increase appropriateness for budget allocation. This study proposes an exploratory financial modeling and analysis approach to investigating key uncertainties in geothermal projects by combining real options and exploratory modeling. The findings show that electricity price, fluid dryness, exploration drilling cost, and capacity factor are key uncertainties in the exploration phase. Meanwhile, the production well success ratio and costs of development and injection are key uncertainties in the exploitation phase. Real options analysis is useful in unfavorable conditions where management flexibility is needed to avoid early abandonment of the project. However, when situated in favorable circumstances, the decision-makers should seek overall robustness where the project will not be abandoned regardless of future uncertainties."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Yunita
"Daerah penelitian “M” merupakan salah satu daerah yang memiliki potensi geotermal di Indonesia. Hal tersebut ditunjukkan dengan adanya struktur geologi dan kemunculan manifestasi di permukaan yang dapat membantu dalam mengidentifikasi keberadaan sistem geotermal di bawah permukaan. Penelitian ini menggunakan inversi 3-dimensi magnetotellurik untuk mengetahui distribusi resistivitas di bawah permukaan, penentuan area prospek, serta pembuatan model konseptual dengan integrasi data magnetotellurik dan data pendukung berupa data geologi, geokimia, dan gravitasi. Berdasarkan data pendukung geologi, daerah “M” terdiri dari susunan produk vulkanik berumur kuarter dan struktur geologi dengan arah barat laut-tenggara. Dari data pendukung geokimia, ditemukan endapan travertine di sekitar manifestasi mata air panas yang relatif bersifat netral, temperatur cukup tinggi, dan berasosiasi dengan struktur geologi. Fluida di mata air panas tersebut dominan bertipe bicarbonate water yang menandakan fluida berasal dari reservoir dan dominan telah terkontaminasi oleh meteoric water. Fluida tersebut juga dominan memiliki nilai klorida tinggi yang menandakan bahwa lingkungan manifestasi mata air panas berada di lingkungan vulkanik. Selain itu, perhitungan dengan geotermometer diperoleh dugaan temperatur reservoir berkisar antara 160°C-180°C. Berdasarkan hasil pemodelan inversi 3-dimensi magnetotellurik dan data pendukung berupa model forward2-dimensi gravitasi diketahui sebaran dari variasi resistivitas dan densitas bawah permukaan yang menggambarkan lapisan clay cap, top of reservoir, dan bentuk updome yang kemungkinan merupakan heat source. Lapisan dengan nilai resistivitas rendah diduga merupakan clay cap atau batuan penudung berupa sebaran batuan beku yang mengalami alterasi. Di bawah lapisan clay cap terdapat sebaran resistivitas medium yang diindikasikan sebagai reservoir berupa batu gamping bahbotala. Di bagian bawahnya terdapat lapisan dengan resistivitas tinggi yang kemungkinan adalah batuan metamorf yang menjadi batuan dasar/basement. Diantara basement ini terdapat bentuk updome dengan resistivitas sedikit lebih tinggi yang diduga merupakan batuan terobosan atau intrusi yang dapat menjadi sumber panas bagi sistem geotermal. Sumber panas ini diduga berasal dari Dolok Tinggi Raja dikarenakan terbentuknya dome di permukaan yang mungkin diakibatkan oleh adanya larutan magma yang tidak tererupsikan keluar permukaan sehingga membentuk batuan terobosan di bawah permukaan. Adanya sumber panas ini dapat menimbulkan aliran fluida panas secara vertikal (upflow). Berdasarkan integrasi data-data tersebut, area prospek geotermal di daerah “M” diperkirakan berada di sekitar Dolok Tinggi Raja melebar ke arah timur laut, timur, dan selatan.

The research area "M" is one of the areas with geothermal potential in Indonesia. This is indicated by the presence of geological structures and the appearance of manifestations on the surface which can assist in identifying the presence of subsurface geothermal systems. This study uses 3-dimensional magnetotelluric inversion to determine the distribution of resistivity below the surface, determine prospect areas, and construct a conceptual model by integrating magnetotelluric data and supporting data in the form of geological, geochemical and gravity data. Based on supporting geological data, the "M" area consists of volcanic products of quarter age and geological structures in a northwest-southeast direction. From supporting geochemical data, travertine deposits around hot spring manifestations were found which were relatively neutral, had relatively high temperatures, and were associated with geological structures. The fluid in the hot springs is dominant of the bicarbonate water type, which indicates that the fluid comes from a reservoir and has been predominantly contaminated by meteoric water. The fluid also dominantly has a high chloride value which indicates that the manifestation environment of the hot springs is in a volcanic environment. In addition, calculations with the geothermometer obtained an estimated reservoir temperature ranging from 160°C-180°C. Based on the results of 3-dimensional magnetotelluric inversion modeling and supporting data in the form of a 2-dimensional forward gravity model, it is known that the distribution of resistivity and subsurface density variations describes the clay cap layer, top of reservoir, and up-dome shape which may be a heat source. The layer with a low resistivity value is thought to be a clay cap or a cap rock in the form of a distribution of altered igneous rocks. Beneath the clay cap layer, there is a medium resistivity distribution which is indicated as a reservoir in the form of bahbotala limestone. At the bottom, there is a layer with high resistivity which is probably the metamorphic rock that became the basement. Among these basements, there is an up-dome with slightly higher resistivity which is thought to be a breakthrough or intrusive rock which can be a heat source for geothermal systems. This heat source is thought to have originated from Dolok Tinggi Raja due to the formation of a dome on the surface which may be caused by the presence of magma solution that has not erupted off the surface to form breakthrough rock below the surface. The existence of this heat source can cause a vertical flow of hot fluid (up-flow). Based on the integration of these data, the geothermal prospect area in the “M” area is estimated to be around Dolok Tinggi Raja, widening to the northeast, east, and south."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bimo Ramadhan
"Indonesia merupakan negara dengan potensi energi geotermal yang besar. Salah satu wilayah di Indonesia dengan potensi energi geotermal adalah Wilayah Z. Sebelumnya, beberapa penelitian dalam bidang geosains mengenai Wilayah Z telah dilakukan untuk mengetahui struktur geologi, keberadaan manifestasi geotermal, geokimia fluida hidrotermal, resistivitas batuan, dan anomali gravitasi. Metode geofisika yang digunakan dalam penelitian ini adalah metode geofisika gravitasi dengan data yang diperoleh dari GGMPlus 2013. Anomali gravitasi regional dan residual diperoleh menggunakan dua metode, yaitu bandpass dan polynomial trend surface analysis. Analisis FHD dan SVD digunakan dalam menentukan keberadaan patahan. Terdapat sepuluh patahan yang teridentifikasi melalui analisis tersebut dengan rincian delapan patahan normal dan dua patahan naik. Model 2-D dan 3-D digunakan dalam memperkiraan nilai densitas batuan bawah permukaan. Densitas batuan tertinggi berada pada luar pull-apart basin dan densitas batuan terendah berada pada bagian tengah pull-apart basin. Berdasarkan analisis data gravitasi GGMPlus 2013 beserta data-data pendukung seperti data geologi, data geokimia, dan data geofisika, teridentifikasi beberapa struktur patahan yang sesuai dengan persebaran struktur patahan pada peta geologi.

Indonesia is a country with great geothermal energy potential. One of the regions in the country with geothermal energy potential is Region Z. Previously, several studies in the field of geosciences regarding Region Z have been carried out to determine the geological structure, the presence of geothermal manifestations, the geochemistry of hydrothermal fluids, rock resistivity, and gravitational anomalies. The geophysical method used in this study is the gravitational geophysical method with data obtained from GGMPlus 2013. Regional and residual gravity anomalies are obtained using two methods, namely bandpass and polynomial trend surface analysis. FHD and SVD analysis are used in determining the presence of faults. There were ten faults identified through the analysis with details of eight normal faults and two ascending faults. 2-D and 3-D models are used in estimating the density values of subsurface rocks. The highest rock density is outside the pull-apart basin and the lowest rock density is in the central pull-apart basin. Based on the analysis of GGMPlus 2013 gravity data along with supporting data such as geological data, geochemical data, and geophysical data, several fault structures that correspond to the distribution of fault structures on the geological map were identified."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>